
International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

DOI : 10.5121/ijsea.2014.5407 103

ANEXTENDED STABLEMARRIAGE PROBLEM
ALGORITHM FORCLONEDETECTION

Hosam AlHakami, Feng Chen and Helge Janicke
Software Technology Research Laboratory, De Montfort University, Leicester, UK

ABSTRACT

Code cloning negatively affects industrial software and threatens intellectual property. This paper presents
a novel approach to detecting cloned software by using a bijective matching technique. The proposed
approach focuses on increasing the range of similarity measures and thus enhancing the precision of the
detection. This is achieved by extending a well-known stable-marriage problem (SMP) and demonstrating
how matches between code fragments of different files can be expressed. A prototype of the proposed
approach is provided using a proper scenario, which shows a noticeable improvement in several features
of clone detection such as scalability and accuracy.

KEYWORDS

Clone Detection, Stable Marriage Problem, Metrics

1. INTRODUCTION

The Stable Marriage Problem (SMP) is a well-known problem that has been defined by Gale and
Shapley in 1962 [1]. An example of the SMP is allocating the right jobs to their most suitable
jobseekers (one-one). Similarly framed problems with differing cardinality are also considered to
be instances of the SMP, such as matching graduated medical students to hospitals (one-many)
[2]. The SMP grantees the stable match between the candidates.

Clone detection has been intensively investigated due to the need of tackling code issues in the
maintenance process. Current detection algorithms are search-based algorithms that do not
consider finding a match between a given code segment in a larger set of code files. Our
approach differs in that it uses the preferences of candidates (code portions) in the process of
finding the best matches.

In this paper, a variant of the stable marriage problem algorithm to clone detection is investigated
to find clones of different source files. The extended algorithm introduces the preferences of code
segments based on the values of predefined metrics, e.g. the number of calls from or to a method,
cyclomatic complexity. The values of both parties will be considered in the clone detection
process.

The remainder of this paper is structured as follows. In Section 2, the background of the SMP
research is introduced. In Section 3, the context for the SMP algorithms to be applied to Clone
Detection is discussed. In Section 4, an adapted SMP algorithm that is suitable to generate fair
and stable matches between similar code fragments of different source files is proposed and
evaluated, and we conclude the paper in Section 5.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

104

2. SMP ALGORITHM

In 1962, David Gale and Lloyd Shapley published their paper College admissions and the
stability of marriage [1]. This paper was the first to formally define the Stable Marriage Problem
(SMP), and provide an algorithm for its solution. The SMP is a mechanism that is used to match
two sets of the same size, considering preference lists in which each element expresses its
preference over the participants of the element in the opposite set [1]. Thus, the output has to be
stable, which means that the matched pair is satisfied and both candidates have no incentive to
disconnect. A matching M in the original SMP algorithm is a one-to-one correspondence between
the men and women. If man m and woman w are matched in M, then m and w are called partner in
M, and written as m = PM(w) (which is the M-partner of w), w = PM(m) (the M-partner of m). A
man m and a woman w are said to block a matching M, or called a blocking pairs for M if m and
w are not partners in M, but m prefers w to PM(m) and w prefers m to PM(w) [2]. Therefore, a
matching M is stable when all participants have acceptable partners and there is no possibility of
forming blocking pairs. This problem is in interest of a lot of researchers in many different areas
from several aspects. Matching problems on bipartite sets where the entities on one side may have
different sizes are intimately related to the scheduling problems with processing set restrictions
[3].

An instance I of SM involves n men and m women, each of whom ranks all n members of the
opposite sex in strict order of preference. In I we denote the set of men by m = m1, m2, ..., mn and
the set of women by w = w1, w2,…, wn. In SM the preference lists are said to be complete, that is
each member of I ranks every member of the opposite sex as depicted in figure 1.

Figure1. General view of SMP. [4]

2.1. GALE SHAPLEY EXTENDED ALGORITHM

The algorithm presented by Gale and Shapley for finding a stable matching uses a simple deferred
acceptance strategy, comprising proposals and rejections. There are two possible orientations,
depending on who makes the proposals, namely the man-oriented algorithm and the woman-
oriented algorithm.

In the man-oriented algorithm, each man m proposes in turn to the first woman w on his list to
whom he has not previously proposed. If w is free, then she becomes engaged to m. Otherwise, if
w prefers m to her current fiancé m, she rejects m, who becomes free, and w becomes engaged to
m. Otherwise w prefers her current fiancé to m, in which case w rejects m, and m remains free.
This process is repeated while some man remains free. For the woman-oriented algorithm the
process is similar, only here the proposals are made by the women.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

105

The man-oriented and woman-oriented algorithms return the man-optimal and woman-optimal
stable matching respectively. The man-optimal stable matching has the property that each man
obtains his best possible partner in any stable matching. However, while each man obtains his
best possible partner, each woman might simultaneously obtain her worst possible partner in any
stable matching. Correspondingly, the woman-oriented algorithm has the same problem.

Theorem 1 All possible execution of the Gale-Shapley algorithm (with the men as proposers)
yields the same stable matching, and in this stable matching, each man has the best partner that he
can have in any stable matching [2].

According to the previous theorem if each man has given his best stable partner, then the result is
a stable matching. The stable matching generated by the man-oriented version of the Gale-
Shapely algorithm is called man-optimal. However, in the man-optimal stable matching, each
woman might have the worst partner that she can have in any stable matching, leading to the
terms of man-optimal is also woman-pessimal. This results in the next theorem.

Theorem 2 In the man-optimal stable matching, each woman might have the worst partner that
she can have in any stable matching [2].

The following example in Figure 2 gives the different output for both man-optimal and woman-
optimal, the instance formed out of 4 elements.

Figure 2. A stable marriage instance of size 4.

The results of different cases differ from man-oriented version to woman-oriented version. The
stable matching generated by both man-oriented and women-oriented versions are respectively
Man-Optimal = M0 = {(1 , D) , (2 , C) , (3 , B) , (4 , A)} and
Woman-optimal= Mz = {(1 , D) , (2 , A) , (3 , B) , (4 , C)}.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

106

An extended version of Gale-Shapley algorithm has been designed to improve the basic
algorithm. The extended version reduces the preference list by eliminating specific pairs that can
be clearly identified as unrelated to any stable matching. The deletion process of such pair is
performed by deleting each other from the preference lists.

