
International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

DOI : 10.5121/ijsea.2013.4501 1

DETECTION AND REFACTORING OF BAD SMELL
CAUSED BY LARGE SCALE

Jiang Dexun1, Ma Peijun2, Su Xiaohong3, Wang Tiantian4

School Of Computer Science and Technology, Harbin Institute of Technology,
Harbin, China

1negrocanfly@163.com, 2silverghost192@163.cn
3Suxh@hit.edu.cn, 4Wangtt@hit.edu.cn

ABSTRACT

Bad smells are signs of potential problems in code. Detecting bad smells, however, remains time
consuming for software engineers despite proposals on bad smell detection and refactoring tools. Large
Class is a kind of bad smells caused by large scale, and the detection is hard to achieve automatically. In
this paper, a Large Class bad smell detection approach based on class length distribution model and
cohesion metrics is proposed. In programs, the lengths of classes are confirmed according to the certain
distributions. The class length distribution model is generalized to detect programs after grouping.
Meanwhile, cohesion metrics are analyzed for bad smell detection. The bad smell detection experiments of
open source programs show that Large Class bad smell can be detected effectively and accurately with this
approach, and refactoring scheme can be proposed for design quality improvements of programs.

KEYWORDS

Distribution rule; Class length distribution model; Cohesion metrics; Bad smell detection; refactoring
scheme

1. INTRODUCTION

Nowadays, with the development of software programming, the number of software analysis
tools available for detecting bad smells significantly increase. Although these tools are gaining
acceptance in practice, a lack of detection towards some bad smells may decrease the
effectiveness, such as Long Method, Large Class and Long Parameter List [1]. The key of these
bad smells is about the structure and components.

Software programs are composed of components from every level. The component from higher
level is composed of ones from lower level. Characters compose keywords, while keywords,
variables and operators compose statements. The composition level of object-oriented programs
is shown in Figure 1.

mailto:1negrocanfly@163.com
mailto:2silverghost192@163.cn
mailto:3Suxh@hit.edu
mailto:4Wangtt@hit.edu

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

2

Figure 1. Composition level of object-oriented programs.

Large Class [1] bad smell is one classical bad smells, meaning a class is too large. The cause of
large classes may be the large number of instance variables or methods. Large Class has long
history, but the detection is always vague. From the definition [1], this bad smell detection should
be achieved by the class length statistics. Usually the class length is measured by the lines of code.
In practice it is difficult to confirm a threshold value for detecting one particular class is too large
or not. So it is also difficult to detect Large Class bad smell particularly in business open source
programs. The fixed threshold value is not fastidious for Large Class bad smell detection.

In this paper a detecting method of Large Class bad smell is proposed based on scale distribution.
The length of all the classes in one program is extracted, and then distribution model of class
scale is built using the length of these classes. In distribution model the groups which are farthest
from the distribution curve is considered to be candidate groups of Large Class bad smell.
Furthermore, the cohesion metrics of the classes in these groups are measured to confirm Large
Class.

The rest of the paper is organized as follows. Section 2 presents a short overview of related work.
In Section 3, the class length distribution model is built to present the distribution rules of class
length. With this model and cohesion metrics presented, the detection method of Large Class bad
smell is proposed in Section 4. Section 5 discusses how to give proper refactoring scheme. And
Section 6 shows the experiment results. The conclusion is provided in Section 7.

2. RELATED WORK

In the past decades, a number of studies were conducted for bad smells of programming codes.
Webster [2] introduced smells in the context of object-oriented programming codes, and the
smells sorted as conceptual, political, coding, and quality assurance pitfalls. Riel [3] defined 61
heuristics characterizing good object-oriented programming that enable engineers to assess the
quality of their systems manually and provide a basis for improving design and implementation.
Beck Fowler [1] compiled 22 code smells that are design problems in source code, and it is the
basis of suggesting for refactorings.

