
International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

DOI : 10.5121/ijsea.2014.5401 1

INTEGRATING PROFILING INTO MDE COMPILERS

Vincent Aranega2, A. Wendell O. Rodrigues1, Anne Etien2, Fréderic Guyomarch2,
and Jean-Luc Dekeyser2

1PPGCC – Instituto Federal do Ceará, Fortaleza, Brazil
2INRIA Nord Europe, Lille, France

ABSTRACT

Scientific computation requires more and more performance in its algorithms. New massively parallel
architectures suit well to these algorithms. They are known for offering high performance and power
efficiency. Unfortunately, as parallel programming for these architectures requires a complex distribution
of tasks and data, developers find difficult to implement their applications effectively. Although approaches
based on source-to-source intends to provide a low learning curve for parallel programming and take
advantage of architecture features to create optimized applications, programming remains difficult for
neophytes. This work aims at improving performance by returning to the high-level models, specific
execution data from a profiling tool enhanced by smart advices computed by an analysis engine. In order to
keep the link between execution and model, the process is based on a traceability mechanism. Once the
model is automatically annotated, it can be re-factored aiming better performances on the re-generated
code. Hence, this work allows keeping coherence between model and code without forgetting to harness the
power of parallel architectures. To illustrate and clarify key points of this approach, we provide an
experimental example in GPUs context. The example uses a transformation chain from UML-MARTE
models to OpenCL code.

KEYWORDS

Profiling – MDE – Traceability – Performance Analysis

1. INTRODUCTION

Advanced engineering and scientific communities have used parallel programming to solve their
large-scale complex problems for a long time. Despite the high level knowledge of the developers
belonging to these communities, they find hard to effectively implement their applications on
parallel systems. Some intrinsic characteristics of parallel programming contribute to this
difficulty, e.g., race conditions, memory access bottleneck, granularity decision, scheduling
policy or thread safety. In order to facilitate programming parallel applications, developers have
specified several interesting programming approaches.

To increase the application development, software researchers have been creating abstraction
layers that help themselves to program in terms of their design intent rather than the underlying
architectures, (e.g., CPU, memory, network devices). Approaches based on Model Driven
Engineering (MDE), in particular MDE compilers, have frequently been used as a solution to
implement these abstraction layers and thus accelerate system development.

MDE compilers take high-level models as input and a specific source code language is produced
as output. Dealing with high-level models gives to the model designer a twofold advantages: on



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

2

the one hand it increases re-usability and on the other hand it hides specific low-level details of
code generation from the designed model. In this context, the system is directly generated from
the high-level models.

However, the generated system can produce low performance issues due to a poor model design,
even if optimization stages are proposed or implemented by the MDE compiler. In these cases,
fine-tuning the generated code to improve the performances is a real need.

In an MDE approach, fixing the system implies applying modifications on one of the two
artifacts: the designed models or the system source code. Directly modifying the generated source
code is a difficult task for the model designer that does not know details about the target platform.
Actually, the designer does not necessarily have the knowledge to efficiently modify the code.
Moreover, the designed models lose the synchronization with the source code. A good solution to
keep the coherence between the designed models and the generated source code is to regenerate
code from the model correctly modified. Thus, changes aiming to achieve better performance
must be made directly in the designed input models.

However, two issues make this method difficult to initiate as solution. Firstly, when a
performance issue is observed, it is hard to figure out which parts of the models are responsible
for this issue [15]. Thus, we have to keep a link between the models, the performance
observations and the runtime results. Secondly, even if problems in the models are found,
efficiently modifying it is not an easy task. Indeed, to provide better and more efficient changes in
the models, the improvement must often take into account details of the target architecture,
usually unknown and hidden to the designer.

Among the different techniques proposed to assist the designer during the performance
improvement phase, two categories of tools can be found. The first one deals with static
estimation computed in the model, whereas the second one, called profiling, deals with dynamic
information. Our contribution focuses on profiling category because of its ability to gather details
from a real execution environment. Hence, the recovered information comes directly from the
system execution rather than from an estimation computed from the input high-level models.

In this paper, we present a framework to introduce performance optimization in MDE compilers.
The main goal in this work is to provide a high-level profiling environment in a model design
context where performance feedbacks are directly provided in the input models. With these visual
feedbacks, model designers can easily identify the model parts producing poor performances. The
performance information is recovered from dedicated profiling tools returning important
measures as the running time or memories access time. This framework is based on model
traceability to automatically return details and performance measures obtained during the system
execution directly in the designed models.

In addition to the profiling information, the framework deals with dedicated advices, assisting the
model designer quicly fine-tuning their models to achieve better results. These smart advices are
computed by using the measured performances and specification details of the runtime plateform
specification. Once the models modified according to the proposed approach, the system is then
regenerated keeping coherence between the models and the code.

To validate our framework, we present in this paper two case studies in a MDE compiler towards
GPU architecture. These cases studies take place in the Gaspard2 [7] environment: an MDE
framework for parallel-embedded systems. Gaspard2 proposes, among others, an MDE compiler
to several programming languages. The compiler takes UML models profiled with the MARTE



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

3

standard profile [13] as input model and generates system for few target platforms to reach
simulation and validation purposes. Among the different target languages, Gaspard2 includes an
OpenCL branch introduced in [16][17]. Using such a framework, the designer can focus on the
general system architecture without worrying about the Open Computing Language (OpenCL) [9]
implementation details.

The paper is structured as follows: in section 2, we discuss about the major works of the domain.
In section 3, we identify the different challenges we deal with in this paper. In section 4, we
present how the profiling information is linked to the high-levels models. Then, in section 5, we
illustrate this information feedback on an example in. In section 6, we present how the dedicated
advices are computed before illustrating this advice computation on an example in section 7.
Finally, we conclude and discuss about further works in section 8.

