
International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

DOI : 10.5121/ijsea.2013.4505 63

MANAGING AND ANALYSING SOFTWARE PRODUCT
LINE REQUIREMENTS

Shamim Ripon1, Sk. Jahir Hossain1and Touhid Bhuiyan2

1Department of Computer Science and Engineering, East West University, Bangladesh,
2Department of Software Engineering, Daffodil International University, Bangladesh

ABSTRACT

Modelling software product line (SPL) features plays a crucial role to a successful development of SPL.
Feature diagram is one of the widely used notations to model SPL variants. However, there is a lack of
precisely defined formal notations for representing and verifying such models. This paper presents an
approach that we adopt to model SPL variants by using UML and subsequently verify them by using first-
order logic. UML provides an overall modelling view of the system. First-order logic provides a precise
and rigorous interpretation of the feature diagrams. We model variants and their dependencies by using
propositional connectives and build logical expressions. These expressions are then validated by the Alloy
verification tool. The analysis and verification process is illustrated by using Computer Aided Dispatch
(CAD) system.

KEYWORDS

Software Product Line, First order logic, Alloy, variant management

1. INTRODUCTION

Designing, developing and maintaining a good software system is a challengingtask still in this
21st century. The approach of reusing existing good solutions fordeveloping any new application
is now one of the central focuses of software engineers. Building software systems from
previously developed components savescost and time of redundant work, and improves the
system and its maintainability. A new software development paradigm, software product line [2],
is emergingto produce multiple systems by reusing the common assets across the systems inthe
product line. However, the idea of product line is not new. In 1976 Parnas [3]proposed
modularization criteria and information hiding for handling productline.

Core assets are the basis for software product line. The core assets ofteninclude the architecture,
reusable software components, domain models, requirements statements, documentation and
specifications, performance model, etc. Different product line members may differ in functional
and non-functional requirements, design decisions, run-time architecture and interoperability
(component structure, component invocation, synchronization, and data communication),
platform, etc. The product line approach integrates two basic processes:the abstraction of the
commonalities and variabilities of the products considered (development for reuse) and the
derivation of product variants from theseabstractions (development with reuse) [4].

The objective of this work is to provide an approach to modelling variants inthe domain model of
a product line. In our approach, we initially consider a domain model which includes default
domain view, a variant model and customization requirements. Default domain views describe



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

64

typical system in a domain. Default domain views are the starting point for understanding the
scope of the product line, i.e., the range of systems in the domain we wish to consider. We draw a
model to represent the variants of a product line. The model contains all the variant related
information required for customizing any product. After getting the requirements for any
particular product of the product line, the product line model collects proper variant information
from the variant model. A flexible variant configuration tool (FVC) interprets the variant model
and customizes the default domain model by adapting and customizing the default domain
according to the particular product requirements. Fig. 1 gives a top level view of the targeted
variant model along with its position and activity with product line model.

Figure 1.Variant model with product line model

The left-hand-side of Fig. 1 depicts the product line model which comprises the default model
and the variants. A feature diagram can be drawn from the product line model to get an overall
picture of the product line functionalities, both common and variants. The right-hand-side of the
figure mainly depicts the variant model. The variant model is constructed by getting information
from the product line relating to both common and variant features. A generic domain model is
created by adding the variants with the default model and during itsconstruction information is
collected from the variant model and also from the product line model. Finally, the required
product model is developed by customizing the generic domain model after handling the variants
according to the product requirements

This model carries all the variant relatedinformation like specifications, interdependencies,
origins of variants, etc. UMLhas been widely used as a modelling notation for any product.
However, it is onlydefined to model a single product. We use an extension mechanism of UML
[5]and model the case study. In particular we use UML ‘Use Case’ and ‘ActivityDiagram’ to
model the CAD domain. We then use logical representation offeature models facilitating the
development of decision table in a formally soundway. We define six types of logical notation to
represent all the parts in a featuremodel. First-order logic has been used for this purpose. These
notations are usedto define all possible scenarios of a feature model. It is often levelled that
manualverification leads to numerous error for large models and often misses the minutedetail in
the verification. To overcome this problem we use the model checkerAlloy [6]. Alloy use first-
order logic. We encode our logical definitions into Alloyand check the validity of the logical
verification that we perform by hand. Weuse a case study of Computer Aided Dispatch (CAD)
(http://xvcl.comp.nus.edu.sg/xvcl/cad/CAD.html) system product line.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

65

In the rest of the paper, we first give a brief overview of CAD domain inSection 2. CAD variants
are drawn by using FODA and UML extension andlogical notation in Section 3. Various feature
analysis operations and corresponding rules are definedin Section 4. We illustrate various
example configurations and describe how tologically verify them using our logical definitions.
The Alloy representations oflogical verifications are outlined in Section 5. Finally, Section 6
concludes ourpaper and outlines our future plans.

