
International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

DOI : 10.5121/ijsea.2014.5408 122

MANAGEMENT OF TIME UNCERTAINTY INAGILE

Rashmi Popli and Priyanka Malhotra and Naresh Chauhan

Assistant Professor,Department of Computer Engineering, YMCAUST FARIDABAD

ABSTRACT

Agile software development represents a major departure from traditional methods of software
engineering. It had huge impact on how software is developed worldwide. Agile software development
solutions are targeted at enhancing work at project level. But it may encounter some uncertainties in its
working. One of the key measures of the resilience of a project is its ability to reach completion, on time
and on budget, regardless of the turbulent and uncertain environment it may operate within. Uncertainty of
time is the problem which can lead to other uncertainties too. In uncertainty of time the main issue is that
the how much delay will be caused by the uncertain environment and if the project manager comes to know
about this delay before, then he can ask for that extra time from customer. So this paper tries to know about
that extra time and calculate it.

KEYWORDS

Agile Software, Slack, Optimistic time, Pessimistic time, Probability of Delay
[

1. INTRODUCTION

In the last few years Agile methodologies appeared as a reaction to traditional software
development methodologies. Agile methodologies for software development take a novel,
lightweight approach to most aspects of designing and producing applications. Agile software
development is an iterative development method. Its basic concept is people – centred and it
acknowledges that requirements can change. A key characteristic of any agile approach is its
explicit focus on time estimation and business value for the clients. The goal of time estimation is
typically to develop potentially shippable product. The accurate estimations of time is critical for
both developer and customer. Ignorance of estimation methods may cause serious effects like
exceeding the budget, poor quality and not right product. The key factor which is causing the
problem in estimation is time uncertainty, so there is a need of some mechanism for minimizing
uncertainty of time.

In Section II the life cycle of agile is described. Section III describes what uncertainty is. In
Section IV related work in this field is discussed, section V proposes scenario calculation of slack
time and uncertainty in time in agile. In Section VI shows evaluation and results of proposed
algorithm, section VII concludes the paper.

2. AGILE LIFE CYCLE

Agile SDLC contains the six phases, pre-project planning, start, construction, release, production
and retirement. These phases are described as in detail:

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

123

Agile Life Cycle

2.1 Pre-Project Planning:

This phase is the first phase of ASD life cycle. The various activities performed in this phase are:
[

• Define the goal of project: First the goals of the project and market aspects are defined.
It explores how the new functionality improves the organization’s presence in the market,
how it will impact profit of organization. This phase also helps in identifying the potential
stakeholders and their goals.

• Select best strategy for the project: When the strategy is chosen for the project several
issues are considered, like the present team is capable to handle the project or has to
increase the size of team. Whether there is need of relocate the team or not and which
software life cycle paradigm - traditional/waterfall, iterative, or agile – will be good for
the project.

• Feasibility Analysis: During this phase feasibility study of the project is done. In
feasibility study only four issues are needed to consider economic feasibility, technical
feasibility, operational feasibility, and political feasibility [40]. Feasibility analysis efforts
should also produce a list of potential risks and key milestone points during the project.

All the activities of the pre-project planning should be as agile as possible because in this phase
collaboration with stakeholders is necessary who are knowledgeable enough and motivated
enough to consider the potential project and invest in just enough effort to decide whether to
consider funding the effort further.

[

2.2 Iteration 0: Project Initiation

The second phase or the first week of an agile project is referred to as Iteration 0 or project
initiation. The various activities performed during this phase are:

• Garnering initial support and funding for the project: In this phase the project output
or final product, its cost and approximated time is estimated. At this level it should be
clear that what is being produced, how much it will cost and how much time it will take
to complete.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

124

• Requirement gathering: At this stage full participation of the stakeholders is needed to
gather and model the requirements. At this stage the requirement gathering and modeling
is done. The main goal is to understand the problem and solution domain. Not much time
is wasted to create documentation. The details of these requirements are modeled on a
just in time basis in model storming sessions during the development cycles.

• Starting to build the team according to project: Whenever the development of project
starts, the team building also start in parallel. Key team members are identified. At this
point there should have at least one or two senior developers, the project coach/manager,
and one or more stakeholder representatives in the team.