2. RELATED WORK

The analysis of software performance is part of the Software Performance Engineering (SPE)
[19]. The SPE process uses multiple performance assessment tools depending on the state of the
software and the amount of performance data available. SPE is a relatively mature approach and
normally is associated to the prediction of the performance of software architectures during early
design stages.

Several performance-modeling approaches have been proposed in the literature, including
simulation-based or model-based approaches, often based on UML. Some examples of works,
which have been developed in this research field, are enumerated below.

1. Model-Driven SPE (MDSPE) is proposed in [20] and deals with building annotated UML
models for performance, which can be used for the performance predictions of software
systems. MDSPE consists in deriving the performance models from the UML
specifications, annotated according to the OMG profile for Schedulability, Performance,
and Time (SPT) [12]. Many steps: Performance Annotation and Performance Analysis
compose this approach. The first one deals with encapsulation of performance
characteristics of the hardware infrastructure, as well as Quality of Service requirements
of specific functions. The second one is implemented by a performance analyzer, which
computes the performance metrics, which thereby predicts the software performance.

2. A simulation-based software performance modeling approach for software architectures
specified with UML is proposed in [2]. Similarly to MDSPE, this approach is based on
the OMG profile SPT [12]. Performance parameters are introduced in the specification
model with an annotation. However, unlike the previous work, performance results
estimated by the execution of the simula- tion model are eventually inserted into the
original UML diagrams as tagged values, so providing a feedback to the software
designer. The proposed method- ology has been implemented into a prototype tool called
Software Architectures Performance Simulator (SAPS) [2].

3. The ArgoSPE approach, proposed in [8], is a tool for the performance evaluation of
software systems in the first stages of the development process. From the designer’s
viewpoint, ArgoSPE is driven by a set of “performance queries” that they can execute to
get the quantitative analysis of the modeled system. For ArgoSPE, the performance query
is a procedure whereby the UML model is analyzed to automatically obtain a predefined
performance index. The steps carried out in this procedure are hidden to the designer.
Each performance query is related to a UML diagram where it is interpreted, but it is
computed in a petri network model automatically obtained by ArgoSPE.



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

4

4. An interesting approach aiming at model refactoring is depicted in [10]. This approach
relies on optimization of parallel and sequential tasks on FPGA accelerators. In this case,
before generating the VHDL code, the application at Register Transfer Level (RTL) is
analyzed by an optimization system, which exploits the allocation of FPGA resources.
Then, the input model receives changes according to the optimization process results.

Further, there are several other research works that deal with SPE and UML but they are less co-
related and we are not going into extended details. CB-SPE [3] reshapes UML performance
profiles into component based principles. Model-Driven Performance Engineering (MDPE) [5]
describes a model transformation chain that integrates multiparadigm decision support into
multiple Process Modeling Tools. An extension [6] added to this work uses traceability and
simulation engines in order to provide feedback to model designers. And in [15] is proposed a
graph-grammar based method for transforming automatically a UML model annotated with
performance information into a Layered Queueing Network (LQN) performance model [21].

As stated in the introduction, we base our work on the MARTE profile. It provides special
concepts for performance analysis: Performance Analysis Modeling (PAM). This allows the
model designer to define execution platform specification in the input models. However, as in
UML SPT, the platform specification is modeled in the input model and assumes infrastructure
knowledge from the model designer. Moreover, according to the specification, the performance
analysis should be obtained from static estimations that may be very different from performances
measured at runtime.

In short, all these earlier works lack the profiling feedback and possible directions aiming better
performances in a real execution environment. Besides, they do not take into account small
differences in features of the target platform and their relation with application behavior.
Moreover, they impose to annotate the high level models, requiring a double expertise from the
model designers. Indeed, they have to correctly design the models and correctly annotate them
with runtime plateform specification. Our work does not require early annotations and relies on
real execution environment aiming to make possible fine-tuning applications at design time.

3. PROFILING TOOLS INTO MDE COMPILERS: CHALLENGES

From the designed application point of view, these annotations are not required to generate the
software. Moreover the runtime plateform specifications are a simple knowledge attached to the
hardware, which could be managed out of the designed model. This paper addresses the challenge
to take benefit from information about performance of the generated software provided by an
existing profiling tool.

The general process is sketched in Figure 1a. It is made of three main parts (noted A, B and C)
that represent a classic profiling integration in a software life cycle: part A represents the
software compilation, part B corresponds to the software execution, and part C sketches the
profiling information inclusion.

For an MDE approach, the flow is detailed as follow. Once we have the high-level models, the
MDE compiler generates the software (step 1, named transformations chain in Figure 1a). The
software is then compiled and executed (step 2 and 3). Thanks to a profiling tool, several
performance measures are gathered (step 4) and are brought back in the initial high-level models
(step 5). Although our methodology does not impose a rigid workflow, our approach relies on two
major activities: first we run the code exactly as it is generated from the original input model,



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

5

then the application designer analyzes the runtime behavior based on profiling feedback
annotated on the input model; second, the designer, taking into account the provided information,
modifies the model aiming to obtain better results. Once the model is modified, the code is again
generated and then executed in order to verify the result of theses changes. This simple flow
addresses many challenges linked to the transformation from abstraction layers to others.

Indeed, the obtained profiling information gives execution details, which are only linked to the
generated source code lines (e.g, a time measure is relative to a function or a variable in the
source code). This profiling information must be linked to input models to be really useful for the
model designer. How to propagate profiling information to the design model is, therefore, an
issue, which must be resolved. As first answers to this issue, the model transformation traceability
is interesting because it allows keeping links between the models during transformations steps.