2.2. HOSPITALS/RESIDENTS PROBLEM

The hospitals/residents problem (also called Colleges/Students problem, and by many other
names) reflects a cardinality of many-to-one of the stable marriage problem. This cardinality
touches a wide range of large-scale applications that require stable matching such as
students/colleges problem. Therefore, it has interested the researchers in different aspects for
instance recruitment in which uses schemes to match a group and employers to a group of
employees. The National Resident Match Program [5] is a real example in the US which annually
matches hospitals to about 30,000 medical residents. An instance of the hospitals/residents (HR)
problem consists of a set R of n residents and a set H of m hospitals, where each hospital h has
capacity ch, the maximum number of positions available in h. Each resident ranks the hospitals in
H that are acceptable to him/her in strict order of preference; likewise, each hospital ranks the
residents in R that are acceptable to it in strict order of preference. A matching M for the instance
is a set of resident-hospital pairs where in every pair the resident and the hospital are mutually
acceptable to each other, every resident appears in at most one pair, and every hospital h appears
in at most ch pairs. A pair forms a blocking pair with respect to M if

i) r is unmatched and finds h acceptable or r prefers h to the hospital she is assigned to and,
simultaneously,

ii) h is not filled to capacity and finds r acceptable or h prefers r to one of the residents
assigned to it.

Intuitively, if (r, h) forms a blocking pair in M then r and h are likely to break their assignments
under M, causing the matching to unravel. Thus, the goal of the HR problem is to find a matching
that is stable and has no blocking pairs. In their seminal paper [1], Gale and Shapley first tackled
the problem in the simplier stable marriage (SM) setting where residents and hospitals are
replaced by men and women. Every participant has a complete preference list (i.e., every man
ranks all the women and every woman ranks all the men), and a capacity of one (i.e., every
individual can have at most one assigned partner). They introduced the deferred-acceptance
algorithm to find a stable matching, and showed that the algorithm can be extended to the more
general HR setting. Consequently, they proved that every HR instance has a stable matching
which can be computed in O (nm) time. In [6] Cheng et al. examined the structure of the set of all
stable matchings of an HR instance and introduce the notion of meta-rotations in this setting.
Also, they discuss the problem of finding feasible stable matchings.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

107

Theorem 3 ([2])

(i) The matching specified by the provisional assignments after the execution of the hospital-
oriented algorithm is stable.
(ii) In this matching, a hospital h with q available places is assigned either its best q stable
partners, or a set of fewer than q residents; in the latter case no other resident is assigned to h in
any stable matching.
(iii) Each resident is assigned in this matching to his worst stable partner.
We will build on this background in Section 4 where we use the extended Gale-Shapley algorithm
in our application to the problem of clone detection.

3. CLONE DETECTION

Clone detection is a crucial field that has been intensively conducted by researchers and
practitioners for the last two decades to enhance a software systems work and therefore, improves
the maintainability for the future lifespan of the software system. Although the clone detection is
a wide spread research problem over many years, it is still considered as a fuzzy terminology
since the researchers have differently defined it according to variants situations and criteria. Thus,
it is essential to understand the meaning and usage of the clones to know how to deal with it
properly. In this section, we provide different definitions and types of clones.

3.1. CLONE RELATION TERMS

Clone is usually detected as a form of either clone pair or clone classes. These two terms focus on
the similarity relation between two or more pieces of cloned code. Kamiya et al. in [7] describe
this relation as an equivalence relation (i.e., a reflexive, transitive, and symmetric relation). It can
be said that there is a clone-relation between two fragments of code if (and only if) they have the
same sequences (original characters strings, strings without whitespaces, token type etc.). We can
express the meaning of clone pair and clone classes based on the clone relation as shown in
Figure 3 below:

Figure 3. Clone pair and Clone class. [8]

• Clone Pair: two fragments of code are considered to form a clone pair when they have a
clone-relation between them. That means these two portions are either identical or similar
to each other. As seen in Figure 3 for the three code fragments, Fragment 1 (F1),
Fragment 2 (F2) and Fragment 3 (F3), we can get five clone pairs, (F1(a), F2(a)), (F1(b),
F2(b)), (F2(b), F3(a)), (F2(c), F3(b)) and (F1(b), F3(a)). If we assume to extend the
granularity size of cloned fragments, we get basically two clone pairs, (F1(a + b), F2(a +

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

108

b)) and (F2(b + c), F3(a + b)). And if we consider the granularity not to be fixed, we get
seven clone pairs, (F1(a), F2(a)), (F1(b), F2(b)), (F2(b), F3(a)), (F2(c), F3(b)), (F1(b),
F3(a)), (F1(a+b), F2(a+b)) and (F2(b + c), F3(a + b)); each of these fragments is
termed as a simple clone [9].

• Clone Class: is a maximal set of related portions of code that contains a clone pairs. It
can be seen that the three code fragments of Figure 3, we get a clone class of (F1(b),
F2(b), F3(a)) where the three code portions F1(b), F2(b) and F3(a) form clone pairs with
each other (F1(b), F2(b)), (F2(b), F3(a)) and (F1(b), F3(a)) result in three clone pairs.
Consequently, a clone class is the union of all clone pairs which have portions of code in
common [10, 11].

• Clone Communities: as termed in [12], it is another name of the Clone classes that
reflecting the aggregation of related code fragments which form a clone pairs.

• Clone Class Family: researchers in [10] revealed the term of clone class family to group
or aggregation of all clone classes that have the same domain.

• Super Clone: as have been outlined by [13] multiple clone classes between the same
source entities (subsystems or clone classes) are aggregated into one large super clone
which is the same as the clone class family.

• Structural Clones: it is an aggregation of similar simple clones that spread in different
clone classes in the whole system [9]. Therefore, it can be classified as both a class clone
(in early stage of clustering similar fragments of code) and super clone.

3.2. DEFINITION OF CODE CLONING

As aforementioned there is no original or specific definition of cloned code and therefore, all
anticipated clone detection methods have their own definition for code clone [14, 15]. However, a
fragments of code that has identical or similar code fragments in the source code, is considered to
be a code clone. Regardless the changes that have been applied on a certain code clone, if still in
the thresholds of the copied portion, then both the original and the copied fragments term as code
clones and they form a clone pair.

