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ABSTRACT 

 
This paper propose a new reverse engineering approach to convert a form fill format document into a set of 

related tables that can be used to generate the entity relationship  diagram. A relationship between the set 

of tables is generated. In addition, the entity relationship diagram will be converted into a UML class 

diagram. However, this approach will be very helpful for researchers and practitioners in Software 

Engineering field, since most of the reverse engineering approaches are based on source code. This 

approach is tested by using several word form fill format documents and the results show a high accuracy 

rates comparing with the forward engineering. 
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1. INTRODUCTION 

 
At present time, the growth of using information technology, make the researchers focusing on 

reverse engineering methods and techniques to reduce the efforts of producing new software from 

legacy systems or manual processes. Software re-engineering is the examination of gathering 

information, analysis, and alteration of an existing software system to reconstruct the 

infrastructure for new systems in a new form. Software re-engineering is reorganizing and 

modifying existing software systems to make them more maintainable [1].  

 

The reversed engineering approach of the software re-engineering process is used to identify the 

system’s components and their interrelationships to create representations of the system in 

another form of its design and specification [2]. In addition, the reverse engineering technique is 

widely used to reconstruct or recover design systems [13].  

 

The reverse engineering is reconstruction or decomposing existing code, analyzes it to start the 

redesign process through the use of UML notations where the class diagram is drawn to clarify 

the new system process flow. 
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Although software reverse engineering is used in software maintenance process, it is applicable to 

many problem areas. In the context of software engineering, as defined in [24], reverse 

engineering is “the process of analyzing a subject system to identify the system’s components and 

their interrelationships and create representations of the system in another form or at a higher 

level of abstraction”. Another definition is provided by IEEE [25], “reverse engineering is the 

process of extracting software system information (including documentation) from source code”. 

 

In this paper, the reverse engineering approach is used to construct the UML class diagram from a 

form fill format document. The proposed approach will be very useful in the field of reverse 

engineering and in business based system construction.  Most applications and models in this area 

were based on source code in web application [14]. The increase of business automation and the 

huge data forms that need to be automated increase the need to build a software approach to 

construct pre-processing of normalized tables as a base of start point in the automation process.    

 

The main contributions of this paper are: 

 

• The flexibility of building pre-processed normalized tables from a form. 

• A dynamic model that will deal with and language used in the form template.  

• Extremely low cost of adapted software for different applications. 

• Efficient and cheap means of gathering information from a form fill format document. 

 

This paper is organized into four sections: section 2 discusses the related work and literature 

review, section 3 describes the proposed approach, section 4 the conclusion, and the suggested 

potential future work. 

 

2. RELATED WORK 

 
Many research projects were conducted to apply the reverse engineering approaches to reuse the 

infrastructure of the manual or existing system in a new form.  

 
Many researchers were use the existing code of the system, in [15] Tran, et al. proposed an 

approach of reverse engineering based on the reuse of existing process code. Others research 

where done using a hybrid reverse engineering approach that combining metrics and program 

visualization as in [16]. Other reverse engineering approaches proposed to recover design pattern 

information from source code [17]. Mohammad, et al. in [5] they propose a reverse engineering 

approach to process the GUI to reconstruct the class diagram and verify it by using petri nets 

models. Other approaches use the GUI to perform testing [18]. Many researches were done to 

enhance web applications as in [18, 19, and 20].  

 
Others maintain web sites [9], and to automate the construction of sequence diagrams for 

dynamic web applications [10].  

 
Agarwal ans Sinha [3] perceived that the class diagram and interaction diagram is an easy, and 

user friendly notations.  Te, eni et al [4] affirms that over fifty three percent of software projects 

use class diagrams. The implementation of a class diagram is in direct relation with most object 

oriented programming languages such as Visual Basic.Net, Java, and other languages, where each 

class diagram construct an interface or code class.  

 
Chu et al. [26] introduced four phases of reverse engineering processes based on source code 

parsing. The first phase: context parsing phase to analyze the source code and extract syntactic 
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and semantic.  The second phase, they analyzing the components that matched the specifications 

of the extraction model are copied from the sources and stored partially in a component repository 

as in [27]. In the third and fourth phases, they apply design recovering methods by combine both 

structural and knowledge representation from the previous phases. 

 
Finally, in a recent research, Akram, et al. [21] propose a reverse engineering approach using a 

pattern recognition technique to reconstruct a class diagram from distributed graphical user 

interfaces (GUI). 

