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ABSTRACT 

 

Within the class of non-homogeneous Poisson process (NHPP) models and as a result of the simplicity of 

the mathematical computations of the Power Law Process (PLP) model and the attractive physical 

explanation of its parameters, this model has found considerable attention in repairable systems literature. 

In this article, we conduct the investigation of new estimation approach, the regression estimation 

procedure, on the performance of the parametric PLP model. The regression approach for estimating the 

unknown parameters of the PLP model through the mean time between failure (�TBF) function is evaluated 

against the maximum likelihood estimation (MLE) approach. The results from the regression and MLE 

approaches are compared based on three error evaluation criteria in terms of parameter estimation and its 

precision, the numerical application shows the effectiveness of the regression estimation approach at 

enhancing the predictive accuracy of the �TBF measure. 
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1. INTRODUCTION 

 
The Power Law Process (PLP) model is a popular infinite NHPP model used to describe the 

reliability of repairable systems based on the analysis of observed failure data, this model was 

derived from the hardware reliability area. There is a lot of literature on the PLP model from a 

classical statistics view. Duane [1] was the first to propose the PLP model. During the 

development process of several failure systems, he presented failure data. Also, he formulated a 

mathematical relationship for predicting and observing the reliability enhancement as a function 

of cumulative failure time. He conducted several hardware applications in which the rate of 

failure occurrence was in a power law form in operating time. During the analysis of the failure 

data, it was noticed that the cumulative µTBF versus cumulative operating time followed a 

straight line on a log-log plot. After that, this model, comprehensively studied by Crow [2], he 

formulated the corresponding model as a non-homogeneous Poisson process (NHPP) with a 

power intensity law.  
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The PLP model can be applied in software reliability although some problems may arises, it has 

been used in many successful applications, particularly in the defense industry. To model the 

failure rate of repairable systems, the PLP model is adopted by the United States Army Materials 

System Analysis Activity and called the Crow-AMSAA model. In standard applications it is 

assumed that the recurrence rate is the same for all systems that are observed. Bain [3] analyzed 

independent equivalent multi-system by employing the PLP model. Much theoretical work 

describing the PLP model was performed (examples; Lee, L. and Lee, K. [4], and Engelhardt and 

Bain [5]). 

 

The PLP model has been widely used in reliability growth, in repairable systems, and software 

reliability models (see; Crow [6], Ascher and Feingold [7], and Kyparisis and Singpurwalla [8]). 

Littlewood [9] modified this model to overcome a problem associated with it, the problem of 

infinite failure rate at time zero. Rigdon [10] showed the wrongness of the claim that a linear 

Duane plot implies a PLP, and the conversion is false too. 

 

In Calabria [11], the modified maximum likelihood (ML) estimators for the PLP model and the 

failure intensity of the expected number of failures in a given time interval is studied. Classical 

inference on the PLP model, such as point estimation, confidence intervals, tests of hypothesis for 

parameters and estimates of the intensity function was reviewed by Rigdon and Basu [12]. Yu et 

al. [13] considered the maximum likelihood estimates and the confidence intervals for the 

unknown parameters with left-truncated data. They also discussed the hypothesis testing and the 

goodness-of-fit test, and the predicted limits of future failure times for failure-truncated data. 

 

Bayesian inference on the PLP model was also studied during the past two decades. One of the 

papers on Bayesian NHPP models is by Higgins and Tsokos [14] and the underlying model is the 

PLP model. Bayesian point and interval estimates were obtained by Guida [15], and Kyparisis 

and Singpurwalla [8]. Calabria et al. [16] considered the lower bounds for a test of equality of 

trends in several independent power law processes. Huang and Bier [17] presented a natural 

conjugate prior for the PLP model. By using the Bayesian method, Tian et al. [18] developed 

estimation and prediction methods for the PLP model in the left-truncated case. They also 

obtained the Bayesian point and credible interval estimates for the parameters of interest.  