Some researchers based their definition of clone code on some definition of Similarity whereas
there is no specified definition of detection independent clone similarity. Baxter, Yahin et al. [16]
defined code clones as the fragments of code that are similar based on definition of similarity and
they provide a threshold-based definition of tree similarity for near-miss clones. However, there is
a fuzziness of the term similarity; what is meant by similar? , and to what extend are they similar?
The definition provided by Kamiya et al. [7] zooms in this terminology as they define the clones
as the segments of source files that are identical or similar to each other. Another ambiguous
definition is proposed by Burd and Cordy [11, 17] in which fragment of code called clone when
there is more existences of that fragment in the source code with or without minor modifications.
However, a number of researchers Kontogiannis, Lu et al. and Kapser in [15, 18, 19] tried to
control and specify their own detection dependent threshold based definition of the term
similarity. Therefore, after several comparisons that run-out by Roy, Kontogiannis and Koschke
et al. [11, 15, 20] they attempt to automatically unify the result sets of multiple detectors, trying to
solve the differential detector-based output.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

109

3.3 CLONE DETECTION TECHNIQUES AND TOOLS

The following are some features (dimensions) which form corner stones and clarify the several
facets of the clone detection techniques:

• Source Representation: it is the final form or representation of the code fragments being
compared in the comparison phase to meet the algorithm requirements. This can be
achieved using the different types of transformations/normalizations or filtering. Source
Transformation/Normalization: some clone detection approaches apply a kind of
transformation / normalization or filtering on the original source code to get a suitable
code format in order to apply a comparison algorithm. However, some other approaches
only remove the comments and the whitespaces.

• Comparison Algorithm: one of the major concern properties that can affect the
performance of the clone detection process is the choice of the appropriate detection or
matched algorithm. Several approaches apply different data mining/information retrieval
algorithms.

• Clone Granularity: there are two types of granularity clones fixed and free granularity.
A returned fixed granularity clone is the pre-defined block size of the considered code
fragments such as (e.g., function, begin-end brackets etc.). However, if there is no certain
considered limit or size of the code portion block then they are called free granularity
clones.

• Clone Similarity: This feature represents the type of code clones that can be found by
some detection techniques such as exact match clone, parameterized match or near-miss
clones.

3.3.1 TEXT-BASED TECHNIQUE

This technique is purely based on the text or string methods, so in this approach the raw source
code is considered as sequence of lines and strings. Code segments are matched with each other
to detect the same sequences of text or strings, which not related to structural elements of the
language. The detected sequences are returned as clone pair by the detection technique. Some
text-based approaches perform a slight of transformation/normalization on the code fragments
before setting off the comparison process, whereas normally the row source code is directly used
in the matched process. The following are some commonly used
filtering/transformation/normalization in some approaches:

• Normalization: basic normalization can be applied on the raw source code (see Figure4).
• Whitespaces: considers and removes all whitespaces including tabs, new line(s) and

other blanks spaces.
• Comments: eliminates all comments used in the source code.

Figure 4. Normalisation operations on source code elements. [11, 21]

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

110

Text-based approaches are differs from one another, as they based on different techniques such as
fingerprints and dot plot. Ducasse et al. [21] present one of the most recent text-based approaches
that based on dot plot. The scatter plot is a two dimensional chart formed by two axes of source
code. In this approach the comparison unites are lines of program. The dot appears when x and y
are equal which based on the calculated hash value of both lines. The diagonals in dot plots can
identify the clones, as dot plot can further be used to display the information of code clones.
String-based dynamic pattern matching is applied by Ducasse et al. on dot plot to match the lines
of code. Another similar approach SDD is identified by Lee and Jeong [22], applies an n-neighbor
technique to detect type-3 clones.

As the approach of Ducasse et al is not sure about recognizing the type-3 clones Wettel and
Marinescu [23] provide an extension to this approach to find nearmiss clones using dot plots.
They use the algorithm that relates the neighboring lines to detect some forms Type-3 clones. The
approach of Marcus and Maletic [24] applies latent semantic indexing (LSI) to source code to
identify and retrieve the two similar code portions, based on the similar used comments and
identifiers of the retrieved code fragments. This approach limits to identify abstract data types
(ADTs) which are high level concept clones.

However, Johnson is a key person who applies the technique of fingerprints in his approach on
substrings of the source code [25, 26]. Initially, he uses the hash technique to hash certain portion
of code a fixed number of lines (the window). Then they classify the sequences of lines which
have the same hash value as clones, using the known sliding window techniques as well as the
incremental hash function. The sliding window technique helps to recognise code clones of
variant lengths, as it is frequently applied. Also, Manber [27] uses in his approach the technique
of fingerprints to detect similar source files, based on the sub sequences of the main keywords.

3.3.2 METRICS-BASED TECHNIQUE

In Metrics-based approaches, several software metrics are gathered for clone fragments to derive
its measurement in order to be compared instead of comparing the actual portions directly. These
metrics values are related to variants scopes such as a package, a class or a method and then these
values are compared to detect code clones over these blocks. The source files are normally parsed
to Abstract Syntax Trees representation as a pre-process to calculate the software metrics.

There are several software metrics tools which can be used for code measurements. [28] Lincke et
al. have made selection set of software metrics tools according to analyzable languages, metrics
calculated, and availability/license type. They found that the majority of metrics tools available
can derive metrics for many programming languages such as Java programs, UML and C/C++.
They state that about half of the tools are rather simple “code counting tools” which calculates
Lines of Code (LOC) metric. However, they consider the other half as more sophisticated
software metrics such as CBO (Coupling Between Object classes). The following are some of the
finally selected software metrics tools by Lincke et al. [28]:

• OOMeter this software metrics tool accepts Java / C# source code and UML models in
XMI and calculates various metrics, developed by Alghamdi et al [29].

• Eclipse Metrics Plug-in 1.3.6 this is an open source metrics calculation and dependency
analyzer plugin for the Eclipse IDE. It calculates several metrics and catches cycles in
package and type dependencies, developed by Frank Sauer.

• CCCC this is an open source command-line tool. It analyses C++ and Java code,
proposed by Chidamber & Kemerer and Henry & Kafura.