 

In this paper a reverse engineering approach is used to transform a form fill format document into 

a class diagram through the use of word processing recognition. 

 

2. THE PROPOSED APPROACH 

 
The proposed reverse engineering approach for constructing a class diagram from a form fill 

format document will consist of the following processes: 

 
1. Capturing process: This process will capture form fill format document components and store 

them in a temporary table-not normalized. 

2. Normalization process: This process will scan all records in the temporary table and 

normalized them. Also, a relationship will be defined and the result will be stored in a new 

normalized table. 

3. Mapping process: This process will translate the normalized table to entity relationship 

diagram. 

4. Translation process: This process will translate the entity relationship diagram to class 

diagram. 

 
Figure 1 shows the above four processes and the inputs and outputs for each process. 
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Figure1. The Proposed Reverse Engineering Approach 

 

2.1. Capturing Process 
 
As demonstrated, the capturing process is the first one and it will scan the form fill format 

document and identify each component and store its information in a table called temporary table. 

However, Figure 2 demonstrates the algorithm of capturing process. 
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Figure 2. Capturing Process 
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The result of executing the capturing process will be stored in a temporary table as demonstrated 

in table 1. This table may contain redundancy data, such as column names. The Explanation of 

table 1 contents will be discussed to ensure the understand ability of it. 

 
Table 1: Temporary Table 

 

iCN  1+iCN  … nCN  

    

    

    

 

Where is: 

CN: Column Name,  

i: Column index, and, 

n: Maximum Number of Columns. 

 

2.2. Normalization Process 

 
To discard the redundancy data in Table 1, we proposed the second process to translate the 

temporary table into normalized table based on using the normalization process.  

 
The Normalization Process consists of two algorithms: 

 

• First algorithm is The Translation Algorithm: 

The translation algorithm is used to translate a temporary table to a normalized table, 

in this phase the process will discard the redundancy problem. The translate algorithm is 

represented in figure 3. 

 

• Second algorithm is The Relationship Algorithm:  

The relationship algorithm is used to define the relationship between the tables that 

resulted from translation algorithm. The process follow of the relationship algorithm is 

represented in figure 4. 

 

After executing normalization algorithms the result will be a normalized table as demonstrated in 

table 2. 
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Figure 3. The Normalization Process (Translation Algorithm) 
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Figure 4. The Normalization Process (Relationship Algorithm) 

 

2.3. Mapping Process 

 
The third process will be the mapping process. In this process we proposed an algorithm to 

construct and build an entity relationship diagram. The mapping process will deal with the 
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normalized table that contains the table of tables in addition to the relationships between them. By 

scanning this table using the proposed algorithm the result will be a database schema as 

demonstrated in figure 5. 

Open Normalized 

Table

For Each Row

Save as Entity Name

For Each Column

Read an 

Attribute

if Attribute is table 

Name Attribute

[ Yes ]

if Attribute is an 

Attribute

Save as an Attribute

[ Yes ]

Save As a Forign 

Key

[ No ]

Increment Column by 

One

Increment Row  by One

End For Each Column

End For Each Row

 
Figure 5. Mapping Process 

 

2.4. Translation Process 

 
The last process will be the translation process. In this process we proposed an algorithm to 

construct and build the class diagram. This process will utilized the mapping process results to 
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generate the class diagram from each table created in section 2.3.  The translation process is 

shown in figure 6. Besides that, the class diagram constructed will be translate the table name into 

class name and table fields into class attributes and we add the main default operational functions 

as  (Insert, Update, Delete and Search), this class diagram is shown in the figure 7. 

Read an Entity Name and 

Save as a Class Name

For Each Schema

Read a Forign Key and 

Save as Association

For Each Entity

Read an Attribute Name 

and Save as Attribute Name

End For each Entity

End For Each Schema

 
Figure 7. Translation Process 

 

Tablename� Classname 

Attribute1 

Attribute2 

. 

AttributeN 

Operational functions � class operation 

(Insert, Update, Delete and Search) 
 

Figure 7.  Class Diagram 

 

3. CONCLUSIONS AND FUTURE WORK 

 
This paper discussed a new reverse engineering approach to convert a form fill format document 

in a word format into a set of tables. These tables are also converted into UML notation as a class 

diagram. The proposed approach shows a significant improvement in the reverse engineering 

techniques and methods, and it is suitable to be used as an automatic tool to generate class 

diagram from a form fill format document.  

 

The future work will focus on building a CASE tool to automate the proposed approach and to 

verify all processes using Petri Net formal method. 
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