 

The extended case of inverting the Fisher information matrix to quantify the precision of the 

parameter estimates for the PLP model is considered by ( Dyck and Verdonck [19]) where the 

recurrence rate between the different systems may vary with known scaling factors. They showed 

that the standard error of the parameter estimates can be quantified using analytical method. 

 

In this article three test methods are applied through a numerical application to evaluate the 

effectiveness of the regression estimation approach that based on the µTBF function. For the four 

real failure data that we considered in this article, we have shown that the regression estimation 

approach works better than the maximum likelihood approach. The regression approach gives less 

error in terms of all the used measurement criteria compared to the maximum likelihood 

approach.  The rest of this article is organized as follows. In Section 2, the mathematical formulas 

of the PLP model’s characteristics are presented. Section 3 briefly discusses the estimation of the 

unknown parameters for the PLP model, considering only the case of time-interval between 

failures. Section 4 presents briefly the selected evaluation criteria. Section 5 is an application to 
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make a comparison between the performance of the regression estimation procedure and the 

method of likelihood estimation to four real data sets. Section 6 gives conclusion of data analysis.  

 

2. THE POWER LAW PROCESS (PLP) MODEL 
 

One particular and most commonly used model of the NHPP in the literature is the PLP, also 

called Duane, Crow-AMSAA, or Weibull process model. This model was first proposed by 

Duane [1] and later developed by Crow [2] as a NHPP model for hardware reliability. This model 

has the ability to be applied for the prediction of software reliability as well, and represents a 

functional relationship between two quantities, where one quantity varies as a power of another. 

With this model we can not make any relation between its parameters and the physical 

characteristics of the failure system. This model describes the failure history of reliable systems 

by supposing an NHPP for the counting process {N(t�), t� ≥ 0}, some of measures of reliability of 

the PLP model are: the mean value function or the expected cumulative number of failures in [0; 

t) and the conditional reliability function, the mathematical formulas of those measures are 

respectively as follows 

 

µ�t�; �, �	 = ��� 		,																																																																														(1) 

 

and 

                                                ���|t�	 		= e��µ�����;�,	�µ���;�,	�    
= e��������	������																																																																										�2) 

 

The error-detection rate per error has the following form 

 

                                                     !�t�; �, �	 		= ξ���;�,	
"���;�,	 

 = ��1 − ��	�%���%                                                    (3) 

 

While the corresponding number of remaining error is given by 

 																																																									n�t�; �, �	 = � − µ�t�; �, �	 = ��1 − ��	                                                                   (4) 

 

The failure intensity function depends only on the cumulative failure time and not on the previous 

pattern of failure times, it can be obtained as follows  

 

																																																											ξ�t�; �, �	 		= dµ�t�; �, �	dt  

= �����%																																																																													(5) 

 

The mean time between failures (µTBF) can be found by the inverse of the intensity function 

 

                                                  µTBF�t�; �, �	 = %
ξ���;�,		 = ���	�%���%	,                                                        (6) 
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where t� > 0, i = �1, 2,… , n		denote the failure times,	�, �	 > 0, � is the scale parameter, and � 

is the shape parameter. For the PLP model, if  �  > 1, the failure intensity is increasing 

exponentially with time, the times between failures tend to be shorter, and this indicates that the 

software reliability is deteriorating. While if � < 1, the failure intensity decreases sharply with 

time, the times between failures tend to be longer, then the software reliability of a system is 

being modeling with rapid improvement, and when � = 1, the mean time between failures is equal 

to a constant value, the system is remaining stable over time and the PLP model reduces to the 

homogeneous Poisson process (HPP), [see; Figure 1].  

 
Figure 1. Intensity function plot of the PLP model. 

 

3 Estimation of the PLP Model’s Parameters for the Case of Time Data 
 

Statistical inference procedures can be used easily and applied to the PLP model. For non- 

homogeneous Poisson process (NHPP) models, there are two statistical categories, namely: 

 

i. Time-interval between failures. 

ii. Number of failures observed in a specified interval.  