• Understand for Java this is a metrics tool for Java source code.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

111

• Dependency Finder this is an open source tool for analyzing compiled Java code. It
extracts dependency graphs and mines them for useful information.

• Semmle is an Eclipse plug-in which allows searching for bugs and measure code metrics
by providing and SQL querying languages for object oriented code.

• Analyst4j this is an Eclipse IDE plug-in which allows several features such as search,
metrics and report generation for Java programs.

• Eclipse Metrics Plug-in 3.4 this is an open Source tool which calculates various metrics
during, developed by Lance Walton.

Lincke et al [28] also considered some software metrics derived by aforementioned tools and they
base their selected metrics on the class unit, as they argue that this unit is the natural block of
object oriented software systems and most metrics have been calculated on class level. The
following are some considered software metrics in their study:

• LOC (Lines Of Code) calculates the lines of code of a specified unit [30].
• NOM (Number Of Methods) calculates the methods in a class [31].
• LCOM-CK (Lack of Cohesion of Methods) describes the lack of cohesion between the

methods of a class [32]. It is proposed by Chidamber & Kemerer
• CBO (Coupling Between Object classes) gives the number of classes to which a class is

coupled [32].
• NOC (Number Of Children) is the number of subclasses to a certain class in its block

[32].
• RFC (Response For a Class) reflects the number of methods which can executed in

response to an object of the class [32].
• DIT (Depth of Inheritance Tree) represents the maximum inheritance path from the class

to the main root class [32].
• WMC (Weighted Methods per Class) it is the total of weights for the methods of a class

[32]. However, using Cyclomatic Complexity software metric method weight can be
achieved [33].

• LCOM-HS (Lack of Cohesion of Methods, proposed by Henderson-Sellers) describes
the lack of cohesion between the methods of a class [31].

•
The following table shows the software metrics which calculated by metrics tools where ‘x’
indicates that a certain metric can be calculated by a certain metric tool.

Figure 5. Tools and calculated metrics.[28]

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

112

Davey et al. [34] apply neural networks algorithm on code fragments (begin end block) and
considered a certain features of specified code blocks. Their approach identifies the exact,
parameterized, and near-miss clones. Balazinska et al. [35] have proposed their tool SMC (similar
methods classifier) in which dynamic matching and metrics craterisation are combined. A similar
approach defined by Kontogiannis et al. [36] which based on two different ways to find code
clones. The first one uses direct comparison of the metrics values of the specified clone
granularity. The second compares the specified blocks (code fragments), a statement-by-
statement basis using uses a dynamic programming (DP) technique, as the small distance is
considered as clone that caused by cut-and-paste habits. Both Patenaude et al. [37] and Mayrand
et al. [12] take into account several metrics which consider some features such as names and
control flow of functions to match functions with same or close metrics values as code clones.
However, Calefato et al. [38] have showed that Metrics-based approaches have been applied in
web documents to detect redundant web pages and clones.

3.3.3 TOKEN-BASED TECHNIQUE

Token approaches (lexical approaches) transform/parsed/lexed the source code into a sequence of
tokens using compiler-style lexical analysis. These tokens are scanned to detect duplicated
subsequences of tokens, as a result the matched tokens from the original code fragments are
retrieved as clones. This technique is much better than the textual approach in term of detecting
the minor code changes such as formatting and spacing.

Baker’s tool Dup [39, 40] is one of the best tools that represent this approach. She used a lexical
analyser to chop the line of the program to sequence of tokens. However, there are two types of
tokens appear in this stage respectively, parameter tokens (identifiers and literals) and non-
parameter tokens. The parameter tokens are encoded based on their occurrence in the line
(position index) which helps in detecting type-2 clones whereas in the non-parameter tokens a
hashing function is used. Suffix tree is used to present the prefixes of sequence of symbols.
Common prefix means that tree suffixes share the same set of edges, which can be considered a
clone.

CCFinder [7] of Kamiya et al.is another recent and Efficient token-based clone detection in this
approach. Each line of the program is chopped to tokens using a lexer. The whole tokens of a
certain source file are then chained as a single sequence. Then, the token sequence is transformed
(based on the specified transformation rules such as add, change or delete tokens). Then, special
tokens are used to be replaced by the identifiers (with considering types and names) across the
source file, making code portions with different variable names clone pairs. The similar sub-
sequences are searched among the transformed token sequence using suffix-tree based sub-string
matching algorithm to be returned as clone pairs/clone classes. Finally, a suitable mapping is
applied between the already obtained information of clone pair/ clone class the token-sequences
and the clone pair/ clone class information of the original source code. Several tools are based on
the CCFinder, such as RTF [41], which enhances the process of detecting clones by allowing the
user to tailor tokenization; by using a more memory-efficient suffix-array in place of suffix trees.
Also, Gemini [42], which uses scatter plots to display near-miss clones. Another pioneered clone
detection technique is CP-Miner [18, 43], in which a frequent subsequence data mining technique
[44] is used to find similar sequences of the original tokenised statements.

Some of the aforementioned techniques are used to detect plagiarism. SIM [45] is one of the
plagiarism detection tools, which uses the dynamic programming string alignment technique to
compare token sequences. Also, JPlag [46] and Winnowing [47] are examples of plagiarism
detection tools which based on token based techniques.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

113

3.3.4 TREE-BASED TECHNIQUE

Tree-matching approaches detect code clones by matching the similar sub-trees which obtained
by parsing the source code (an abstract syntax tree). Several techniques of tree matching are used
to search the related source code of the corresponding subtrees which are returned as clones pairs.
Compare to token-based approach the AST is more sophisticated in order of detecting code
clones as it is based on the structure of the program rather than variable names, literal values.
CloneDr [16] which is lunched by Baxter et al. is one of the best tools uses AST. The subtrees
which are obtained by parsing the trees of the program; are hashed into buckets which compares
the contained subtrees to each other using a tolerant tree matching.

Evans and Fraser [48] have proposed an approach in which structural abstraction of a program is
achieved to handle exact and near-miss clones with gaps. Yang [49] has proposed an approach
which can effectively manage the syntactic differences between the compared subtrees using
dynamic programming approach. Wahler et al. [50] have converted the AST to XML to find exact
and parameterized clones at abstract level. Then they have applied a data mining technique to find
code clones.