Dealing with the profiling information raises another issue. The software performances gathered
by the profiling tool give profiling information about the source code and could be far from the
designed model (e.g, about memory consumption or time measure which can be comprehensible
only on source code). They might be useless and hard to analyze to adequately modify the
designed model. In this context, handling the runtime plateform details, as memory size or the
number of thread allowed can be useful. Indeed, they could be analysed with the profiling
information in order to give a clue on the way to modify the software. To ease the analysis, the
profiling information conjointly used with an automatic analysis could give more adequate
information to the model designer.

Figure 1a. Towards Integrating Profiling and
MDE Compilers

Figure 1b. Approach Overview

To propose a profiling solution for MDE compilers the two following main issues must be solved:

• how to connect the profiling information to the high level models
• how to bring the profiling information intelligible for the high level models

In order to introduce solution for these issues, we propose in this paper an adaptable framework
helping MDE compiler developer to add a profiling capability to their compilers. Beyond the
issues we raised in this section, the framework relies on the following statements regarding the
MDE compiler (transformation chain):



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

6

• the transformation chain must have a model transformation traceability support
• a profiling tool must exist for the target language

On the one hand, the model traceability support is a first answer to the “how to connect” issue.
For a given transformation chain (MDE compiler), it helps to link elements from the input of the
chain to their respective generated elements at the end of the chain and vice versa (we discuss
about the model transformation traceability in section 4.3). On the other hand, using an existing
profiling tool allows to take benefits from expert development and it supposes that the obtained
profiling results are trustworthy.

4. FROM EXECUTIONS TO MODELS

In this section, we address the first challenge we previously discuss:

• how to connect the profiling tool information to the high level models

Our approach for the profiling information feedback is sketched in Figure 1b. The part A (code
generation) is similar to the one presented in Figure 1a except that traceability is introduced. The
presented profiling life cycle follows a classic structure:

1. the software is generated from the high-level models (step 1) and the trace models are
produced

2. the software is executed, producing profiling logs (steps 2 to 4)
3. the produced logs are returned in the input models (steps 5 to 6).

Currently, in works available through the literature, only the first part of the process is automatic
(step 1). The second part (steps 2 to 4) producing the logs highly depends on the used tools. The
third part where logs are analysed and connected to the input elements that should be modified
remains a manual and complex process. In this paper, we focus on this step of the process (steps 5
to 6 in Figure 1b) by automating it.

In order to automate the profiling information feedback, our process uses: the model-to-model
traceability (Trace Model).

In this section, we present how the traceability is managed in the compilation chain and the
required modifications on the model compilation chain. Then, we present how the profiling
information are reported into the high-level models.

4.1. Managing The Whole Chain Traceability and Avoiding Model-to-Text
Traceability

In order to keep the links between the input models and the software execution, trace models are
produced all along the compilation chain, except for the model-to-text transformation. The
translation from model to text implies keeping information on text blocks and words [14]. The
granularity for this kind of trace made its management and maintainability difficult. In our case,
the code has to be studied only in term of the abstract concepts from the models, and not in terms
of blocks and words. To be coherent with this idea, in this paper, the model-to-text traceability
has been avoided.

To bypass the model-to-text trace, the code generation deals with unique identifiers (UIDs)
associated to each element in the last model of the transformation chain. The profiling logs
produced by the software execution refer to the UID of the analysed element. Thus, the Profiling



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

7

Logs can be rebound to the model elements. Concretely, in order to generate the UIDs, we use the
Eclipse Modelling Framework (EMF) feature called Universal Unique IDentifier (UUID) and,
consequently, we modify the compilation chain. A new transformation only adding the UID is
inserted as last step of the model-to-model transformation chain, just before the code generation.

4.2. Profiling Logs Parsing

According to the used Software Development Kit (SDK) and profiling tools, these profiling logs
are generated with a dedicated format. This format is parsed using a shell-script that builds a
profiling model conform to the metamodel presented in Figure 2. This metamodel is generic
enough to produce models gather information that can be found in the profiling logs.

The metamodel root: ProfilingModel gathers several LogEntries, which represent the profiling
entries from the logs. In addition, ProfilingModel specifies the running hardware model (e.g.
Tesla T10 or G80 in GPU context) with the archiModel at tribute. Each LogEntry contains
several Parameter elements owning a kind and a data representing: the information type (e.g.,
occupancy, time or memory consumption), and its value. In order to keep the link between the
profiling information and the transformation chain, each LogEntry keeps the introduced UID from
the logs. In addition, a timeStamp attribute is added to the LogEntry in order to keep the logs
sequence.

Figure 2. Profiling metamodel

4.3. Backtracking Profiling Information in the Input Model

We have argued in section 3 that a link must be kept from the profiling logs to the designed
model. With the UIDs use, we full in the gap between execution logs and models. Now, in order
to report the profiling information back in the designed models, we must exploit the model
transformations traceability links.

Model transformation traceability keeps links between the elements consumed and produced
during a transformation execution. All of these links, produced for one transformation, are
gathered in a trace model. However, MDE compilers usually deal with transformations chains
implying multiple transformation and thus multiple trace models. To maintain the traceability
links on a whole transformation chain, we deal here with our own traceability mechanism [1],
based on two specific trace metamodels.

The first one, the local trace metamodel, is used to keep the traceability link for a single
transformation, whereas the second one, the global trace metamodel, is used to maintain the local
trace order in a transformation chain. These two metamodels enable the identification of the high-
level model elements that have lead to the creation of elements in the model used for the code
generation.