In this article the method of estimation will be applied to the first category, where successive 

times to failures are considered as a random variable. 
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3.1 The MLE approach of the PLP model  

 
It is easy to work out for estimation of the parameters for the PLP model, by considering 

equations (1) and (5) the corresponding cumulative mean value and intensity functions are 

respectively 

 

/µ�s�; α, η	 = αs�
η										

ξ�si;α, η	 = αηsiη�%						
1	                                                      (7) 

 

Derived from the NHPPs and supposing that the cumulative failure time data si (i = 1, 2, … , n) 

are observed during the testing phase, then the likelihood function of the PLP model is defined as 

follows 

 

                                          L3α, η4S6 = e−µ�sn;α,η	∏ ξ�s�; α, η	"�8%  

= α"η"e�α9:η ∏ s�η−1"�8% 																																																								(8) 

 

And the natural logarithm of the joint density is obtained as 

 

lnL3α, η4S6 = −αs"η + n ln α+ n ln η+ ∑ �η− 1	lns�																													"�8% (9) 

 

Proceed to estimate α and	η. The first partial derivatives (with respect to α) is taken and 

the equation is set equal to zero yield 

 

	>?"@3α,η4A6>α = −s"η + "
α
= 0                                                   (10) 

 

Solving for α, we have 

αBC@D = n
snη                                                                    (11) 

 

Also, find the first partial derivatives (with respect to η) and Set the equation equal to 

zero yield 

 

	>?"@3E,F4A6>F = 0                                                                                          (12) 

giving 

ηBC@D = "
" ?" 9:�∑ ?" 9�:�GH

	 , where																																																					(13) 

s� =LtM
�

M8N
, 	s" =		L tM

"

M8N
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3.2 The regression estimation approach of the PLP model 

 
The µTBF is the basic measure of the system’s reliability, for the regression procedure we use the 

µTBF to estimate the unknown parameters, by taking the natural logarithm of both sides of the 

µTBF function in Equation (6), we get 

 

lnOµTBF�s�			P =  - ln(��	 + (1- �	 ln�s�)                                                  (14) 

 

Using the method of regression estimation for the linear regression model, (Ryan [20]) we can 

derive the regression estimators of � and	� as follows 

 

�̂RST = 1 − ∑ 	?"�9�	?"�µUVW�9�		:�GH �∑ 	X:3Y�6∑ X:3µZ[\�Y�	6:�GH:�GH :
∑ 	O?"�9�	P]		�				^∑ 	X:3Y�6_]:

                                      (15) 

and 

                                        

αBRST = `a∑ X:3µZ[\�Y�	6:�GH : b�Ha	�cdef	∑ 	X:3Y�6:�GH:
cdef                                                  (16) 

 

Where s�	, i = �1, 2, … , n		denote the cumulative failure times of occurrence, 

 

4 Error Measurement Criteria 

 
After the estimation of the model parameters, several tests exist to evaluate the performance of 

software reliability models quantitatively. The literature (Sharma et al. [21], Norman [22]) refers 

to several common evaluation criteria for software reliability models. In this section three of them 

are considered in order to evaluate the accuracy of the estimates from the PLP model, they are 

described below.  Among them, the model performance is better when they are smaller. 

 

4.1 The Bias  

 
The bias is the sum of the difference between the estimated curve and the actual data, and 

computed by 

 

Bias = 
%
g 	∑ 		3µTBF�t; �, �	 −	µTBF�t; �, �	h 6g�8% 																																						(17) 

 

4.2 The mean squared error (MSE)  

 
The MSE is the most widely used evaluation criteria of prediction. It is used to describe the 

deviation between the predicted values with the actual values, and is defined as 

 

MSE = 
%

g�i 	∑ 		3µTBF�t; �, �	 −	µTBF�t; �, �	h 6																																									g�8% (18) 
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4.3 The mean error of prediction (MEOP) 

 
The MEOP is the summation of the absolute value of the variation between the real data and the 

predicted values. The equation of evaluating the MEOP is given by 

 

MEOP =
%

g�i�% 	∑ 		4µTBF�t; �, �	 −	µTBF�t; �, �	h 4g�8% ,                             (19) 

 

where n represents the number of measurements used for estimating the model parameters, and p 

the number of parameters. 