However, there are several recent approaches facilitate the comparison process of subtree by
applying alternative simple tree representations rather than considering the full subtree. Falke,et
al. [51], who have serialized the AST subtrees as AST node sequences for which a suffix tree is
then constructed which allows to detect the syntactic clones faster (at the speed of token-based
techniques). Tairas and Gray [52] have proposed an approach which based on suffix trees, based
on Microsoft’s new Phoenix framework. Jiang et al. [53] in their tool Deckard have proposed a
novel approach to detect similar trees, in which vectors are computed to approximate the structure
of ASTs in a Euclidean space. Then Locality sensitive hashing (LSH) is applied to aggregate the
similar vectors the using Euclidean distance metric and then detects the related code clones.

3.3.5 PDG-BASED TECHNIQUE

Program Dependency Graph (PDG)-based approaches [54, 55, 56] are semantically considering
the source code details due to the high abstraction representation of the source code. Expressions
and statements are presented by the nodes of the graph whereas control and data dependencies are
represented by the edges. PDG provides more precise information than the syntactic approaches.
As the PDG holds crucial information of a program such as control flow and data flow, thus it can
facilitates matching the corresponding similar subgraphs (code clones) easily in a semantic way
using matching algorithm. The approaches of the PDG are reliable and robust of code
management. However, they lack of scalability to huge systems.

Komondoor and Horwitz [55, 57] have proposed one of the leading approaches in this technique
known as PDG-DUP which uses program slicing to detect isomorphic PDG subgraphs [58]. They
have also applied a sophisticated approach which aggregates the detected code clones with
keeping the semantics of the source code [59, 60]. This has been used to support software
refactoring by automates the procedure extraction. Furthermore, Gallagher and Lucas [61] have
conducted a slicing based clone analysis experiment by argue the raised question “Are
Decomposition Slices Clones?” going through the all variables in the whole system by computing
program slices. They have showed the pros and cons to the raised arguments. Chen at al. [62]
proposes an approach for code compaction, which considers syntactic structure and data flow.
The technique has several features in embedded systems. Liu at al. [56] announce their tool which
helps in plagiarism detection purposes. Krinke [54] also proposes an iterative PDG-base
technique (k-length patch matching) to finding maximal similar subgraphs.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

114

4. EXTENDED SMP ALGORITHM FOR CLONE DETECTION

SMP has solved several similar optimisation issues in different fields such as matching jobs to the
most suitable jobseekers. Since the original SMP algorithm allows only the candidates of the first
set (Men) to propose to their first choices, this research devotes to increase the fairness of SMP
by allowing the candidates of the second set (Women) to make their own choices i.e. proposes to
the best of their choices of the opposite set. The proposed approach considers a dual multi
allocation technique that allows the candidates of both first and second set to enter the
competition and propose again for a certain times to their preferences. So, each candidate of the
first set may have more than one matched participants of the second set and vice versa. This
adaption has enhanced the precision of the matching process; it is illustrated in Figure 6 below. In
the main SMP algorithm the desire is not controlled by the similarity, thus the assigned
candidates are not meant that they are similar to each other. However, in clone detection the
concept of similarity is essential. Therefore, aforementioned extension of the current state of SMP
is necessary to be effectively applied in such applications. A novel matching scheme is needed to
achieve smart interaction between the code fragments of the matched source files. This widens
the spot to detecting every possible clone.

Figure 6. Dual Multi Allocation.

Practically, this process gives more than one stable matched pairs; respectively Hospital-
Oriented-man and Hospital-Oriented-woman. Thus, we enclose a novel way of assigning the
related code portions by adding a choosy strategy. This strategy helps to choose the pairs which
form similar code clones to a certain threshold.

4.1. DUAL MULTI ALLOCATION ALGORITHM

Dual Multi Allocation results in several stable matching pairs with dissimilar allocated candidates
based on love’s degree, which can be controlled to reach a certain level of desires. However, the
matching process can be fixed as default to retrieve candidates of the highest rank love’s degree
factor. The algorithm of Dual Multi Allocation consists of two phases followed by the Choosy
Strategy as following: Phase 1 Hospital-Oriented-Man algorithm; Hospital-Oriented-Woman
algorithm; Apply Choosy Strategy.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

115

4.2. CHOOSY STRATEGY

In the current state of the SMP algorithms, there is no available mechanism to select the most
optimal pair. Therefore, a new competitive strategy (choosy strategy) has been defined to support
the newly introduced extension in choosing the optimal pair.

The choosy strategy formed out of two main factors, respectively, love’s degree and contrast’s
degree. Love’s degree reflects the degree of love from the view of both involved candidates (code
fragment). To converge these views, the love’s degree is defined as the average of the degrees of
love for both of participated (in the same pair) candidates. The contrast’s degree reflects the
difference between the actual loves’ degrees of the involved candidates. Thus, the most preferable
pair is that with small difference in its contrast’s degree. This factor helps when two different
pairs has the same love’s degree. Also, when more than one candidate has the same love’s degree
with a certain candidate, then the right candidate will be chosen. Figure 7 depicts the choosy
strategy scheme.

Figure 7. Choosy Strategy Scheme

4.3. SMP-BASED CLONE DETECTION

To apply the SMP algorithm in clone detection, it needs first to build the preference lists of both
code fragments. This can be achieved using predefined metrics to specify the most similar related

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

116

participants (code clone). Each code portion needs to strictly order the code fragments based on
the similarity and vice versa. The traditional SMP algorithm performs a single assignment (one-
to-one) for the involved candidates, which does not help especially in the case of allocating more
than one code portion (method etc.) to the related code fragments of other source file. Multi Dual
Allocation algorithm has been proposed to fulfil this requirement which widely needed in such
fields. Figure 8 shows a small example of code clones (method-based).

Figure 8. General Example of clones (method-based).

The metrics for fixed granularity are calculated by using java plug-in with eclipse 1.3.3 (metrics
1.3.6). Figure 9 shows some of these metrics.

Figure 9. General view of metrics (method-based).

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

117

Table 1. Coupling Metrics

Abbreviations Description
PROM Number of protected methods
PUBM Number of public methods
PRIM Number of private methods
MCIN Number of calls to a method
MCOUT Number of calls from a method

Table 2. Method Metrics

Abbreviations Description
LOC Number lines of code
Nbp Number of parameters
Nbv Number of variables declared in the

methodMca Afferent coupling at method level
Mce Efferent coupling at method level
CC McCabe’s Cyclomatic Complexity
NBD Nested Block Depth

The extended SMP algorithm on clone detection can be applied with two main phases.