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

8

The profiling information feedback is performed in two steps. First, each LogEntry (Figure 2) is
linked to the elements it refers to in the model used for the code generation. Indeed, the UIDs
contained in the LogEntries refer to elements in the last model before the code generation. Then,
once the element referred by the UIDs are found,

the model transformation traces are backward navigated in order to recover the input elements
producing the profiling information. During the backward navigation, two cases can occur, the
retrieved elements are reduced to one or several elements.

If only one element is found, the advice is simply reported on it. However, if multiple elements
are found, a different strategy must be applied because reporting the advice on all retrieved
elements can create confusion. To solve this issue, the expert system can be configured to specify
some element types of the input metamodel for each profiling information. From this way, only
the input elements of the specified types are kept. Finally, the profiling information is connected
to these elements in the input models. In the following section, we illustrate our report mechanism
on a case study.

5. EXAMPLE AND BENCHMARKS

5.1. UML/MARTE to OpenCL Chain

The Gaspard2 environement [7] is used for SoC co-design and contains many MDE compiler
chains. Among them, a branch of Gaspard2 allows to generate OpenCL [9] code from an
application model specified in UML-MARTE. It aims to provide resources for application
development to non-specialists in parallel programming. Thus, physicists, for instance, can
develop applications with performances comparable to those manually developed by experienced
programmers. Table 1 presents the set of model transformations that compose the chain towards
OpenCL. The whole process is detailed in [18].

Table 1. OpenCL Transformation Chain

#Transformation Description
1: UML to MARTE Metamodel This transformation adapts a model conforming to UML to a model

conforming to the MARTE metamodel. Thus, remaining
transformations do not need to deal with all unnecessary extra
complexity of UML.

2: Instances Identification This transformation adds instances of ports for each part within a
component. In order to easily identify local variable.

3: Tiler Processing This module transforms every tiler connector [4] to tiler tasks.
4: Local Graph Generation
5: Global Graph Generation
6: Static Scheduling Policy

These transformations are responsible for the definition of task
graphs and the application of a simple scheduling policy.

7: Memory Allocation It regards to memory handling, variable definition, and data
communication.

8: Hybrid Conception It summarizes all explicitly modeled or implicitly defined elements
by earlier transformations into a single structure.

9: Code Generation This model-to-text transformation transforms the earlier analyzed
elements directly to source code according to the OpenCL syntax.

5.2. UML/MARTE to OpenCL: Prerequisites and Adaptation

Some adaptations are required before applying our apporach in order to satisfy the prerequisites.
As shown in the previous section, to introduce our approach in an existing transformations chain,
some prerequisites and adjustments are necessary. The traceability mechanism is already



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

9

supported in Gaspard2; the OpenCL transformation chain has to be modified to manage UIDs
and a useful profiling tool must be used.
5.2.1. Profiling Tool for OpenCL

For OpenCL code profiling, we use a tool proposed by NVidia: ComputeVisualProfiler [11]. This
tool performes several measures during the application execution on the GPU and reports them in
a classical text file (i.e, profiling log). This profiling tool uses the function names as pointer for
the developers to help them to figure out on which part of the code the profiling information are
relative to. From this profiling log, the profiling tool can produce a graphical view of the obtained
profiling information. The generated logs also contain information about the execution platform,
such as the GPU model used.

5.2.2. Adding UIDs in the Transformation Chain

A model transformation is added to the OpenCL transformation chain to introduce the UIDs in
the generated source code. This transformation is inserted before the code generation (the 9th

transformation in Table 1). As the profiling tool uses the function names as pointers and as they
are generated from the element name attribute, the added transformation concatenates, for each
element, the element UID to the element name attribute. By this way, the elements UIDs are
present in the profiling logs when the generated software is executed.

5.3. Case: Conjugate Gradient Solver

The case study we propose in this paper is a complete example which presents an application
design, code generation and the profiling feedback. The example is based on the Conjugate
Gradient (CG) algorithm.

The CG is a common numerical algoritm used to solve large linear systems. Here, this method is
the masterpiece of a generated application, part of an industrial simulation tool and its input data
comes from a mesh representing an electrical machine: in our example the machine is an
automotive alternator developed by VALEO1. Alternators are AC electrical generators and
usually the word refers to small rotating machines driven by automotive.

We have applied the approach on this real industrial example. And this produces a linear system
whose matrix A has n = 775,689 and nnz = 12,502,443. Benchmarks for this example gives
speedup of 9x with relation to standard Fortran version on CPU. We had 10,000 iterations in
about 2300 seconds on CPU against 250 seconds on GPU. This is a good result that shows the
potential increase in speedup according to complexity of the problem. From this application, two
operations are analyzed in order to apply our approach. The dot product that is depicted in
Subsection 5.4, and the DAXPY that is used as a case study in Section 7.

For all the tests, the configuration environment was as follows:

• CPU AMD Opteron 8-core @2.4GHz and 64GB RAM;
• GPU NVidia S1070 4 devices Tesla T10 (4GB RAM each) - Compute Capability 1.3;
• Linux, GCC 4.1.2, OpenCL 1.0.