• Building an initial architecture for the system: At the starting of the project there
should be at least a general idea of how the system is going to build and the project is
based on which application. The developers of the project discuss and decide a potential
architecture for the system. This initial architecture evolves over time. The goal is to
identify an architectural strategy, not about to write a huge amount of documentation.

2.3 Construction Iterations

During construction iterations, high-quality working software is delivered incrementally, which
meets the changing needs of the user or customer. This can be done by the following steps:

• Communication between customers and the developers: Communication between the
customer and developer is necessary for reducing risk by using rapid feedback cycles and
via closer collaboration.

• Implementing functionality in a priority order: In ASD change in the requirements is
allowed to meet the exact needs of the customers. The stakeholders are given complete
control over the scope, budget, and schedule – they get what they want and spend as
much money as required and for as long as they’re willing to do so.

• Analyzing and designing: Every individual requirement is analyzed before the
implementation of that requirement. A test-driven design (TDD) approach is selected for
development. The individual testing is performed for every developed requirement.

• Ensuring quality: Quality of the product is ensured by selecting the best design and
testing the code time to time.

• Continuous delivery of the working software: At the end of each development cycle or
iteration there must have a partial, working system to show customer. Pre-production
testing can be done like system/ integration testing.

• Confirmatory and investigative testing: In agile process a significant amount of testing
is required throughout construction. Confirmatory testing is the agile equivalent of
"testing against the specification" because it confirms that the software which is going to
be built will work according to the requirement of our stakeholders. Investigative testing
is done by test professionals who are good at finding defects which the developers have
missed. These defects might be due to integration problems or sometimes they may be
because of requirements which are not considered or simply have not implemented yet.

2.4 Release Iterations: The "End Game"

During the release iteration phase, also known as the "end game", the system is transit into
production. The various activities of this stage are:

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

125

• Final testing of the system: Final system testing and acceptance testing are performed at
this point, although the majority of testing has been done during construction iterations.
In this case beta testing can be performed for the system in the presence of end users.

• Rework: There is no value of testing the system if it is not planned to act on the defects
that has been found. One cannot address all defects, but should expect to fix some of
them.

• Finalization of the system and user documentation: Some documentation may have been
written during construction iterations, the documentation is treated like any other
requirement: it is also estimated, prioritized, and created only if stakeholders are willing
to invest in it.

• Training: Training is provided to end users, operations staff, and support staff to work
effectively with working system.

• Deploy the system: System is deployed after this cycle.

2.5 Production

The goal of the Production Phase is to keep systems useful and productive even after the product
has been deployed to the user community. This process will differ from organization to
organization and perhaps even from system to system, but the fundamental goal remains the
same: keep the system running and help users to use it.
[

2.6 Retirement

The goal of the Retirement Phase is the removal of a system release from production, and
occasionally even the complete system itself. This activity also known as system
decommissioning or system sun-setting. Retirement of systems is a serious issue faced by many
organizations today as legacy systems are removed and replaced by new systems.

3. UNCERTAINTY

Meaning of Agile is “moving. In releasing a particular plan or user story, it is needed to fix a set
of release dates and then determine how much functionality can be achieved by those dates. Also
this can be done by deciding the functionality first and then deriving the release date. In either
case the functionality value is accessed against the cost and time to develop the system, In
previous used methods cost and time both get neglected in assessing the functionality which lead
to uncertainty in both time and cost. Also the size of the user story is not certain. These all factors
leads to poor estimation in agile project and hence time uncertainty. In this paper there is an
attempt to find solution to problem of these uncertainties and calculating the percentage of
uncertainty.

4. RELATED WORK

Malik Hneif, Siew Hockow presented a review of Agile methodologies in software development.
This review starts with a brief background about different approaches in software development. It
includes difficulties in software development as development involves more critical and dynamic
industrial projects and new difficulties emerged according to the growth of companies like
evolving requirements, customer involvement, deadlines and miscommunications.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

126

McDaid, D. Greer, F. Keenan, P.Prior, P. Taylor, G. Coleman[8] proposed a set of key practices
which includes the practice, termed “Slack”, of only signing up to for what the team is confident
of achieving. Within this approach it is always possible to add more stories, time permitting, thus
delivering more than was actually promised. This practice acknowledges that there is a significant
amount of uncertainty in the estimated time to complete releases.