Phase1, building the preference list of each code fragment of the first source file from the second
source file’s code portions, recording the most desired block and so on, repeating this process
from second to first source files.

Phase2, applying the adapted SMP algorithm based on the given metrics values.

Figure 10 shows an assigned code fragment of the first source file to the most suitable (similar)
code portions using the adapted SMP algorithm based on the metrics values.

Figure 10. Example of clone detection SMP-based.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

118

Table 3. Metrics of Source file 1

Method Metrics
LOC Nbp Nbv Mca Mce CC NBD

A 6 1 1 0 0 2 1
B 4 2 1 0 0 1 1
C 6 1 1 0 0 2 2

Table 4. Metrics of Source file 2

Method Metrics
LOC Nbp Nbv Mca Mce CC NBD

1 1 2 0 0 0 1 1
2 1 2 1 0 0 1 1
3 10 1 0 0 0 2 2

The previous two tables show the measured values of the specified code blocks (methods) which
act as candidates. This is a key step to build a preference list of each candidate in order to apply
the proposed algorithm.

Another bigger example (a Java code of a job search system) has taken place over a medium size
of source files with around 460 methods as appears in the following tables. However, the way of
calculating metrics is reflecting the priority of wanted aspects of each block. This specified
merged metrics are justified to accomplish the purpose of detecting as many as possible of the
code clones, achieving high recall. Moreover, the precision of the retrieved code fragments needs
to be considered, avoiding both false-negative and false-positive.

Table 5. Job search system (as a sample)

#Files Size #Methods #LOC Language
73 260Kb 459 6085 Java

Table 5 shows the details of the job search system, which has been used to extract software clones
using our approach (SMP-based). Table 6 shows some calculated metrics in the job search
system.

Table 6. Snapshot of some metrics in the job search system

Method

Metrics
LOC Nbp Nbv CC NBD

AdminPage 118 0 2 3 3

ManageType 61 0 6 3 4

ChangePass 40 1 2 2 3

NewJob 49 1 11 2 3

JobSearch 122 2 6 5 4

UpdateAdmin 48 1 6 2 2

The experiment shows that the SMP-based approach can precisely identify a type-3 of clone
which is a copy with further modifications more than syntactic changes. The main features of
SMP-based approach are competitively outweigh some already exists approaches in several facets
such as increasing the spot of the detection process trying to detect every possible clone smell.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

119

However, this approach is lack to two related features respectively time complexity and speed as
the used algorithm is executed in a quadratic time, which impacts the overall scalability. The
clone granularity has been set as a method-based blocks in which every method acts as a
candidate (possible software clone).

4.4. DISCUSSION

A remarkable efficiency of the proposed approach have been evaluated by carrying out a case
study on two medium size source files, each file has more than 100 specified blocks. Also, a set
of metrics are predefined, which help each candidate to build up its own preference list in order to
apply the SMP algorithm. We observing some appointed features for the extended algorithm (e.g.
performance) and the status of the detected clones (e.g. accuracy). This means that we are now
able to develop match making code fragments that not only decide on the basis of the candidates’
preferences of the first source file, but are actually trying to, within the current set of code
fragments of both source files, to optimise the pairings from both perspectives fairly. Also,
allowing the many-to-many relationship has increased the range of clones (high recall, high
precision) that are undetectable with most of previous clone detection approaches. The time
complexity is the same as the original SMP (polynomial time).

5. CONCLUSION

Stable marriage problem are well-known common matching algorithms. It has been used in many
applications, for instance, assigning medical schools graduates students to the most suitable
hospitals. The paper presented a newly crucial extension of SMP, which effectively touches a
wide range of software engineering fields such as clone detection. The main contribution in this
paper is the choosy strategy, which compromises between the preferences of the code fragments
of two matched source files in clone detection process and helps to increase the quality of
retrieved code clones through considering the desire of the matched candidates, which results in
the increased satisfaction of the candidates in each pair. However, the proposed scheme has some
limitations in terms of its complexity and would require longer time to reach the highly required
stability.

REFERENCES

[1] Gale, David & Lloyd S. Shapley, (2013) "College Admissions and the Stability of Marriage",
American Mathematical Monthly, Vol. 120, No. 5, pp 383-483.

[2] Gusfield, Dan & Robert W. Irving (1989) The Stable Marriage Problem: Structure and Algorithms,
MIT press Cambridge.

[3] Biró, Péter & Eric McDermid, (2014) "Matching with Sizes (Or Scheduling with Processing Set
Restrictions)", Discrete Applied Mathematics, Vol. 164, pp 61-67.

[4] iQua, "Stable Matching in Networking." http://iqua.ece.toronto.edu/spotlights/matching/ (accessed
06/30, 2014).

[5] The match "National Resident Matching Program." http://www.nrmp.org/ (accessed 06/30, 2014).
[6] Cheng, Christine, Eric McDermid, & Ichiro Suzuki, (2008) "A Unified Approach to Finding Good

Stable Matchings in the Hospitals/Residents Setting", Theoretical Computer Science, Vol. 400, No. 1,
pp 84-99.

[7] Kamiya, Toshihiro, Shinji Kusumoto, & Katsuro Inoue, (2002) "CCFinder: A Multilinguistic Token-
Based Code Clone Detection System for Large Scale Source Code", Software Engineering, IEEE
Transactions on, Vol. 28, No. 7, pp 654-670.

[8] Roy, Chanchal K. , (2009) "Detection and Analysis of Near-Miss Software Clones", IEEE
International Conference on Software Maintenance, pp 447-450.

[9] Basit, Hamid Abdul & Stan Jarzabek, (2009) "A Data Mining Approach for Detecting Higher-Level
Clones in Software", Software Engineering, IEEE Transactions on, Vol. 35, No. 4, pp 497-514.

http://iqua.ece.toronto.edu/spotlights/matching/
http://www.nrmp.org/

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

120

[10] Rieger, Matthias, Stéphane Ducasse, & Michele Lanza, (2004) "Insights into System-Wide Code
Duplication", 11th IEEE Working Conference on Reverse Engineering (WCRE’04), pp 100-109.