5.4. Task Distribution of the Dot Product

1 www.valeo.fr



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

10

Dot product operations consist in two parts: a scalar multiplication, element by element and then
the sum of all these products. This last step is called a reduction and can be performed partially in
parallel, but it always come to a point where the last addition is performed sequentially. This very
last step is usually done on the CPU. Then a model designer must decide when to remove the last
reduction from GPU (see Figure 3). In fact, once the synchronization of work-items in GPUs is
made at work-group level, the final reduction r2 must be either ended on the CPU, either on the
GPU but this last solution needs to relaunch a new kernel. Because of this overload, the final
parallel reduction runs on the host side. For instance, in Figure 3, we perform the dot product on
vectors of 2516892 elements. The host launches 492 work-groups containing 512 work-items.
Each work-item performs the product between two corresponding elements. A special elementary
task (r:Reduc) is deployed by a special IP that does a parallel reduction and selects only the first
iteration to write out the reduction result. At the end, 492 results are produced. The best
"candidate" solution is to perform the final reduction on the host side (CPU). In such a scenario, it
is necessary to take into account the size of vectors. Indeed, for huge vectors the number of work-
items per work-group can exceed the hardware limits. We do not provide any automatic proposal
for this situation. However, the profiling feedback can help the designer to identify either this is
really the best solution or, otherwise, to allocate the final reduction onto the GPU. Information
about execution times can provide the answer.

5.4.1. From Logs to Annotated Model

Our approach allows annotating directly on the high-level model information about runtime
operations. The proposed methodology extracts profiling results, transforms them into model
elements, and, by using the UID (discussed in 5.2.2), it is able to report them as a comment onto
the allocate element. This information allows the model designer to take a decision for the more
suitable allocation choice.

Figure 3. Profiling Results Extract in CSV Format

The profiling environment creates a log file in CSV format having some dynamic measured data
(as seen in Listing 1). The file header (line 1 to 4) contains data about the target platform. The
code run in a Tesla T10 GPU in this case (line 2). The remaining list consists in description of
fields and log entries. The description of fields (line 5) indicates in which order they will appear
in a log entry. For instance, in Listing 1, a log entry begins with the timestamp field. The second
field that can be retrieved in an entry is gpustarttimestamp, then method, and so on. For each
entry, the method field indicates the GPU kernel call (line 8), except for the ones with the method
field set to memcpyHtoDasync and memcpyDtoHasync (corresponding to memory copies, lines 6,
7 and 9).

2 This number comes from industrial simulations.

www.valeo.fr


International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

11

This profiling file is analyzed by a shell-script parser, which converts it to XMI format that
conforms to the profiling metamodel depicted in Figure 2. The model (Figure 4) created from the
CSV log file gathers exactly the same information. Except the timestamp field and the UID
contained in the method field that becomes attributes of the LogEntry, all the other fields (e.g.
gputime, cputime or ndrangesizex) are transformed into Parameters with the value of the log
entry. Listing 1 (highlighted elements) and Figure 4 present the UID parameter with value
_sb9LkTquEeGg4rUXqAwjQA for the kernel call with timestamp equals 225819.000.

The profiling information feedback algorithm uses the UID retrieved from the profiling logs.
From the Listing 1 and Figure 4, the highlighted UID corresponds to an element in the model
produced by the “add UID” model transformation; the element with this UID is found in the
model before the code generation.

Table 2 – Element Set Gathered by the Backward Naviguation

Element found High-level Elements

PPdotProd_KRN : Kernel
Multiply : Class

m : Property
frommtogp : Abstraction

Table 2 gathers the found element3 and the elements retrieved from the backward trace
naviguation from it. The profiling information is relative to the PPdotProd_KRN: Kernel element,
which has been generated from the high-level models by 3 elements. The profiling information
must thus be linked to the 3 retrieved elements. However, we decided to handle the time relative
information differently from the others. Instead of attaching the information to each retrieved
elements, we decided to attach the information only to Abstraction type elements. Indeed, time
relative measures strongly depends on the way the tasks are placed on the hardware, thus the
Abstraction link is the better candidate to report the information on. So, in our example, the time
relative information is attached to the frommtogp: Abstraction element (Abstraction stereotyped
with allocate in Figure 5). The other information coming from the profiling log has been removed
for reading purposes.

Figure 4. Profiling Results Model

3 In this table, we have removed the elements UIDs for readability reasons.



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

12

5.4.1. From Logs to Annotated Model

Figure 6 shows us the valuable difference with respect to the execution time on the CPU. The
operation takes 3.5ms on the CPU while it takes 0.72ms on the GPU. Such a result makes the
model designer deciding to switch the allocation of the last reduction task from the CPU to the
GPU. Despite its visual representation, this indication is even more relevant when the model
designer has runtime details and can change only a single arrow to choose another processor to
run the operation. All the complex lines of OpenCL code about data transfers, kernel launches,
and so on, are avoided. Thus, the new generated code is ready, useful, and achieves more
performance than the initial one.

In the previous sections, we show how information that directly came from the profiling tool are
brought to the high-level models. This information feedback from the software execution defeats
the first challenge exposed in section 3. In this case, the added comment is comprehensible in the
inputmodel, but it is not always the case.

Figure 5. Summary of the UML-MARTE Model of Dot Product - Final Reduction on CPU

In the previous sections, we show how information that directly came from the profiling tool are
brought to the high-level models. This information feedback from the software execution defeats
the first challenge exposed in section 3. In this case, the added comment is comprehensible in the
input model, but it is not always the case.

Figure 6. Summary of the UML-MARTE Model of Dot Product - Final Reduction on GPU



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

13

6. HELPFUL ADVICES FOR MODEL DESIGNERS

In this section, we address the second challenge we previously discussed:

• how to bring the profiling information comprehensible for the high level models

Indeed, as we explained in section 3, the profiling information can be close to the generated code
and, therefore, some profiling information is potentially not useful or hard to interpret for the
models designers. Thus, the profiling information should be analysed to give a more intelligible
execution feedback. Figure 7 illustrates our approach with the profiling log analysis. Only the
part C changes, by integrating an expert system, represented by the α-box. The expert system
contains a knowledge base about the runtime devices (named Device Features Database Model)
and a set of formulas (named Domain Specific Profiling Analysis Transformation Library),
currently represented by model transformations. The different formulas represent the expert
system heart and take into account two information sources, the profiling tool and the knowledge
base.