Travassos et al. [4] introduced a process based on manual inspections and reading techniques to
identify smells. But manual detection of bad smells is one time-consuming process, and is easy to
mistake. So researchers pay more attention in automatic detection. Marinescu [5] presented a
metric-based approach to detect code smells with detection strategies, implemented in the
IPLASMA tool. Tahvildari and Kontogiannis [6] used an object-oriented metrics suite consisting
of complexity, coupling, and cohesion metrics to detect classes for which quality has deteriorated
and re-engineer detected design flaws. A limitation of their approach is that it indicates the kind

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

3

of the required transformation but does not specify on which specific methods, attributes, or
classes this transformation should apply (this process requires human interpretation). O’Keeffe
and O’Cinneide [7] treated object-oriented design as a search problem in the space of alternative
designs. This is application of search-based approaches to solving optimization problems in
software engineering. Bad smell detecting by metric needs to be selected proper metrics and the
judging threshold should be predetermined.

Visualization techniques are used in some approaches for complex software analysis. These semi-
automatic approaches are interesting compromises between fully automatic detection techniques
that can be efficient but loose in track of context and manual inspection that is slow and
inaccurate [8, 9]. However, they require human expertise and are thus still time-consuming. Other
approaches perform fully automatic detection of smells and use visualization techniques to
present the detection results [10, 11]. But visual detecting results need manual intervention.

Some bad smells relevant to cohesion can be detected using distance theory. Simon et al. [12]
defined a distance-based metric to measure the cohesion between attributes and methods. The
inspiration about the approach in this paper is drawn from the work [12] in the sense that it also
employs the Jaccard distance. However, the approach has proposed several new definitions and
processes to get improvements. The conception of distance metrics is defined not only among
entities (attributes and methods) but also between classes. In [13], the distances between entities
and classes are defined to measure the cohesion among them. The bad smell detection with
distance theory needs more calculation. In this paper the equation of distance between one entity
and one class has been used for computing the cohesion degree of one class.

There is less research about bad smell detection of Large Class. Liu et al [14] proposed a
detection and resolution sequence for different kinds of bad smells to simplify their detection and
resolution, including Large Class bad smell. But Liu paid more attention to the schedule of
detection rather than Large Class detection itself, and the specific detecting process was not
provided in the paper.

In Large Class bad smell detection, class size measures have been introduced. When class size is
large, it is seen as Large Class. In bad smell detection tools, the main way [15] of measuring class
size is to measure the number of lines of code, i.e. NLOC, or the number of attributes and
methods. PMD[16] and Checkstyle[17] both use NLOC as detection strategy. The former uses a
threshold of 1000 and the second a threshold of 2000. The fixed threshold value is not fastidious
for Large Class bad smell detection, and easy to cause false detection. And in these tools, there is
no function about refactoring of Large Class bad smell.

These researches above show that, the detection of Large Class bad smell is based on fixed
threshold comparison. Since the fixed threshold is selected manually, the objectivity is low.
Moreover, the refactoring method is decided manually, and there is no suggestion or scheme
about that.

3. THE DISTRIBUTION OF CLASS LENGTH

3.1. Class length distribution appearance

In object-oriented programs there are a large number of classes. The length of these classes is not
the same. In this paper, it is declared that if the length of one class is larger than the average
length of the program, it is called larger class, or smaller class.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

4

There are some programs with more classes are the larger classes, while others are the opposite.
This depends on the different function programs should be achieved. And this is also relevant to
different coding habits and programming styles of developers. From Table1 it is seen that class
length statistics of some open source programs is listed.

Table 1. Class length statistics of open source programs.

Program Number of
Class

Average
Length

Larger Class Smaller
Class

HSQLDB-2.2.7 111 500 29.73% 70.27%
Tyrant-0.96 117 101 27.35% 72.65%
Tyrant-0.334 262 169 27.10% 72.90%
swingWT-0.60 44 41 22.73% 77.27%
Trama 16 249 25% 75%
ArgoUML 1874 91 19.80% 80.20%
Spring Frk 1531 57 27.69% 72.31%
Azureus_Vuze4812 1597 129 28.18% 71.82%

In Large Class bad smell detecting, the usage of fixed value threshold may cause mistakes: the
detection results of some programs (such as HSQLDB-2.2.7 in Table 1) are that most of classes
are “too large”, and from the results of other programs (such as Spring Frk) there is no Large
Class bad smell at all. Besides that, actually the value of fixed threshold is set manually, with the
lower objectivity.