[11] Roy, Chanchal Kumar and James R. Cordy. A Survey on Software Clone Detection Research.
Canada: Queen's University, 2007.

[12] Mayrand, Jean, Claude Leblanc, & Ettore M. Merlo, (1996) "Experiment on the Automatic Detection
of Function Clones in a Software System using Metrics", the 12th International Conference on
Software Maintenance (ICSM’96), pp 244-253.

[13] Jiang, Zhen Ming, Ahmed E. Hassan, & Richard C. Holt, (2006) "Visualizing Clone Cohesion and
Coupling", the 13th Asia Pacific Software Engineering Conference (APSEC’06), pp 467-476.

[14] Lakhotia, Arun, Junwei Li, Andrew Walenstein, & Yun Yang, (2003) "Towards a Clone Detection
Benchmark Suite and Results Archive", the 11th IEEE International Workshop on Program
Comprehension (IWPC’03), pp 285-286.

[15] Kontogiannis, Kostas. , (1997) "Evaluation Experiments on the Detection of Programming Patterns
using Software Metrics", 3rd Working Conference on Reverse Engineering, pp 44-54.

[16] Baxter, Ira D., Andrew Yahin, Leonardo Moura, Marcelo Sant'Anna, & Lorraine Bier, (1998) "Clone
Detection using Abstract Syntax Trees", the 14th International Conference on Software Maintenance
(ICSM’98), pp 368-377.

[17] Burd, Elizabeth & John Bailey, (2002) "Evaluating Clone Detection Tools for use during Preventative
Maintenance", the 2nd IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM’02), pp 36-43.

[18] Li, Zhenmin, Shan Lu, Suvda Myagmar, & Yuanyuan Zhou, (2006) "CP-Miner: Finding Copy-Paste
and Related Bugs in Large-Scale Software Code", Software Engineering, IEEE Transactions on, Vol.
32, No. 3, pp 176-192.

[19] Kapser, Cory & Michael W. Godfrey, (2004) "Aiding Comprehension of Cloning through
Categorization", the 7th International Workshop on Principles of Software Evolution (IWPSE’04), pp
85-94.

[20] Bellon, Stefan, Rainer Koschke, Giuliano Antoniol, Jens Krinke, & Ettore Merlo, (2007)
"Comparison and Evaluation of Clone Detection Tools", Software Engineering, IEEE Transactions
on, Vol. 33, No. 9, pp 577-591.

[21] Ducasse, Stéphane, Oscar Nierstrasz, & Matthias Rieger, (2006) "On the Effectiveness of Clone
Detection by String Matching", Journal of Software Maintenance and Evolution: Research and
Practice, Vol. 18, No. 1, pp 37-58.

[22] Lee, Seunghak & Iryoung Jeong, (2005) "SDD: High Performance Code Clone Detection System for
Large Scale Source Code", the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications (OOP- SLA Companion'05), pp 140-141.

[23] Wettel, Richard & Radu Marinescu, (2005) "Archeology of Code Duplication: Recovering
Duplication Chains from Small Duplication Fragments", the 7th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'05), pp 8.

[24] Marcus, Andrian & Jonathan I. Maletic, (2001) "Identification of High-Level Concept Clones in
Source Code", the 16th IEEE International Conference on Automated Software Engineering
(ASE'01), pp 107-114.

[25] Johnson, J. Howard. , (1993) "Identifying Redundancy in Source Code using Fingerprints",
Conference of the Centre for Advanced Studies Conference (CASCON’93), pp 171-183.

[26] Johnson, J. Howard. , (1994) "Visualizing Textual Redundancy in Legacy Source", Conference of the
Centre for Advanced Studies on Collaborative research (CASCON’94), pp 171-183.

[27] Manber, Udi. , (1994) "Finding Similar Files in a Large File System.", the Winter 1994 Usenix
Technical Conference, pp 110.

[28] Lincke, Rüdiger, Jonas Lundberg, & Welf Löwe, (2008) "Comparing Software Metrics Tools", the
2008 international symposium on Software testing and analysis, pp 131-142.

[29] Alghamdi, Jarallah S., Raimi A. Rufai, & Sohel M. Khan, (2005) "OOMeter: A Software Quality
Assurance Tool", the 15th European Conference on Software Maintenance and Reengineering, pp
190-191.

[30] Humphrey, Watts S. (1997) Introduction to the Personal Software Process, Addison-Wesley
Professional.

[31] Sellers, Brian H. (1996) Ojbect-Oriented Metrics. Measures of Complexity, Upper Saddle River, N.J.
: Prentice Hall.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

121

[32] Chidamber, Shyam R. & Chris F. Kemerer, (1994) "A Metrics Suite for Object Oriented Design",
Software Engineering, IEEE Transactions on, Vol. 20, No. 6, pp 476-493.

[33] Watson, Arthur H., Thomas J. McCabe, & Dolores R. Wallace, (1996) "Structured Testing: A Testing
Methodology using the Cyclomatic Complexity Metric", NIST special Publication, Vol. 500, No. 235,
pp 1-114.

[34] Davey, Neil, Paul Barson, Simon Field, Ray Frank, & D. Tansley, (1995) "The Development of a
Software Clone Detector", International Journal of Applied Software Technology, Vol. 1, pp 219-236.

[35] Balazinska, Magdalena, Ettore Merlo, Michel Dagenais, Bruno Lague, & Kostas Kontogiannis,
(1999) "Measuring Clone Based Reengineering Opportunities", the 6th International Software Metrics
Symposium (METRICS'99), pp 292-303.

[36] Kontogiannis, Kostas A., Renator DeMori, Ettore Merlo, Michael Galler, & Morris Bernstein (1996)
Pattern Matching for Clone and Concept Detection, Automated Software Engineering.

[37] Patenaude, J-F, Ettore Merlo, Michel Dagenais, & Bruno Laguë, (1999) "Extending Software Quality
Assessment Techniques to Java Systems", 7th International Workshop on Program Comprehension
(IWPC'99), pp 49-56.

[38] Calefato, Fabio, Filippo Lanubile, & Teresa Mallardo, (2004) "Function Clone Detection in Web
Applications: A Semiautomated Approach", Journal of Web Engineering, Vol. 3, pp 3-21.