In this section, we present the expert system, handling both information sources to produce high-
level information intended for the models designers.

6.1. An Expert System to Produce Advices

More than profiling results, we are able to provide smart advices to the model designers. The
expert system uses the profiling logs that give factual data about execution whereas the hardware
knowledge base gives features about the runtime platform. By combining both sources with
dedicated analysis, it is possible to deduce how to improve the execution of the generated code.
For instance, assuming the device supports 32MB in shared memory allocation per thread group
and the application allocates at runtime 48MB. The expert system is able to indicate that it is
necessary to decrease the memory allocation after analysing profiling log results and device
constraints. In this case, the expert system provides a hint, in the designed model, where the
problem occurs. In order to analyse the many properties of the results, an extensible library (cf.
Figure 7) is proposed in this paper.

Figure 7. Approach Overview



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

14

6.2. Smart Advice Computation

The expert system includes a number of algorithms that can estimate the best values to specify in
the high level model in order to improve the modelled software performances. These algorithms
are implemented by model transformations. We use model transformations for the simplicity and
convenience of handling input models they provide (obviously, any programming language with
the ability to navigate and produce models can be used for writing the algorithms). The results
produced by the algorithm are presented in an advice model.

6.3. Backtracking Advices in the Input Models

As for each LogEntry of the profiling model, the advices computed by the expert system are
reported in the high-level models. As each Advice owns a UID attribute, inherited from the
profiling model, the advice feedback is performed as for the LogEntry. The Advice body attribute
contains the computed advice, as well as the profiling information. Thus, only one backward
navigation algorithm is used.

7. CASE STUDY: DAXPY MODEL

In this section, we show how the GPU knowledge base is build and how the advice proposed by
our expert system can help to modify high-level models and improve GPU performances for the
Conjugate Gradient algorithm.

7.1. Creating the GPU knowledge base

In the OpenCL transformation chain context, the hardware knowledge base must be built for
GPUs. The metamodel we obtain and we consider in this section is the one illustrated in Figure 8.
It is obvious that the device features models produced from this metamodel, GPUs oriented, must
be produced by GPU experts.

Figure 8. GPUs Device Features Metamodel

In Figure 8 we have two enumerations: ComputeCapability and AllocationGranularity. These two
enumerations are used by the attributes CC and AG from the GPU_Device metaclass. The first
attribute represents the GPU computing capacity (e.g, cc10 represents the computing capacity



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

15

version 1.0). The second attribute represents the granularity of the allocations performed by the
GPU.

As an example, Figure 9 shows an excerpt of the device feature model (hardware knowledge
base) for GPU devices. In this excerpt, 10 NVidia’ (here a.k.a. GPU 1.3) features are shown. The
highlighted feature: TW, gives a number of 32 threads per Warp (or work-items in OpenCL
terminology). This information represents the quantity of threads that can be active at the same
time on the hardware. Although this metamodel was designed according to vendor’s features, it
can be modified or extended to comply with other vendor device models.

Figure 9. GPU Device Features Database Model

7.2. Analyzing Processor Occupancy on BLAS DAXPY Operations

DAXPY is essentially an O(N) parallel operation. It is a linear combination of vectors y = αx+y.
The UML-MARTE model for the DAXPY present in the CG application is shown in Figure 10b.
The application’s vectors are arrays of 775,689 elements. This number results from the model of
an alternator from VALEO and takes advantage of the massively parallel processors provided by
GPUs. This operation as the previous one is part of simulation tool that had its performance
improved, resulting in a global speedup of the order of 9x. This result is particularly valuable to
VALEO for larger simulations that require long time to finish. The composed component DAXPY
instantiated in the program consists of a repetitive task xy:DaxpyGroup. In our application, this
kind of task is composed by operations on single elements. Repetitive tasks are potentially
parallel and are allocated onto GPU.

The repetition shape of the task in this case is {16,48494}, i.e. the task operation runs 775,696
(the product of the shape) millions times on one element of each vector whose size equals
775,689. The total of work-items is calculated by multiplying the dimensions of the task
hierarchy. The first one becomes the number of work-items and the second one the number of
groups. The definition of this shape is a decision of the designers and usually they take into
account the Intellectual Property (IP) interface associated to the elementary task and its external
tilers [4]. Moreover, considering that, in “compute capability” 1.x GPU devices, memory
transfers and instruction dispatch occur at the Half-Warp (16 work-items) granularity, it is
reasonable to define groups composed of work-items at a first try.



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

16

Once the application is designed with all necessary elements, we generate all source code files. In
addition, trace models are generated for each model-to-model transformation thanks to the
traceability mechanism.

7.3. Profiling Feedback

Among all the measures coming from the profiler, the kernel occupancy factor has an important
impact on performance. Usually the aim at executing a kernel is to keep the multiprocessors and,
consequently, the devices as busy as possible. The work-items instructions are executed
sequentially in OpenCL, and, as a result, executing other warps when one warp is paused or
stalled is the only way to hide latencies and keep the hardware busy. Some metric related to the
number of active warps on a multiprocessor is therefore important in determining how effectively
the hardware is kept busy. This metric is called occupancy. The occupancy is the ratio of the
number of active warps per multiprocessor (WPM) to the maximum number of possible active
warps. Another way to view occupancy is the percentage of the hardware’s ability to process
warps that are actively in use. Hence, higher occupancy does not always equate to higher
performance, there is a point above where additional occupancy does not improve performance.
However, low occupancy always interferes with the ability to hide memory latency, resulting in
performance degradation.