2. CAD DOMAIN OVERVIEW

A Computer Aided Dispatch system (CAD) is a mission-critical system. Thesystem is used by
police, fire and rescue, health service, port operation, taxibooking and others. Fig. 2 portrays the
basic operational scenarios and roles ofa CAD system.

Figure 2.Basic operational scenario in a CAD system for police

After an incident, a caller reports to the command and control centre ofthe police unit. A Call
Taker captures the details about the incident and theCaller, and creates a task for the incident.
There is a Dispatcher in the systemwhose task is to dispatch resources to handle any incident. The
system showsthe Dispatcher a list of un-dispatched tasks. After examining the situation,
theDispatcher selects suitable Resources (e.g. police units) and dispatches them to execute the
task. The Task Manager monitors the situation and at the end, closesthe task. Different CAD
family members have different resources and tasks fortheir system.

At the basic operational level, all CAD systems are similar; basically theysupport the dispatcher
units to handle the incidents. However, there are differences across the CAD systems. The
specific context of operation results inmany variations on the basic operational theme. Some of
the variants identifiedin CAD domain are:

• Call taker and dispatcher roles: In some CAD system Call taker and dispatcher roles are
separated, whereas in some system their roles are mergedand one person plays the both roles.

• Validation of caller and task information differs across CAD systems. Insome CAD systems
basic validation (i.e., checking the completeness of callerinformation and the task
information) is sufficient while in other CAD systems validation includes duplicate task
checking, yet in other CAD systemsno validation is required at all.

• Un-dispatched task selection rule: In certain situation at any given time theremight be more
than one task to be dispatched and it is required to decidewhich task will be dispatched next.
A number of algorithms are available forthis purpose and different CAD system use different
algorithm

http://xvcl.comp.nus.edu.sg/xvcl/cad/CAD.html


International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

66

3. MODELLING SPL VARIANTS

Features are user visible aspects or characteristics of a system and are organizedinto And/Or
graph in order to identify the commonalities and variants of theapplication domain. Domain
features are organized into a tree-like graphical formand it is an integral part of the Feature
Oriented Domain Analysis (FODA) [7]method and the Feature Oriented Domain Reuse Method
(FORM) [8]. The rootnode of the tree represents the domain and the internal nodes of a tree
representthe variation point and their leaves represent the values of the correspondingvariation
points and known as variants. Graphical symbols are used to indicatethe categories of features
such as, Mandatory, Optional, and Alternative.

Mandatory features are default part of the system. Optional features maybe selected as a part of
the system if their parent feature is in the system. Alternative features, on the other hand, are
related to each other as a mutuallyexclusive relationship, i.e. exactly one feature out of a set of
features is to beselected. There are more relationships between features. One is Or-feature
[9],which connects a set of optional features with a parent feature, either commonor variant. The
meaning is that whenever the parent feature is selected then atleast one of the optional features
will be selected. Feature diagram also depictsthe interdependencies among the variants which
describes the selection of onevariant depends on the selection of the dependency connected
variants. A CADfeature tree is illustrated in Fig. 3.

Figure 3.CAD feature diagram with dependencies

Feature models are widely used in domain analysis to model the common as well as variant
requirements of the application domain. However, the semantics of a domain are not fully
expressed by feature models. As a result, there is a need for other notations to support feature
models which can enhance the meaning of the domain concept. The Unified Modelling Language
(UML), a standardized notation for describing object-oriented models, can be used with feature
model to depict the domain concept properly. UML is targeted at modelling single system rather
than system families. In order to use UML diagrams to represent the model of the system family
simple extension mechanisms [11] of UML, namely stereotypes and tagged values are used here.
The stereotype <<variant>> designates a model element as a variant and the tagged values are
used to keep trace of the models and their corresponding variant elements. It is claimed that
adding only the stereotype <<variants>> does not represent the types of variants and proposed



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

67

another extension where the notion of variation point is used to make variation point visible in
use case diagram, represented as a triangle and variant is used to make variant in use cases
explicitly.