Rashmi Popli, Anita and Dr. Naresh Chauhan[5] proposed a common life cycle approach that is
applicable for different kinds of teams. This approach describes a mapping function for mapping
of traditional methods to agile method.

Siobhan Keaveney and Kieran Conboy[1], gave the study of the applicability of current
estimation techniques to more agile development approaches by focusing on four case studies of
agile method use across different organizations. The study revealed that estimation inaccuracy
was a less frequent occurrence for these companies. The main estimation techniques used were
expert knowledge and analogy to past projects also the Component of the process; fixed price
budgets can prove beneficial for both developers and customers, and experience and past project
data should be documented and used to aid the estimation of subsequent projects.

S.Bhalerao and Maya Ingle[4] presented the study of both traditional and agile estimation
methods with equivalence of terms and differences. This study investigated some vital factors
affecting the estimation of an agile project with scaling factor of low, medium and high. Also, an
algorithm Constructive Agile Estimation Algorithm (CAEA) is proposed for incorporating vital
factors.

Daniel D. Galorath[3] proposed a 10-step estimation process that begins by addressing the need
for project metrics and the fundamental software estimation concepts. It shows how to build a
viable project estimate, which includes the work involved in the actual generation of an estimate,
including sizing the software, generating the actual software project estimate, and performing
risk/uncertainty analysis.

Meso and Jain have compared ideas in agile development to those in Complex Adaptive Systems
by providing a theoretical lens for understanding how agile development can be used in volatile
business environments.

5. PROPOSED WORK

Client gives customer the requirements in form of user stories, and a backlog is created with those
requirements. The time required for completion of project depends upon size of the user story. It
needs to be certain about time taken by the project to be completed. The uncertainties in the
timing is a big problem so project takes some marginal time called as slack that will compensate
for extra time taken in the project work other then the optimal development time. However there
is no formula for calculating this Slack. The proposed algorithm and formula suggests that how to
calculate the slack time. For calculations, the time taken as hours rather than days because that
will lead to actual result.

Effective time per day for Sprint Related work = Average work day time - Time allocated for
other activities.

For example Average work day time = 10 hours
Time Allocated for other activities = 5 hours

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

127

Emails and Phone: 1 Hrs
Lunch: 1 Hrs
Meetings: 2 Hrs
Bug fixes: 1 hrs
Available time for Sprint Related work = 5 hours

5.1 Proposed Diagram

[

Figure 2: Showing what actually happening in this scenario of calculating slack

In the project there is a team of about 7 persons, one is project manager, four developers and two
testers who are doing pair programming. For four developers total development time will be the
ideal available time for development related work * 4.

The optimistic value of time period for one iteration is given to the developers so that they have
to complete task in that period, and the pessimistic value is given to the customer or client. The
calculation for pessimistic timing will be done by using probability of delay.

5.2 Proposed Formulas

The difference between these two timings will be helpful for exactly calculating the slack time.

1. Duration for developer = = [optimistic time] / work per time

2. Duration for customer = = [pessimistic time] / work per time

3. pessimistic time for each task =(percent probability of delay *optimistic time
)/100+optimistic time

4. Slack time for a task = duration for customer - duration for developer
5. Time Uncertainty= (slack/duration for developer)*100
6. Total slack time= (Total pessimistic time-Total optimistic time)/(Total working hours per

Pessimistic
Time
(maximum
time taken)

Optimistic
Time
(minimum
time taken)

Slack

Given to
the
customer

Given to
the
developer

Given to
the
uncertainty
analyst

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

128

day*Number of developers)

5.3 Proposed Algorithm

The proposed algorithm explains the various steps involved in removing the uncertainty in time in
agile environment.
1. Identify the tasks of each user story based on the requirements, suppose for each user story
there are n number of tasks so for each user story the tasks are t1, t2, t3.......tn.
2. Identify the optimistic time for each task and probability of delay for each task. Metric for
Optimistic time value is hours and probability of delay will be in percentage.
3. Calculate the time (pes) for each user story by using the formula I [pessimistic time]
where “i” denotes the tasks and pessimistic time for each task =(percent probability of delay
*optimistic time)/100+optimistic time
4. Compute the overall Slack time for all the user stories using the formula Slack time = duration
for developer - duration for customer
Duration for developer= [optimistic time] / Effective working hrs
Duration for customer = [pessimistic time] / Effective working hrs
5. Calculate the uncertainty percentage which is
= (slack time/duration for developer)*100

