International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

THE UNIFIED APPROACH FOR ORGANIZATIONAL
NETWORK VULNERABILITY ASSESSMENT

Mrs. Dhanamma Jagli, *Mrs.Rohini Temkar

! Research Scholar, INT University, Hyderabad.
1.2 Assistant Professor, Department of MCA
V.E.S. Institute of Technology,
University of Mumbai, India.

ABSTRACT:

The present business network infrastructure is quickly varying with latest servers, services, connections,
and ports added often, at times day by day, and with a uncontrollably inflow of laptops, storage media and
wireless networks. With the increasing amount of vulnerabilities and exploits coupled with the recurrent
evolution of IT infrastructure, organizations at present require more numerous vulnerability assessments.
In this paper new approach the Unified process for Network vulnerability Assessments hereafter called as
a unified NVA is proposed for network vulnerability assessment derived from Unified Software
Development Process or Unified Process, it is a popular iterative and incremental software development
process framework.

KEY WORDS.:

Network vulver nability, object oriented modelin, UML, Unified process.
I. INTRODUCTION

The Unified Modeling Language (UML) is a language of modelling that provides design
notations that is hastily apt an effectively paradigm software design language. UML offer a
variety of constructive capabilities to the software designer, together with multiple, consistent
design views, and a semiformal semantics articulated as a UML Meta model, and an dlied
modelling language intended for expressing prescribed logic constraints on design fundamentals.
The main aim of this approach is to consider the power of UML for modelling software
architectures in the way in which the amount of existing software Architecture Description
Languages (ADLs) to model architectures. This paper presents two strategies which supports
architectural concerns provided by UML. One approach involves using UML “as is,” and the
other incorporates useful characteristics of existing ADLs as UML extensions. At the same time
as it talks about the applicability, strengths, and weaknesses of the two strategies. The strategy is
practically applied on three ADLSs, which represent a broad example of present-day ADL
capabilities. Solitary conclusion of our work is that UML still lacks in following to capture and
exploiting definite architectural concerns. The significance has been recognized throughout the
research and exercise of software architectures. In particular, UML lacks shortest support for

DOl : 10.5121/ijsea.2013.4503 37

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

modeling and exploiting architectural styles, open software connectors, local and global
architectural constraints.

Il. LITERATURE REVIEW

Software architecture is a segment of software engineering focussed on developing huge and
complex applications in a manner that reduces devel opment expense, increases the more potential
meant for cohesion among various members of a directly related product family, and facilitates
growth, possibly at system runtime. To date, the software architecture research community has
focused principally on analytic evaluation of architectural descriptions. Severa researchers have
moved towards to believe that the benefit of an explicit architectural is centre of attention.
Software architecture must be provided by means of its own body of specification |languages and
analysis techniques. grown-up engineering disciplines are normally categorized by accepting
logical standards to describe al related artifacts of their subject matter, such standards are not
only facilitate practitionersto collaborate, but they also contribute to the enlargement of the entire
discipline.

1. The Unified Process

The Unified Software Development Process or else Unified Process are an admired iterative and
incremental software development process. The well-known and generally documented
enrichment of the unified process is the Rational Unified Process (RUP).the outline of a classical
project presenting the relative dimensions of the four phases of the unified process. The Unified
Process is not plainly a process, but rather an extensible framework which should be adapted for
specific organizations or projects. The Rational Unified Process is smilar to a customizable
framework. As a consequence it is frequently not possible to state whether a refinement of the
process is derived from UP or else from RUP.so that the names be to be expected to use
synonymously.

2. The Unified Process phases:

The Unified Process has 4 phases as shown in the Fig 1.
1) Inception: Requirements capture and analysis
2) Elaboration: System and class-level design

3) Construction: Implementation and testing
4) Transition: Deployment

38

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

a)

Transition

Figure 1: The Four Phases of Unified process

I nception Phase

Inception is the least phase in the project development, and ideally it should be quite small. If the
inception phase is extended then it may be a hint of excessive up-front requirement, which is
unlike to the strength of the unified process. The inception phase is a foundation stage that
attempts to answer the following questions:

ASANENENENEN

What is the purpose of the project?

Isthe project redlistic (e.g. technologicaly, financially, with current personnel)?
Should we buy the project, or build it?

Will it be developed now, or built from a previoudly existing project?

Whét are the estimated costs?

Should we proceed with the project?