Figure 4.  Update task use case

Fig. 4 illustrates the use case diagram added with variants of ‘Update Task’ activity. An exclude
denotes that when one feature is selected other related feature cannot be selected. A requires
relation indicates that when there is a relation from one feature (source) to another (target), then if
the source feature is selected the target feature has to be selected as well. UML activity diagrams
are used to identify the workflow of any activity. As use cases are the source of information for
creating activity diagrams, whenever there is change occurs in use cases due to using
<<include>> or <<extend>>, then corresponding activity diagrams should be updated. The
activity diagram of a task updating a task is shown in Fig. 5.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

68

Figure 5.  Update task activity diagram

A feature model is a hierarchically arranged set of features. It represents allpossible products of a
software product line in a single model. The relationbetween a parent(variation point) features
and its child features (variants) arecategorized as Mandatory, Optional, Alternative, Optional
Alternative, Or, andOptional Or. The logical notions of these features are defined in Fig. 6.

Figure 6.Logical notations for feature models

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

68

Figure 5.  Update task activity diagram

A feature model is a hierarchically arranged set of features. It represents allpossible products of a
software product line in a single model. The relationbetween a parent(variation point) features
and its child features (variants) arecategorized as Mandatory, Optional, Alternative, Optional
Alternative, Or, andOptional Or. The logical notions of these features are defined in Fig. 6.

Figure 6.Logical notations for feature models

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

68

Figure 5.  Update task activity diagram

A feature model is a hierarchically arranged set of features. It represents allpossible products of a
software product line in a single model. The relationbetween a parent(variation point) features
and its child features (variants) arecategorized as Mandatory, Optional, Alternative, Optional
Alternative, Or, andOptional Or. The logical notions of these features are defined in Fig. 6.

Figure 6.Logical notations for feature models



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

69

Figure 7.(a)-(c) Requires dependency between variants and (d)-(e) Exclude dependency between variants
and variation points

4. LOGICAL ANALYSIS OF FEATURE MODEL

From the logical representation of feature model it is possible to analyse various scenarios during
product customization. We consider a feature model as a graph consists of a set of subgraphs.
Each subgraph is created separately by defining a relationship between the variation point
(denoted as ) and the variants ( . ) by using the expressions shown in Fig. 5. A relationship
between cross-tree (or cross hierarchy) variants (or variation points) is denoted as a dependency.
There are two types of dependencies considered in this paper, inclusion and exclusion: if there is
a dependency between p and q, then if p is included then q must be included (or excluded).
Dependencies are drawn by dotted lines.

Scenario 1: If there is a requirerelation between variants and as shown in Fig. 7(a), then
is elected whenever is selected. Adopting the notation in [10] the rule for dependency among

variants as well as variation points is defined as follows,∀ , ⋅ ( , ) ∧ ( , )∧ _ _ ( , ) ∧ ( ) ⇒ ( )∀ , ⋅ ( , _ ) ∧ ( , _ )∧ _ _ ( , ) ∧ ( ) ⇒ ( )
Where ( ) indicates is either a variant or variation point, ( ) indicated the
selection of and () indicates the require relationship.

Scenario 2: From Fig. 7(b), we derive the following rule,∀ , , · ( , ) ∧ ( , ) ∧ ( , )∧ ( , ) ∧ ( ) ⇒ ( )
Scenario 3: The following rule is derived from Fig. 7(c)∀ , , , · ( , ) ∧ ( , )∧ ( , ) ∧ ( , ) ∧ ( )∧ ( , ) ∧ ( ) ⇒ ( )
Scenario 4: When there is an exclude relation betweenvariants (and/or variation point) as shown
in Fig. 7(d), only one among them can be selected at a time.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

70

∀ , · ( , ) ∧ ( 2, ) ∧_ _ ( , ) ∧ ( ) ⇒ ( )∀ , · ( , ) ∧ ( , )∧ _ _ ( , ) ∧ ( ) ⇒ ( )
Scenario 5: From Fig. 7(e) we derive the following rule,∀ , , , · ( , ) ∧ ( , )∧ ( , ) ∧ _ ( , )∧ ( ) ⇒ ( )
Scenario 6: The scenario in Fig 7(f) depicts the following rule,∀ , , , · ( , ) ∧ ( , )∧ ( , ) ∧ ( , ) ∧ ( , )∧ _ _ ( , ) ∧ ( ) ⇒ ( )