The important features to compute the occupancy vary on the different GPU “compute capability”
are:

• the number of registers available;
• the maximum number of simultaneous work-items resident on each multiprocessor;
• and the register allocation granularity.

The number of work-items resident on a multiprocessor relies on index space as known as N-
Dimensional Range (NDRange). The OpenCL chain computes the information from the shape of
the task, which will become a kernel. Hence, changes in the dimensions of shape affect the
occupancy. From the point of view of the proposed approach, occupancy is a specialized module
that can be included to the expert system. For other analysis other specialized module can be
added to attain specific goals. For this example, we analyze the occupancy of the multiprocessors.
Occupancy is function of constant parameters (features) from device and some measures directly
obtained from the profiler.

The process of calculating occupancy is implemented in a QVT transformation. This
transformation takes two input models (according to Figure 7): the Device Features Database and
the Profiling Logs. In this example the first one conforms to a metamodel based on NVidia GPUs.
For instance, from the model presented in Figure 10a we see that the GPU Tesla T10 has
computed capability equals 1.3 and its warps contain 32 threads (or work-items in OpenCL
terminology).

7.4. Benchmarking

For this example the first running gives the results illustrated in Figure 10a. The application
launches 48,481 groups of 16 work-items onto the device. Figure 10a shows that we got only
25% (0.250) of the multiprocessor occupancy. Our goal is to increase the occupancy and decrease
the relative GPU execution time.



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

17

Figure 10a. GPU Device Features Database
Model

Figure 10b. GPU Device Features Database Model

By using our approach results are combined with GPU features and this returns a smart advice as
comment in the input UML-MARTE model (Figure 10b). Besides the performance parameters
available directly on the comment, a hint points out a possible change in the model to improve the
generated code. Additionally, the advice provides an image reference of a chart (as seen in Figure
11) for all predicted occupancy according to these results. In this case it is suggested to change
the task shape from {16, 48481} to {128, 6061}.

A simple analysis search for the first block size gives us 100% occupancy. For instance, the
expert system automatically highlights the first (block size=128) and second (block size=256)
maximum values in the chart.

Figure 11 – Occupancy by Varying Block Size

After executing the modified application, we have 100% on occupancy and a reduction of the
GPU time as it is shown in the new profiling log (Listing 3, line 8). Previously we had 278.912μs,
and then the GPU time decreased to 82.048μs. As expected, the modified model achieves better
performance than the original one. The whole execution of the kernel is about 2.3x faster.

8. CONCLUSION AND FUTURE DIRECTIONS

In this paper we address performance improvements as part of the life cycle of the application
design and execution. We provide a high level profiling environment for MDE compiler that we
applied for OpenCL in the context of the Gaspard2 environment. This environment allows the



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

18

model designers to efficiently modify their models to achieve better performances. The profiling
environment is based on two main artifacts: an expert system and a traceability mechanism.

The expert system proposed here uses data from a feature database dedicated to the runtime
platform and profiling logs. The aim is to compute a smart advice explaining how the model
should be modified in order to achieve better performances. From the application designers point
of view, they do not necessarily need to know complex details about the runtime platform.
Moreover, no performance specification is given in advance. The expert system summarizes the
profiling logs and minimizes the tasks of the model designer by analyzing the gathered profiling
data.

Especially for GPU applications, better performances rely on speedup, memory use and processor
occupancy. In order to provide this feedback, this paper proposed to retain coherence between
code generation and traceability. Thus, the expert system uses the traceability to return a UML
comment consisting of a computed smart advice and profiling logs on the specific input model
elements that involve the analyzed performance issue.

Obviously, although our case study is focused on GPU applications, our approach can be adapted
to other environments with code generation and profiling tools. Indeed, as we have shown in the
paper, the library that is part of the expert system can be extended to analyze other issues or other
devices. Moreover, the traceability mechanism that we provide can fit to any transformation



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

19

[3] Antonia Bertolino and Raffaela Mirandola. Towards Component- Based Software Performance
Engineering. In Component-Based Software Engineering, 2003.

[4] Pierre Boulet. Array-OL Revisited, Multidimensional Intensive Signal Processing Specification.
Technical report, 2007. Available from: http://hal.inria.fr/inria-00128840/PDF/RR-6113v2.pdf.

[5] Mathias Fritzsche and Wasif Gilani. Model transformation chains and model management for end-to-
end performance decision support. In Proceedings of the 3rd international summer school conference
on Generative and transformational techniques in software engineering III, GTTSE’09, pages 345–
363, Berlin, Heidelberg, 2011. Springer-Verlag. Available from:
http://portal.acm.org/citation.cfm?id= 1949925.1949936.

[6] Mathias Fritzsche, Jendrik Johannes, Steen Zschaler, Anatoly Zherebtsov, and Alexander Terekhov.
Application of Tracing Techniques in Model-Driven Performance Engineering. In In Proccedings of
the 4th ECMDA-Traceability Workshop (ECMDA’08, June 2008.

[7] A. Gamatié, S. Le Beux, E. Piel, R. Ben Atitallah, A. Etien, P. Marquet, and J-L. Dekeyser. A Model
Driven Design Framework for Massively Parallel Embedded Systems. ACM Transactions on
Embedded Computing Systems (TECS)., 10(4), 2011.

[8] E. Gómez-Martínez and J. Merseguer. ArgoSPE: Model-based Software Performance Engineering.
volume 4024, pages 401–410. Springer-Verlag, Springer-Verlag, 2006.