5.4 Proposed Activity Diagram

Figure 3: Steps involved in calculation of slack and uncertainty

6. EVALUATION AND RESULTS

In this section the feasibility of our algorithm is shown by calculating the estimated values of
pessimistic time using probability of delay, value of slack and percentage of uncertainty for a
project. We had considered the number of effective working hours as 5 per day .In this section the
feasibility of our algorithm is shown by a case study in which the values are being calculated. We
have considered the user stories of project which is Letters of Credits; the client is HP-client. A

Slack time for each user story is calculated using
formula 4

Uncertainty calculation is done using formula 5

Assume the time (op) and probability value for
each task

Compute the time (pes) value for each task using
formula 3

Overall slack time for the project is calculated using
formula 6

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

129

graph can be drawn taking the optimistic time and pessimistic time values against each other, the
bar graph and line graph both show the difference between both the values.

Table 1: Showing tasks of the project under taken and related values of optimistic time and
probability of delay

N O. DEVELOPMENT
TASKS

OPTIMISTIC
TIME

PROBABILITY OF DELAY

1 FSD REVIEW EXPORT

OPENING

20 30

2 FSD REVIEW EXPORT

REVIEW

10 20

3 FSD REVIEW OPENING

CREATION

26 20

4 FSD IMPORT REVIEW

CREATION

42 10

5 FSD EXPORT REVIEW

CREATION

33 10

6 PH-2 REQUIREMENT

STUDY

20 30

7 FSD EXPORT REVIEW

CREATION

30 10

8 FSD IMPORT OPENING

SIGN-OFF

45 20

9 FSD IMPORT REVIEW

SIGN-OFF

50 10

10 FSD EXPORT OPENING

SIGN-OFF

54 30

11 FSD EXPORT REVIEW

SIGN-OFF

32 10

12 DEVELOPMENT

REVIEW 1
34 20

13 DEVELOPMENT

REVIEW 2
65 10

14 BACKUP ARCHIVE 30 20
15 PROJECT MONITORING 40 30
16 CONFIGURATION 23 20
17 UNIT TESTING 25 10
18 INTEGRATION TESTING 35 10
19 SYSTEM TESTING 25 20
20 TRAINING 20 20
21 PH1 UAT 5 30
22 PH1 UAT SIGN OFF 15 20

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

130

23 PH2 UAT SIGN OFF 20 10
24 PH2 DEVELOPMENT

REVIEW1
20 20

25 PH2 DEVELOPMENT

REVIEW 2
19 20

26 PH2 UAT 7 10

Table 2: showing user stories along with there corresponding associated tasks

NO. USER STORY ASSOCIATED TASKS
1 SRS 1-5
2 SRS REVIEW 6
3 DOCUMENTATION 6,7
4 FSD REVIEW IMPORT

OPENING

8-10

5 NON-FUNCTIONAL

DATA COLLECTION

20-23

6 PRE ENGAGEMENT

SUPPORT

13-16

7 REWORK CODING 11,12
8 TESTING 17-19
9 CODE REVIEW 24,25
10 GO LIVE SUPPORT 21,26

Table 3: user stories with their optimistic time and calculated pessimistic time

USER STORY NO. TOTAL
OPTIMISTIC
TIME

TOTAL
PESSIMISTIC
TIME

1 131 152
2 20 26
3 50 59
4 149 179.2
5 60 70.5
6 158 187.1
7 66 76
8 85 96
9 39 46.8
10 12 14.5

6.1 Numerical analysis

Total slack time= (Total pessimistic time-Total optimistic time)/Total working hours per
day*Number of developers

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

131

Here total working hours per day are=5 hours
Number of developers=4
Total Slack time = (907.1-770)/20=6.85

Now the Percent uncertainty in the project= (Slack time/Pessimistic time)*100=
(6.85/45.35)*100=15.10%

6.2 Graphs

Figure 4: Bar graph representation of optimistic and pessimistic timing values

Figure 5: Difference between optimistic time and pessimistic time shown by lines

7. CONCLUSION

This uncertainty percentage tells us that by this percentage there are the chances of the project to
get faulty. If this percentage value is much higher, then this may lead the developers think about
removing the uncertainties first and then start the project. The slack value helps in improving the