Figure 8.  (a) Inconsistency checking, (b) False optional feature detection and (c) Dead feature detection

4.1. Analysis Operations

We perform some analysis operations that determine whether the feature model works correctly

Inconsistency: In Fig. 8(a), , and are three variation points where . and . are variants
of and . and . are of . There exists a require relationship between variant . and
variation point . As . and . are mandatory feature whenever is selected both variants
will be selected, and consequently, variation point will be selected as well due to require
relation. However, and are alternative features, and both cannot be selected at the same
time and it introduces an inconsistency into the feature model.

False optional is a situation where a feature is declared as optional which does not need to be
optional. In Fig. 8(b), is False optional.

Dead feature is a feature that never appears in any legal product from a feature model. As shown
in Fig. 8(c) due to exclude relation . will never be part of any valid product from the feature
model.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

71

Figure 9.Partial CAD feature graph and its subgraphs
4.2. Analysis Examples

Automatic analysis of variants is already identified as a critical task [7]. Our logical
representation can define and validate a number of analysis operations suggested in [11], [12]. In
order to construct an instance product from the product line model, TRUE(T) is assigned to the
selected features and FALSE(F) to those not selected. These truth values are assigned to the
product line model and if TRUE value is evaluated, we call the model as valid otherwise the
model is invalid. For convenience, we represent a partial tree of the CAD feature in Fig. 10 which
is splitted into smaller subgraphs (Fig. 9(b), 9(c) and 9(d)).

Example 1: Suppose the selected variants are , . , , . , . , . . , . , and . . We
check the validity of the subgraphs , and by substituting the truth values of the variants of
the subgraphs.∶ ( . ⊕ . ) ⇔ =∶ ⇔ . ∨ . ∨ . ∨ .= ⇔ . ∨ . ∨ ( . . ⊕ . . ) ⇔ . ∨ . =∶ ( . ⊕ . ) ⇔ =
As the subgraphs , and are evaluate to TRUE, the product model is valid. However,
variant dependencies are not yet considered in this case. Checking the validity of each subgraph is
not enough for the validity of the whole model. Variant dependencies must also be checked as
additional constraints. We evaluate the dependencies of the selected variants and we get,

Dependency:( . . ⇒ . ) ∧ ( . ⇒ . )= ( ⇒ ) ∧ ( ⇒ ) =
The truth (T) value of the dependencies ensures the validity of the product instance

Example 2: Suppose the selected variants are, , . , , . , . . , . , , . . To check
whether these input combination build a valid product we check the validity of the sub-graph, and by substituting the truth values of the variants of the sub-graphs.∶ ( . ⊕ . ) ⇔ =∶ ( . ∨ . ∨ . ∨ . ) ⇔ 2= ( . ∨ . ∨ ( . . ⊕ . . ) ⇔ . ∨ . ) ⇔ =∶ ( . ⊕ . ) ⇔ 3 =
We then evaluate the dependencies of the selected variants,



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

72

Dependency: ( . . ⇒ . ) ∧ ( . ⇒ . ) =
Due to conflict within variant dependencies, the whole graph becomes invalid, which is due to an
incorrect selection of input.

5. ALLOY VERIFICATION

In order to define feature model in Alloy we first define the abstract syntax ofthe feature model.
A feature model (FM) has a set of features and one rootfeature. A FM also has a set of relations
and formulas.

sig FM {
features: set Name,
root: feature,
relation: set Relation,
form: Formula

}
abstract sig Type{}
one sig Optional, Mandatory, OrFeature,
Alternative OptionalAlternative, OptionalOr
extends Type {}

sig Name{}
sig Relation{
parent: Name,
child: set Name,
type: Type
}

Feature model declares formulas using propositional logic that returns aBoolean value when a
configuration satisfies a formula. An Alloy signature isalso declared for binary formulas.

abstract sig Formula
{
satisfy: configuration
->one Bool
}
abstract sig Op{}
one sig AndF, OrF, Implies, NotF
extends Op{}
Sig Form extends Formula {
f: Formula,
g: Formula,
op: Op
}

After defining the abstract syntax, the semantics are defined by first defining the configuration
which is a set of feature names. The semantics of FM isthen defined as the set of configurations
that satisfy all the relations whereasconstraints are denoted as predicates. We also define several
constraints overconfigurations as well as rules for formula satisfactions.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