Because of the programs with different coding habits and programming styles, the detection result
of Large Class bad smell with the fixed value threshold is inaccurate and less persuasive. In Table
1, the percentage of large classes in programs is lower, and the ratio of larger classes and smaller
ones is between 1:4 and 3:7.

Functionally, common classes usually are designed to be small and easy to use, particularly for
the frequently used ones. Oppositely, large scale classes are designed for complex functionality
and computing algorithm. But in programs there are more classes which are simple and common,
and complex classes are less. So for the class length statistics, smaller classes are majority, and
larger ones are minority.

Additionally, in the step of functional design some classes have been designed to achieve certain
functions but these classes are just created but not coded completely. This situation is obvious
particularly in multiple versions comparison of program design. Maybe these classes only contain
some member variables, comments, or even just class names themselves. This kind of unfinished
classes may cause minority smaller classes. From the analysis of statistics and program design,
the numerical comparison relationship of larger classes and smaller classes would be clear.

Above all, one conjecture is proposed in this paper. Conjecture: the class length statistics of
programs confirm to certain distribution rule. And this distribution rule should be verified in
programs statistics.

3.2. The verification of certain distribution conjecture

The process of curve fitting about the statistics data of class length is shown in Figure 2.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

5

Figure 2. Process of class length statistics curve fitting.

3.2.1 Obtain the data

Get the data about the number of classes, the length of each class. The class length is measured by

lines of code. n is the number of classes in the program. The length of class iC is defined as iA ,

and 1 2i , , n= …
,

.

3.2.2 Data statistics

Grouping

According to Sturges Equation, the classes need to be grouped. The Sturges Equation is

1 3 32N . lg n= + ⋅ (1)

n is the number of classes. With Equation (1), the classes are divided into N groups, named

as iG , 1 2i , , N= …
,

Getting interval scope

Get the maximum value maxA and minimum value minA of each class’s length, and the span X .

The interval min max[,]A A is divided into N parts, and the length of sub interval is m X / N= . So

the interval of group iG is min min[(1) ,]A i m A i m+ − ⋅ + ⋅ , 1 2i , , N= …
,

.

Class number statistics

The number of classes in group iG is defined as iP , and the statistics algorithm is shown as

Figure 3:

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

6

Figure 3. Class number statistics algorithm.

After the algorithm the vector iP is valued.

3.2.3 Curve fitting

Graphical vector

The number i of group interval is defined as the data of x axis, and iP is defined as the data of y

axis. So a series of points is created in the rectangular coordinates to represent the class length
statistics.

Curve Fitting

According to the point set of class length statistics in the rectangular coordinates, get one curve
with the least value of Mean Squared Error (MSE). The process of curve fitting is executed with
all types of statistical curves.

After the curve fitting of the class length statistics from a large number of open source programs,
the Exponential curve is found to be the optimal fitting curve defined as

0
0

R xy y A e ⋅= + ⋅ (2)

Through the statistics data obtainment of large amount of programs, the residuals threshold T is

calculated. The value of residuals threshold T is the average of each group MSE in open source
programs curve fitting. This residuals threshold is used for bad smell detection. With the class
length data statistics of programs to be checked, if the residual iR of group i is larger than the

residuals threshold, there is Large Class bad smell in this group, and the bad small classes in this
group is iR T− .

Algorithm：Class number statistics

Input： iG

Output： iP ,

Begin

Foreach（ iG ）

Foreach（ 1 2j , , N= …
,
）

If（ min min[(1) ,]iA A j m A j m∈ + − ⋅ + ⋅ ）
iP ++;

EndIf
EndFor

EndFor
End

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

7

4. BAD SMELL DETECTION

Usually the quarantine programs are open source programs which contain a large number of
classes. In the detection method, the inputs are the codes, and the outputs are the bad smell
classes.