[9] Khronos Group. OpenCL - The open standard for parallel programming of heterogeneous systems.
http://www.khronos.org/opencl/. Available from: http://www.khronos.org/opencl/.

[10] Sébastien Le Beux. Un Flot de Conception pour Applications de Traitement du Signal Systématique
Implémentées sur FPGA à Base d’Ingénierie Dirigée par les Modèles. These, Université des Sciences
et Technologie de Lille, December 2007.

[11] NVIDIA. Compute Visual Profiler. http://developer.
download.nvidia.com/compute/cuda/4_0_rc2/toolkitMdocs/
VisualProfiler/Compute_Visual_Profiler_User_Guide.pdf, 2010.

[12] OMG. UML Profile for Schedulability, Performance, and Time, version 1.1.
http://www.omg.org/spec/SPTP, 2005. Available from: http://www.omg.org/spec/SPTP.

[13] OMG. Modeling and Analysis of Real-time and Embedded systems (MARTE), Version 1.0.
http://www.omg.org/spec/MARTE/1.0/, 2009. Available from:
http://www.omg.org/spec/MARTE/1.0/.

[14] Gøran Olsen and Jon Oldevik. Scenarios of Traceability in Model to Text Transformations. In Model
Driven Architecture- Foundations and Applications, Lecture Notes in Computer Science. 2007.

[15 ]Dorina C. Petriu and Hui Shen. Applying the uml performance profile: Graph grammar-based
derivation of lqn models from uml specifications. In Proceedings of the 12th International Conference
on Computer Performance Evaluation, Modelling Techniques and Tools, TOOLS ’02, pages 159–
177, London, UK, 2002. Springer-Verlag. Available from:
http://portal.acm.org/citation.cfm?id=647810. 737982.

[16] A. Wendell O. Rodrigues, Frédéric Guyomarch, and Jean-Luc Dekeyser. An MDE Approach for
Automatic Code Generation from MARTE to OpenCL. Technical report, INRIA Lille - RR-7525,
2011. http://hal.inria.fr/inria-00563411/PDF/RR-7525.pdf/.

[17] A. Wendell O. Rodrigues, Frédéric Guyomarch, and Jean-Luc Dekeyser. An MDE Approach for
Automatic Code Generation from UML/MARTE to OpenCL. IEEE Computer in Science &
Engineering - Special Edition on GPUs, Journal, Jan 2012.

[18] A. Wendell O. Rodrigues. A Methodology to Develop High Performance Applications on GPGPU
Architectures: Application to Simulation of Electrical Machines. Thesis, Université de Lille 1, Jan-
uary 2012. Available from: http://tel.archives-ouvertes.fr/ tel-00670221.

[19] Connie U. Smith and Lloyd G. Williams. Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison Wesley Longman Publishing Co., Inc, 2002.

[20] I. Traore, I. Woungang, A.A. El Sayed Ahmed, and M.S. Obaidat. UML-based Performance
Modeling of Distributed Software Systems. In Performance Evaluation of Computer and
Telecommunication Systems (SPECTS), pages 119 –126, july 2010.

[21] C.M. Woodside. Tutorial Introduction to Layered Modeling of Software Performance. Technical
report, Department of Systems and Computer Engineering, Carleton University, Ottawa (Canada),
2002.

http://doi.acm.org/10.1145/
http://hal.inria.fr/inria-00128840/PDF/RR-6113v2.pdf
http://portal.acm.org/citation.cfm
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://developer
http://www.omg.org/spec/SPTP
http://www.omg.org/spec/SPTP
http://www.omg.org/spec/MARTE/1.0/
http://www.omg.org/spec/MARTE/1.0/
http://portal.acm.org/citation.cfm
http://hal.inria.fr/inria-00563411/PDF/RR-7525.pdf/
http://tel.archives-ouvertes.fr/


International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.4, July 2014

20

Authors

Vincent Aranega received his PhD degree in Computer Science at University of Lille 1 -
France in 2011. His research interest includes Model Driver Engineering and more
specifically model transformation languages and chaining. He works on the use of model
transformation traceability for debugging and profiling purposes.

A. Wendell O. Rodrigues obtained his Ph.D. degree in Computer Science at University of
Lille1 - France in 2012. His research interests include parallel architectures and
programming, and software engineering, specifically with regards to GPUs and high-level
software specification. Rodrigues is currently assistant professor at Federal Institute of
Education, Science and Technology of Ceará.

Anne Etien received a Ph.D. degree in Computer Science from the University of Paris 1
Pantheon-Sorbonne, France in 2006. She is now Associate Professor in the University of
Lille 1 in France and makes her research at the LIFL. Her area of interest includes model
driven engineering. More specifically, she works on various aspects of model
transformations, including chaining, evolution, reusability, traceability, genericity.

Frédéric Guyomarch got his PhD in Computer Science in 2000 and is currently assistant
profeesor at the University of Lille 1 - France. His research interests focus on high
performance computing, from the algorithms for numerical computation to compilation
technics to generate optimized code for such algorithms.

Jean-Luc Dekeyser received his PhD degree in computer science from the university of
Lille in 1986. He was a fellowship at CERN. After a few years at the Supercomputing
Computation Research Institute in Florida State University, he joined in 1988 the
University of Lille in France as an assistant professor. He created a research group working
on High Performance Computing in the CNRS lab in Lille. He is currently Professor in
computer science at University of Lille. His research interests include embedded systems,
System on Chip co-design, synthesis and simulation, performance evaluation, high performance
computing, model driven engineering, dynamic reconfiguration, Chip-3D.