73

Example: We show how the feature diagram in Fig. 9(a) can be constructedfrom the syntax and
semantics defined in previous section. The feature diagramconsists of three subgraphs , and

. First we define the overall diagramby using the subgraphs and their relations and then define
the parent-childrelations.

one sig CAD extends FM{}
one sig c1,c2,c3 extends Relation{}
fact elements { CAD.root = v
CAD.feature = G1 + G2 + G3
CAD.relation = c1 + c2 + c3 }

fact relations{
c1.type = Mandatory
c1.parent = v c1.child = v1
c2.type = Mandatory
c2.parent = v c2.child = v2
c3.type = Optional
c3.parent = v c3.child = v3 }

Alloy checks the consistency of the sub-graphs and variant dependencies,and displays that a valid
instance is found which is indicated bythe alloy result display screen, where it shows that an
instance is found as shown in Fig.10.

Figure 10.Valid instance check in Alloy

If we select another combination of features as in Example 2 in earlier section, an invalid product
would be created and hence in instance should be found. Alloy produce an error stating that no
instance is found from the selected features as shown in Fig 11.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

74

Figure 11.Invalid instance checking in Alloy

Currently, we are defining explicitformulas using our Alloy definitions. Our plan is first to define
the whole featurediagram then define the formulas specifying the relations between features
andoperators.

6. CONCLUSIONS

Modelling variants is considered as one the crucial factor for the successful deployment of
software product line. In our systematic modelling, first the variantsare visually arranged in a
feature diagram that illustrates various relationshipsamong the features. Although UML is
designed for single systems, an extendedversion of UML has been used in this paper to model
SPL variants. To be able toformally verify the variant configuration and consistency we model all
six typesof variant relations by using first-order logic. Cross tree variants dependencies
aredefined as well. Such formal definition facilitates the automated decision makingduring
product customization. The various analysis operation suggested in [11,12] are also addressed
here. To overcome the hurdles of by-hand verification, weencode our first-order logic
representation into Alloy [6], that automaticallychecks the consistency of feature configuration
and validity of product instances.

REFERENCES

[1] Ripon, S., Azad, K., Hossain, S.J., Hassan, M.: Modeling and analysis of productline variants, In:
Proceedings of the 16th International Software Product LineConference - Volume 2. SPLC ’12, New
York, NY, USA, ACM (2012) 26–31

[2] Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. 3rded. Addison-Wesley
Professional (August 2001)

[3] Parnas, D.L.: Software fundamentals. Addison-Wesley Longman Publishing Co.,Inc., Boston, MA,
USA (2001) 193–213

[4] Hein, A., MacGregor, J., Thiel, S.: Configuring software product line features.In Pulvermuller, E.,
Speck, A., Coplien, J., Hondt, M.D., Meuter, W.D., eds.:Proceedings of the ECOOP 2001 Workshop
on Feature Interaction in ComposedSystems (FICS 2001), Budapest, Hungary, June 18-22, 2001.

[5] Rumbaugh, J., Jacobson, I., Bosch, G.: The Unified Modeling Language, ReferenceManual. Addison-
Wesley (1999)



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

75

[6] Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.Eng. Methodol. 11(2)
(April 2002) 256–290

[7] Kang, K.C., Cohen, S.G., Hess, J.A., Novak,W.E., Peterson, A.S.: Feature-orienteddomain analysis
(foda) feasibility study. Technical report, Carnegie-Mellon UniversitySoftware Engineering Institute
(November 1990)

[8] Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-orientedreuse method with
domain-specific reference architectures. Ann. Softw. Eng. 5(January 1998) 143–168

[9] Czarnecki, K., Eisenecker, U.W.: Generative programming: methods, tools, andapplications. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA(2000)

[10] Elfaki, A.O., Phon-Amnuaisuk, S., Ho, C.K.: Knowledge based method to validatefeature models. In
Thiel, S., Pohl, K., eds.: SPLC (2), Lero Int. Science Centre,University of Limerick, Ireland (2008)
217–225

[11] Benavides, D., Cortés, A.R., Trinidad, P., Segura, S.: A survey on the automatedanalyses of feature
models. In: JISBD. (2006) 367–376

[12] Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of feature models 20years later: A
literature review. Inf. Syst. 35(6) (2010) 615–636