4.1. Bad smell location in group

Classes are divided with their length by Sturges Equation, and the result is created in a
dimensional vector 1 2 NP { P ,P , P }= …

,
. And this vector P is fitted with Exponential curve in the

rectangular coordinates. The optimal fitting curve with least value of MSE is

0
0

R ' xy y ' A e ⋅= + ⋅ (3)

After curve fitting, the positive residual iR+ is:

i i iR P y+ = − (4)

Where iP is the number of classes in group iG , and iy is the value of Equation (3) curve in i place.

If iR T+ > , there are bad smell classes in group iG , and the number iN of bad smell classes is

computed in Equation (5).

i iN R T+= − (5)

4.2. Bad smell location in class

As the bad smell group location above, the bad smell groups may not be the largest groups.
Similarly, the identifying method is not to simply select the x largest classes. So it is the key of
Large Class bad smell detection: the detecting basis is not from the metrics of destination class
itself (length or others), but from metrics of all the classes.

In this paper, the bad smell location in class is identified with the inner cohesion of classes. The
cohesion metric is defined with the entity distance theory. In entity distance theory, these
concepts should be defined.

Definition 1 (Entity): the entity is the attribute a or the method m in one class, which is signed

as E .

Definition 2 (Property Set): the property set is the set of entities which have invoking-relations
with the given entity E , and it is signed as ()P E . If one method uses (accesses/calls) one
attribute or another method, they two have invoking-relations with each other.

In more detail, ()P a contains a itself and all the methods use a , and ()P m contains itself and
all the attributes and methods m uses.

Definition 3(Distance): the distance value 1 2(,)Dist E E of entity 1E and 2E is

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

8

1 2
1 2

1 2

| () () |
(,) 1

| () () |

P E P E
Dist E E

P E P E

∩= −
∪

(6)

Where | () |P x is the member count of ()P x , and the distance between entity e and class C is the

average of the distances between e and every entity inC :

1
(,) ,

| | 1
(,)

1
(,) ,

| |

i

i

i i C
y CC

i C i C
y CC

Dist e y e y E
E

D e C

Dist e y e E y E
E

∈

∈

 × ∈ −=
 × ∉ ∈

∑

∑
(7)

Where CE is the set of entities C contains.

Definition 4(Cohesion Metric): the Cohesion Metric value is the rate of the average of the
distance of entities out of the class and those in the class.

i

i

i
e C

i
C

i
e C

i

Dis tan ce(e ,C)

| e C |
Conesion

Dis tan ce(e ,C)

| e C |

∉

∈

∉=

∈

∑

∑
(8)

If the cohesion metric value is smaller, the degree of cohesion is lower. So with the x smallest
cohesion metric value, these classes are identified to Large Class bad smell.

5. REFACTORING SCHEME

In this section the classes which are sure to have Large Class bad smell is refactored. And the
refactoring process is Extract Class, which means the destination class should be divided into two
or more new classes. In practice, the destination class would be divided into two parts, and the
bad smell detection would be executed again.

The basic idea of refactoring scheme is to divide the entities in the destination class based on the
cohesion degree among them. So the key ideas are how to represent cohesion degree between
entities in classes and how to cluster entities in classes.

5.1. Cohesion degree representation of entities in class

The cohesion degree is represented as the distance between two entities. The distance value of
entity 1E and 2E is shown in Equation (5). Before clustering, all the distances between each two

entities in the destination class should be computed accurately. The lower distance value is, the
higher the cohesion degree is.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

9

5.2. Entities clustering algorithm

The agglomerative clustering algorithm [18] (which is a hierarchical clustering algorithm) is used
in this paper. The process is given below:

1) Assign each entity to a single cluster, and the distance value of each two cluster is the distance
of the two entities;
2) Repeat merging until the total cluster number reduces to 2. And the considered merging
criterion is to merge two clusters with the lowest distance value. After merging once, the distance
to the new merging cluster is the average of those to last clusters.
3) Output the two clusters (each of them contains several entities).