The following are characteristic goals for the inception phase:

ANANEN

launch a explanation or el se business case for the project

Launch the scope of project and boundary settings of project.

summarize the use cases and important key requirements that will drive the design
tradeoffs

sketch out one otherwise more applicant architectures

recognize the risks

Prepare a preliminary schedule for the project and cost estimate

The purposes of lifecycle milestone results are the end of the inception phase. Develop an
estimated visualization of the system, make the business case, define the scope, and produce
irregular estimation cost and schedule. This phase chiefly deals by way of project planning and

39

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

project management this includes project plans and Gantt charts, budgets. Since the UP is
incremental, the inception phase begins with some activities and produces some initia artifacts,
such as a UML diagram or set of diagrams, that is produced during a phase. However, these
activities will be continued in later phases and the artifacts modified, and new artifacts added
some inception artefacts include:

v' Business case: Describes high-level goals and constraints, in business terminology

v" Use-Case model: Describes functional requirements, and related non-functional reg.

v Risk management plan: Describes the business, resource, technical, and schedule risks
and how to minimize these risks

b) Elaboration Phase

During the Elaboration phase the project team is expected to confine a healthy majority of the
system requirements. Even though, the most important goals of Elaboration phase are to deal with
recognized risk factors to begin validating the system architecture. familiar processes undertaken
in this phase consists the formation of conceptual diagrams ,use case diagrams, class diagrams
with simple basic notation and package diagrams or architectural diagrams. The architecture is
validated first and foremost through the execution of an Executable Architecture Basdline. This
isapartial implementation of the system which includes core, the most architecturally significant
component. It has built into a sequence of tiny, timeboxed iterations. Besides the ending of the
Elaboration phase the system architecture have to stabilize and the executable architecture
basdline ought to exhibit that the architecture determine the supporting the main system
functionality and demonstrate the accurate actions in terms of performance, scaability and price
tag. The final Elaboration phase deliverable is a sketch including expenditure and schedule
estimates used for the Construction phase. At the end the plan should be correct and convincing;
since it should be based on the Elaboration phase occurrence and significant risk factors should
have been addressed throughout the Elaboration phase. The function of the inception phase is to
understand the difficulty. Often 1-3 iterations are required for Elaboration.

The most important purpose of the Elaboration phase is to start to understand how the software
will resolve particular problem. In other words, this is where much of the architecture and design
of the software takes place. After Elaboration, project risks are essentially eliminated. The user
interface has been approved by customers and managers. Technically difficult software
components were implemented or proof-of-concept code was created to prove it was possible.
Cost estimates are finalized, so budgets can be approved. Preliminary user manuals have been
created and analyzed. Analysis, architecture and design well underway after Elaboration.E.g. Use
cases should be about 80% compl ete.

The Elaboration phase involves:

v Continuing work on the use-case model.

v In particular, during the elaboration phase is when activity diagrams might be added to
describe how use cases are to operate.

v" Diagrams showing how participants (objects and actors) interact during the problem
solving process (system sequence diagrams).

40

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

v' Prototypes and proof-of-concepts: Some of the more difficult system aspects to
accomplish are solved with GUI prototypes, sample database contents, and sample OOPL
code for difficult agorithms.

C) Construction Phase

Built on the foundation laid in Elaboration. System characteristics are implemented in a sequence

of iterations. Each iteration of Unified Process results in an executable release of the software. It
is accepted to put in writing complete text use cases for the duration of the construction phase
and each one becomes the switch on to new-fangled iteration. Widespread UML (Unified
Modelling Language) diagrams are used throughout this phase and encompass, Collaboration,
State Transition, Activity, Sequence and Interaction Overview diagrams.

The construction phase involves iterative enhancement to previously created artifacts:

v" Domain model
v" Design model
v' Implementation

Obvioudly, the implementation is the most significant body of work enhanced during
construction.

c) Transition Phase

The concluding project phase is Transition phase. In this phase the system is deployed to the
intended users. The response received from an initial release or else initial releases may possibly
give results in additional refinements to be integrated more than the course of more than a few
Trangition phase iterations. The Transition phase aso includes system conversions and user
training. During this phase, the software produced at the end of the construction phase is
deployed this could involve:

Rigorous compl ete system testing

Installation programs being purchased or devel oped
Software media being devel oped

Solutions for support/user training being implemented
Best testing under varied deployment environments
Verifying that the system meets acceptance criteria