5 Empirical Application 

 
In our analysis, four real failure data sets are analyzed using the PLP model, to easy implement 

the analysis of failure data, R code is created.  The first step and for the case of TBF data, the 

estimates of the unknown parameters are found using the MLE and the regression approaches. 

Both objective and graphical method based on the cumulative mean time between failures are 

used to study the effectiveness of the regression estimation procedure. Three evaluation criteria 

are used to evaluate the prediction results.  

 

5.1 Failure datasets 

 
For evaluation the performance of the regression estimation approach with the traditional MLE 

approach, four actual software reliability failures data are analyzed. The first data set is presented 

by Musa [23]. The second data set is taken from Jeske [24].The Apollo 8 software test data is first 

reported in Jelenski and Moranda [25]. Tohma’s software failure data is reported and studied by 

Tohma [26]. Figure 2 shows the time between failures versus the failure number for all the 

selected failure data. 
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Figure 2. The time between failures versus the failure number 

 

5.2 Discussion 

 
To test the performance of the PLP model for the four selected failure data, first the estimates of 

the unknown parameters 	� and �	are obtained using the MLE and the regression approaches. For 

the regression the reliability metric µTBF is considered. The actual and the predicted cumulative 

µTBF	using	the	two	method	of	estimation  is represented graphically in Figure 3. From this 

figure we can see that, according to the  µTBF regression approach, it appears that the PLP model 

estimates the	µTBF	very	well  for the four selected failure data sets, the predictive	µTBF curve is 

very closely related to the actual µTBF curve which suggests that the four selected failure data 

sets do follow the PLP model very closely. But this is not the case when using the MLE approach, 

as this parametric approach gives poor prediction results. In Table 1 the MSE, Bias, and MEOP is 

reported, the obtained lower values of this measures considering the regression estimation 
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approach indicates the effective capability of using this procedure. All the selected performance 

measures agree on that the regression approach gives an enhanced prediction results. 

 
Figure 3. Cumulative µTBF vs cumulative  failure time plot 
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Table 1. The MSE, Bias, and MEOP of the two estimation approaches 

 

Datsets Evaluation 

criteria 

MLE 

approach 

Regression 

 approach 

Musa’s Data (1979) MSE 

Bias 

MEOP 

483927928 1739304 

13067.4700 348.8833 

13420.6500 358.3126 

Jeske’s Data (2000) MSE 

Bias 

MEOP 

1330498442 1263012 

25966.6200 219.7441 

28130.5000 238.0561 

Apollo 8 Data (1972) 

 

MSE 

Bias 

MEOP 

6402.7620 21.2888 

67.8297 0.8530 

70.7788 0.8901 

Tohma’s Data (1989) MSE 

Bias 

MEOP 

2505.0440 5.4390 

37.5658 0.6771 

39.3546 0.7093 

 

6 CONCLUSION 

 
One of the earliest proposed and common used reliability models is the PLP model, it is simple 

flexible and has been doing very well in many applications for reliability prediction. It can be 

used to model deteriorating systems as well as to model developing systems. In this article, the 

performance of the PLP model has been evaluated for several repairable data based on the MLE 

method which can be obtained using the likelihood function, and the regression estimation 

approach based on the  µTBF  function of cumulative failure time data. According to the selected 

error measurement criteria, the use of the regression estimation approach resulted in much-

enhanced predictive capability, it produces good evaluation of the µTBF. The MLE approach 

gives poor results in terms of three different evaluation criteria. This suggests that, in software 

reliability modeling, the first step should be to consider the regression approach for software 

reliability prediction.  
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