0

5 0

1 0 0

1 5 0

2 0 0

1 2 3 4 5 6 7 8 9 1 0

o p t i m i s t i c t i m e

p e s s i m i s t i c t i m e

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

132

project as we can remove some causes which are leading to the delay. Also the value of slack is
important because now the project manager is sure about the completion time of the project and
the relations with the customer can be improved as customer is well satisfied with the project
completion at the given dead line. The approach used in the paper is very easy to understand and
do not need any hard and fast calculations. After having exact values it would be easier for the
manger to read out the reports because the work is shifted from the theoretical portion to the exact
numerical data. Hence this paper is an approach to solve the problem of uncertainty of time.

REFERENCES

[1] Siobhan Keaveney and Kieran Conboy , “Cost Estimation and agile development projects” Product-
Focused Software Process Improvement, 435-440

[2] Du, G., McElroy, J., &Ruhe, G. (2006). Ad hoc versus systematic planning of software releases–a
three-staged experiment. Product-Focused Software Process Improvement, 435-440.

[3] Daniel D. Galorath, “The 10 Step Software Estimation Process For Successful Software Planning,
Measurement and Control”galorth incorporated 2006.

[4] S. Bhalerao and Maya Ingle, “Incorporating Vital Factors In Agile Estimation Through Alogorithmic
Method” International Journal of Computer Science and Applications, Ó2009 Technomathematics
Research Foundation ,Vol. 6, No. 1, pp. 85 – 97

[5] Rashmi Popli, Anita and Naresh Chauhan. “mapping of traditional software development methods to
agile methodology”

[6] Logue, K., &McDaid, K. (2008). Agile Release Planning: Dealing with Uncertainty in Development
Time and Business Value. Engineering of Computer Based Systems, 2008. ECBS 2008. 15th Annual
IEEE International Conference and Workshop on the (pp. 437-442). IEEE.

[7] McDaid, K., Greer, D., Keenan, F., Prior, P., Taylor, P., & Coleman, G. (2006). Managing
Uncertainty in Agile Release Planning.Proc. 18th Int. Conference on Software Engineering and
Knowledge Engineering (SEKE’06) (pp. 138-143).

[8] Logue, K., &McDaid, K. (2008). Agile Release Planning: Dealing with Uncertainty in Development
Time and Business Value. Engineering of Computer Based Systems, 2008. ECBS 2008. 15th Annual
IEEE International Conference and Workshop on the (pp. 437-442). IEEE.

[9] RashmiPopli, NareshChauhan,” Research Challenges of Agile Estimation” Journal of Intelligent
Computing and Applications” July- Dec 2012.

[10] RashmiPopli, NareshChauhan,” “Scrum- An Agile Framework”, International Journal of Information
Technology and Knowledge Management (IJITKM) ISSN: 0973-4414", Vol-IV, Number-I, 20 Aug
2010.

Authors

RASHMI POPLI

Rashmi Popli is pursuing her Ph.D in Computer Engineering from YMCA University
of Science & Technology, M.Tech(CE) from M.D University in year 2008,,B.Tech(IT)
from M.D University in the year 2004.She has 9 years of experience in teaching.
Presently she is working as an Assistant Professor in department of Computer
Engineering in YMCA University of Science &Technology, Faridabad, Haryana, India.
Her research areas include Software Engineering, Software Testing and Software
Quality.

PRIYANKA MALHOTRA

Priyanka Malhotra is a research scholar pursuing her M.tech in computer engineering
(Compter Networks) from YMCA University of Science &Technology, Faridabad,
Haryana, India. Completed B.tech (Cse) from Kurukshetra Unviersity, Kurukshetra

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

133

DR. NARESH CHAUHAN

Naresh Chauhan received his Ph.D in Computer Engineering in 2008 from M.D
University, M.Tech(IT) form GGSIT,Delhi in year 2004,B.Tech(CE) from NIT
Kurukshetra in 1992.He has 22 years of experience in teaching as well as in industries
like Bharat Electronics and Motorola India Pvt. Ltd. Presently he is working as a
Chairman and Professor in the department of Computer Engineering ,YMCA
University of Science and Technology, Faridabad, Haryana, India.. His research areas
include Internet Technologies, Software Engineering, Software Testing and Real Time
Systems.

.