[39] Baker, Brenda S. , (1992) "A Program for Identifying Duplicated Code", Proceedings of Computing
Science and Statistics: 24th Symposium on the Interface, Vol. 24, pp 49-57.

[40] Baker, Brenda S. , (1995) "On Finding Duplication and Near-Duplication in Large Software
Systems", the Second Working Conference on Reverse Engineering (WCRE'95), pp 86-95.

[41] Basit, Hamid Abdul & Stan Jarzabek, (2007) "Efficient Token Based Clone Detection with Flexible
Tokenization", the 6th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, pp 513-516.

[42] Ueda, Yasushi, Toshihiro Kamiya, Shinji Kusumoto, & Katsuro Inoue, (2002) "On Detection of
Gapped Code Clones using Gap Locations", the 9th Asia-Pacific Software Engineering Conference
(APSEC'02), pp 327-336.

[43] Li, Zhenmin, Shan Lu, Suvda Myagmar, & Yuanyuan Zhou, (2004) "CP-Miner: A Tool for Finding
Copy-Paste and Related Bugs in Operating System Code.", the 6th Symposium on Operating System
Design and Implementation (OSDI'04), Vol. 4, No. 19, pp 289-302.

[44] Agrawal, Rakesh & Ramakrishnan Srikant, (1995) "Mining Sequential Patterns", the 11th
International Conference Data Engineering (ICDE'95), pp 3-14.

[45] Gitchell, David & Nicholas Tran, (1999) "Sim: A Utility for Detecting Similarity in Computer
Programs", ACM SIGCSE Bulletin, Vol. 31, No. 1, pp 266-270.

[46] Prechelt, Lutz, Guido Malpohl, & Michael Philippsen, (2002) "Finding Plagiarisms among a Set of
Programs with JPlag", Journal of Universal Computer Science, Vol. 8, No. 11, pp 1016-1038.

[47] Schleimer, Saul, Daniel S. Wilkerson, & Alex Aiken, (2003) "Winnowing: Local Algorithms for
Document Fingerprinting", ACM SIGMOD International Conference on Management of Data
(SIGMOD'03), pp 76-85.

[48] Evans, William S., Christopher W. Fraser, & Fei Ma, (2009) "Clone Detection Via Structural
Abstraction", Software Quality Journal, Vol. 17, No. 4, pp 309-330.

[49] Yang, Wuu. , (1991) "Identifying Syntactic Differences between Two Programs", Software: Practice
and Experience, Vol. 21, No. 7, pp 739-755.

[50] Wahler, Vera, Dietmar Seipel, Jürgen Wolff von Gudenberg, & Gregor Fischer, (2004) "Clone
Detection in Source Code by Frequent Itemset Techniques.", the 4th IEEE International Workshop
Source Code Analysis and Manipulation (SCAM'04), Vol. 4, pp 128-135.

[51] Falke, Raimar, Pierre Frenzel, & Rainer Koschke, (2008) "Empirical Evaluation of Clone Detection
using Syntax Suffix Trees", Empirical Software Engineering, Vol. 13, No. 6, pp 601-643.

[52] Tairas, Robert & Jeff Gray, (2006) "Phoenix-Based Clone Detection using Suffix Trees", the 44th
annual Southeast regional conference (ACM-SE'06), pp 679-684.

[53] Jiang, Lingxiao, Ghassan Misherghi, Zhendong Su, & Stephane Glondu, (2007) "Deckard: Scalable
and Accurate Tree-Based Detection of Code Clones", the 29th International Conference on Software
Engineering (ICSE'07), pp 96-105.

[54] Krinke, Jens. , (2001) "Identifying Similar Code with Program Dependence Graphs", the 8th Working
Conference on Reverse Engineering (WCRE'01), pp 301-309.

[55] Komondoor, Raghavan & Susan Horwitz, (2001) "Using Slicing to Identify Duplication in Source
Code", the 8th International Symposium on Static Analysis (SAS'01), pp 40-56.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

122

[56] Liu, Chao, Chen Chen, Jiawei Han, & Philip S. Yu, (2006) "GPLAG: Detection of Software
Plagiarism by Program Dependence Graph Analysis", the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD'06), pp 872-881.

[57] Komondoor, Raghavan V. "Automated Duplicated-Code Detection and Procedure Extraction." PhD,
UNIVERSITY OF WISCONSIN–MADISON, 2003.

[58] WEISER, M. , (1984) "Program Slicing", IEEE Transactions on Software Engineering, Vol. 10, No.
4, pp 352-357.

[59] Komondoor, Raghavan & Susan Horwitz, (2003) "Effective, Automatic Procedure Extraction", 11th
IEEE International Workshop on Program Comprehension (IWPC'03), pp 33-42.

[60] Komondoor, Raghavan & Susan Horwitz, (2000) "Semantics-Preserving Procedure Extraction", the
27th ACM SIGPLAN-SIGACT Symposium on Principles of programming languages (POPL'00), pp
155-169.

[61] Gallagher, Keith & Lucas Layman, (2003) "Are Decomposition Slices Clones?", the 11th IEEE
International Workshop on Program Comprehension (IWPC'03), pp 251-256.

[62] Chen, Wen-Ke, Bengu Li, & Rajiv Gupta, (2003) "Code Compaction of Matching Single-Entry
Multiple-Exit Regions", the 10th Annual International Static Analysis Symposium (SAS'03), pp
401-417.

Authors

Hosam Al Hakami received his B.Sc. degree in Computer Science from King Abdulaziz
University, Saudi Arabia. He received his MSc degree in Internet Software Systems from
Birmingham University, Birmingham, UK. He is studying now towards his PhD degree at
the Faculty of Technology in De Montfort University, Leicester, UK.

Dr.Feng Chen was awarded his BSc, Mphil and PhD at Nankai University, Dalian
University of Technology and De Montfort University in 1991, 1994 and 2007. As research
outputs, he has published over 30 research papers in the area of software evolution and
distributed computing.

Dr.Helge Janicke is heading the Software Technology Research Laboratory at De Montfort
University, Leicester (UK). He is leading the research theme on Computer Security and
Trust. His research interests are in area of software engineering where he is primarily
looking at cyber security, in particular access control and policy-based system management.