ASANENENENEN

3. The Unified Process s lterative and I ncremental

Developing a business software product is a huge accountability that may prolong over more than
afew monthsto possibly ayear or more. It is niteration that n iteration that practical to divide the
work into smaller slices or mini-projects .Each mini-project is an iteration that grades in an
increment. Iteration refers to stepladder in the workflow, and increments to growth in product. To
be most effective, the iterations must be controlled; that is they must be selected and carried out
in a planned way. This is why they are mini-projects. Developers stand for the choosing what is
to be implemented within iteration ahead two factors. Primary, the iteration deals with a set of
uses cases that collectively enlarge the usability of the product as developed until now. Second,

4

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

the iteration deals with the most important risks. Successive iterations build on the development
artefacts from the state at which they were absent at the end of the preceding iteration. It is a
mini-project, so from the use cases it continues through the consequent development work-
analysis, design, implementation, and test-that realizes in the form of executable code the use
cases being developed in the iteration. Of course, an increment is not necessarily additive.
Especialy in the early phases of the life cycle, developers may be replacing a superficial design
with a more detailed or sophisticated one. In later phases increments are typically additive. Inside
every iteration, the developers recognize and state the relevant use cases, create a design by using
the selected architecture as a channel, put into practice the design in components and authenticate
that the components convince the use cases. Condition iteration meets its goals in addition to
development proceeds with the after that iteration. Once iteration does not meet up its goals, the
developers have to come flooding back to their previous decision and attempt an innovative

approach. To achieve the greatest economy in development, a project team will try to select only

the iterations required to reach the project goal. It will try to sequence the iterations in a logica
order. A successful project will proceed along a straight course with only small deviations from
the course the developers initialy planned. Of course, to the extent that unforeseen problems add
iterations or ater the sequence of iterations, the development process will take more effort and
time. Minimizing unforeseen problems is one of the goals of risk reduction. There are many
benefits to a controlled iterative process:

0 Controlled iteration decreases the cost risk to the expenditures on a single increment. If the
developers need to repeat the iteration, the organization loses only the misdirected effort of
one iteration, not the value of the entire product.

o Controlled iteration reduces the risk of not getting the product to market on the planned
schedule. By identifying risks early in development, the time spent resolving them occurs
early in the schedule when people are less rushed than they are late in the schedule. In the
“traditional” approach, where difficult problems are first revealed by system test, the time
necessary to resolve them usually exceeds the time remaining in the schedule and nearly
alwaysforcesadelay of delivery.

0 Controlled iteration speeds awake the cadence of the total development effort since
developers effort more efficient towards results in comprehensible, undersized centre of
attention relatively rather than an ever-dliding and long, schedule.

o Controlled iteration acknowledges a truth often uncared for that user requirement and the
equivalent requirements cannot be completely defined forthright. They are typically refined
in successive iterations. This mode of operation makes it easier to adapt to changing
reguirements.

42

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

TRANSITION ELABORATION
« Demonstration = Analasis
+ Integration * Design

EENSHREIEEEN
= Coding
= Debugging

Figure 2: The Iterative Unified process

The victorious commercialization of numerous applications of wireless networks depends on the
guarantee of the confidentiality, availability and integrity of the data communicate throughout the
network. The confidentiality is defined as the ability to keep on maintains data secret from each
and every one excluding a set of authorized entities. The Integrity is defined as the capability to
confirm that data has not been malicioudly or else by accidentally altered while in transit. Recent
researchers had demonstrated that these important properties can be powerfully compromised by
physically capturing network nodes and extracting cryptographic secret keys from their
remembrance such node capture attack are very much possible due to the potential unattended
procedure of wireless nodes and the prohibitive expenditure of tamper-proof hardware in
transportable devices. By using the cryptographic keys recovered in a node capture attack, an
adversary can conciliation the confidentiality and integrity of any messages protected using the
compromised keys.

4, Vulnerability

It is the intersection of three el ements: a system susceptibility or flaw, attacker access to the flaw,
and attacker capability to exploit the flaw.™ To exploit vulnerability, an assailant must have at
least one suitable tool or method that can attach to a system weak spot. During this frame,
vulnerability is also known as the attack facade.

a) Vulnerability Types
Vulnerabilities are classified according to the asset class they are related to:

1 Hardware
A. Susceptibility to humidity
B. Susceptibility to dust
C. Susceptibility to soiling

43

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013
D. Susceptibility to unprotected storage

2. Software
A. Insufficient testing
B. Lack of audit trail
3. Network
A. Unprotected communication lines
B. Insecure network architecture
4, Personnel
A. Inadequate Recruiting Process
B. Inadequate Security Awareness
5. Site

A. Area Subject To Flood
B. Unreliable Power Source

6. Organi zational
A. Lack of Regular Audits
B. Lack of Continuity Plans

C. Lack of Security
b) I dentifying and removing vulner abilities

Many software tools exist that can assist in the discovery (and sometimes removal) of
vulnerabilities in a computer system. Although these security supporting tools can supply an
auditor with a high-quality overview of likely possible vulnerabilities present, they can not restore
human being verdict. Relying exclusively on scanners will give up bogus positives and a limited-
scope outlook of the nuisance present in the system. Vulnerabilities have been initiate in every
main operating system including Windows, Mac OS, various forms of UNIX and Linux,
OpenVMS, and others. The simply way to diminish the opening of a vulnerability being used
against a system is through steady observation, including cautious system safeguarding e.g.
applying software patches, most excellent practicesin use e.g. the use of firewalls, access controls
and auditing both throughout development and the deployment lifecycle.

1. THE PROPOSED MODEL

The Unified NVA is the Unified process for Network vulnerability assessment is a well-
organized approach for network vulnerabilities findings that can be exploited by a determined
intruder to add access to or shut down a network. Network vulnerability is a situation, a weakness
of or an absence of security methods, technical controls, or physical controls that could be
oppressed by a great threat

1 The Unified NVA Phases
The Unified NV A has 4 phases as shown in the Fig 3.

1) Initiation
2) Expansion
3) Erection
4) Evolution

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

r 5

Initiation

Expansion

Erection

Evolution

9 r.

Figure 3: The Unified NVA Phases
a) Initiation Phase

Risk analysisis the initiation for NVA. Assessing risk is a process and as such, is something that
must be periodically repeated. It's really not much different from the automated patch-
management tools are probably using. True security requires ongoing effort. There is never a
wrong time to assess risk and examine network vulnerabilities. There are four ways in which can
respond to risk: avoidance, transference, mitigation, and acceptance:

b) Expansion Phase

Policy assessments will call this a level | assessment. It is a top-down gaze at procedures,
guidelines and the organization's policies. This type of vulnerability assessment does not contain
any hands-on testing the purpose of atop-down policy assessment is to answer three questions:

v" Do the applicable policies exist?
v" Arethey being followed?
v' Isthere content sufficient to guard against potential risk?

C) Erection Phase

Rolling out new policy may seem to be no more difficult than dictating the date of expected
compliance, but that is not the case. Consider a major change to the authentication and
authorization policy. Mandate that everyone must change to complex passwords on the first day
of the next month. So, on Monday morning, al employees attempt to change passwords and
many experience problems. The result is that the help desk is flooded with calls and many
individuals experience an unproductive morning, waiting to log in and begin work. Policies

45

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

should be implemented in such a way that the change is gradual, staged, or piloted. Many
individuals already have the belief that security policies inhibit work and slow things down, so
want to make sure that any change make does not contribute to that sentiment.

d) Evolution Phase

On one occasion the threats and vulnerabilities have been evaluated, design the penetration
testing to deal with the risks recognized al over the environment. . The penetration testing should
be suitable for the complexity and size of an organization. Penetration tests different from
assessments and evaluations, penetration tests are adversaria in environment. Will refer to
penetration tests as level 111 assessments. All locations of sensitive data, all key applications that
store, process, or transmit such data, all key network connections, and all key access points
should be included. The penetration testing should try to exploit security vulnerabilities and
weaknesses throughout the environment, attempt to penetrate both at the network stage and key
applications. The goal of penetration testing is to resolve if unauthorized access to key systems
and accounts can be achieved. If access is achieved, the vulnerability ought to be corrected and
the penetration testing re-performed in anticipation of the test is spotless and no longer allows
unauthorized access or other malicious actions. These measures classically obtain on an
adversaria responsibility and give the impression of being to see what the stranger can access and
control inside the organization. Penetration tests are much less concerned with policies and
procedures and are more focused on finding "low-hanging fruit" and seeing what a hacker can
negotiate on this network. We almost always recommend that organizations complete an
assessment and eval uation before beginning a penetration test, because a company with sufficient
policies and procedures can't implement real security without documented controls. The general
NVA life cycle as shown in the below Fig 4.

2. Policy 3. Training and
Development Implementation

4. Vulnerability
Assessment
and Penetration

~ Testing

Figure 4: The NVA Life Cycle

1. Risk Analysis

46

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013
V. PHASESOF SYSTEM

Organizational network vulnerability assessment is the cyclical practice of identifying,
classifying, remediating, and mitigating vulnerabilities this practice usually refers to network
vulnerabilities in computing systems of any organizations. Successive iterations build on the
development additive from the state at which they were left at the end of the previous iteration as
shown in the below Fig 5.

nitiation Review I System Vulnerability ulnerabilify
Initiatio > I)L\c11::11f|1lati>> g::;?ol\e:e >> Dem?‘ﬁslmu >> Scanning >>;_£\!:;1:;::||;?1>
E " Defining Deployin Periodic
Xpansion Appropriate ik -
Policy Policy Maintenance
Erection Policy Enforcing Controlling _\lllﬁggfg
1 nr-4ie ity
Revocation Policy, Access, Activities.
. Review and
Evolution > Research >> Plan &Test >> Analysis >> Recuuunen >> Testreport >

Figure 6: The Unified NVA Work flow

Network Vulnerability Assessor base the selection of what is to be done in iteration upon two
factors. First, the iteration deals with a group of policies that together extend the usability of the
network resources. Second, the iteration deals with the most important awareness or training to
users.

V. CONCLUSIONANDFURTHER ENHANCEMENT

The unified network vulnerability approach is vault model which is proposed in this paper can be
implemented as systematic approach provided. And it will be helpful for finding network
vulnerabilities in any organization infrastructure. This model as an iterative process will help to
increase efficiency and reduce the vulnerabities in the network resources and protect network
assets from attackers.

REFERENCES
[1] “Modeling Software Architectures in the Unified Modeling Language”, by NENAD MEDVIDOVIC

University of Southern California DAVID S. ROSENBLUM and DAVID F. REDMILES University
of California, Irvine and JASON E. ROBBINS CollabNet, Inc.

47

(2]
(3]
[4]

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

The text book, “Inside Network Security Assessment: Guarding your IT Infrastructure”, by By
Michael Gregg, David Kim.

The text book,”The Unified Software Development Process “, By lvar Jacobson, Grady Booch, James
Rumbaugh, Pearson Education.

K. Jain, “Security based on network topology against the wiretapping attack,” IEEE Wireless
Communication, vol. 11, no. 1, pp. 68-71, Feb.2004.

D. Liu, P. Ning, and R. Li, “Establishing pairwise keys in distributed sensor networks,” ACM Trans.
Information and System Security, vol. 8,no. 1, pp. 41-77, Feb. 2005.

W. A. Arbaugh, W. L. Fithen, and J. McHugh. Windows of Vulnerability: a Case Study Analysis.
|EEE Computer, 2000.

[7] Agawal, R., & Sinha, A. P. (2003). Object-Oriented Modeling with UML: A Study of Developers
Perceptions. Communications of the ACM, 46(9), 248-256.

[8] Atkinson, C., & Kihne, T. (2002). Rearchitecting the UML Infrastructure. ACM Transactions on
Modeling and Computer Simulation, 12(4), 290-321.

[9] Barbier, F., Henderson-Sellers, B., Parc-Lacayrelle, A. L., & Bruel, J-M. (2003). Formalization of
the Whole-Part Relationship in the Unified Modeling Language. |IEEE Transactions on Software
Engineering, 29(5), 459-470.

Authors

Mrs.Dhanamma Jagli is an Assistance professor in V.E.S Institute of Technology,

Mumbai, currently Pursuing Ph.D in Computer Science and Engineering and received
M.Tech in Information Technology from Jawaharlal Nehru Technological University,
Hyderabad. She has around 10 years teaching experience at the postgraduate and under
graduate level. She had published and presented research papers in referred international
journals and various national and international conferences. Her areas of research interest

are

Embedded Real time systems. She has been associated with Indian Society of Technical
Education (ISTE) as alife member

Mrs.Rohini Temkar is an Assistance professor in V.E.S’s Institute of
Technology,Mumbai. She has completed her M.E. in Computer Engineering from

Uni

graduate and under graduate level. She has published and presented technical papers in
various international journals and conferences. Her areas of research interest are Object
Oriented Modeling and Development, Web Development, Information Security, and
Cloud Computing. She has also been associated with Indian Society of Technical

Data Mining, Cloud Computing, Software Engineering, Data base Systems and

versity of Mumbai. She has around 11 years of teaching experience at the post

Education (ISTE) as alife member.

48