The agglomerative clustering algorithm is given in Figure 4:

Figure 4. Agglomerative clustering algorithm of refactoring.

After the algorithm, according to the two new clusters, Extract Class operation would be executed
as refactoring.

6. EXPERIMENTAL RESULTS

In this paper several Java open source programs are used to detect Large Class bad smells. The
names of these programs are shown is Table 2:

Table 2. Open source programs in Large Class bad smell detection.

Program name Number of classes
HSQLDB 2.2.4 111
Tyrant 0.96 116
Swing WT 0.60 44
Trama 16
ArgoUML 1874
JFreeChart 1.0.13 504

Algorithm：Agglomerative Clustering Algorithm

Input：ench entities and their distance

Output：two new clusters

Begin
each entity is assigned to be a single cluster;
While(clustering number is more than 2)

merge two clusters A, B with the lowest distance value as cluster C;

Foreach（any other cluster X in the class）
Dist（C，X）=Avg（Dist（A，X），Dist（B，X））;

EndFor
EndWhile

End

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

10

6.1. Large Class bad smell location in group

If all the groups of statistics data have high fitting degree (through threshold comparison) after
detection, there is no Large Class bad smell at all. And sometimes the positive residual is less
than 0, so it is detected to be no bad smell.

The results of Large Class bad smell group location towards the programs in Table 2 is shown in
Table 3:

Table 3. Results of Large Class bad smell group location.

Group HSQLDB2.2.
4

Tyrant0.96 SwingWT0.6
0

Trama ArgoUML Soul3.0

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 1 0 0
6 0 0 0 0 0
7 0 0 3 0 4
8 0 2 0 0
9 1 0
10 1 0
11 0
12 2

In Table 3, the nonzero digit iN means the existence of Large Class bad smell in its group, which

is computed in Equation (5). And the value means the number of Large Class bad smell in the
group. If iN is equal to zero, there is no Large Class bad smell at all in iG group.

Besides, different programs have different numbers of class, so the group number of each
program is different with each other. So maybe there is no digit in iN position. HSQLDB2.2.4

has only 8 groups, so they are blank spaces in group 8 to group 12. The ArgoUML program has
12 groups, which is more than any others.

6.2. Large Class bad smell class location in class

The cohesion metrics of classes in group location are computed with the Equation (8) to detect
which class/classes have bad smell.

As the location method proposed in Section 4.2, iN classes were detected as Large Class bad

smell with smallest cohesion metrics. Table 4 shows the cohesion metrics of group 8 class
members of Tyrant0.96 program. With this, the classes Creature and GameScreen are both
located to be Large Class.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

11

Table 4. Cohesion metrics of group 8 class members of Tyrant0.96 program

Class name Number of lines Cohesion metric
Creature 898 5.763
GameScreen 625 3.125
Map 788 12.061

Table 5 shows the cohesion metrics of group 7 class members in JFreeChart1.0.13 program. After
the cohesion metrics computing and analysis, the classes AbstractRenderer, PiePlot, CategoryPlot
and ChartPanel are identified as Large Class.

Table 5. Cohesion metrics of group 7 class members of JFreeChart1.0.13 program

Class name Number of lines Cohesion metric
AbstractRenderer 1879 4.932
PiePlot 1725 5.375
DatasetUtilities 1808 5.864
ChartPanel 1642 3.509
DateAxis 1752 12.826

6.3. Code refactoring results

The classes with bad smell should be refactored by Extract Class according to the entities distance
and agglomerative clustering algorithm. After refactoring the programs should be test again.
Figure 5 shows the test results of Tyrant0.96 before and after refactoring.

(a) Fitting curve before refactoring (b) Fitting curve after refactoring

Figure 5. Comparisons on the results of Tyrant0.96 before and after refactoring.

In Figure 5(a), MSE of the data is 0.01810, and that is 0.01037 in Figure 5(b). In Figure 5(b), the
curve has better approximation than that in (a). The MSE is less than threshold, so the refactoring
is effective and there is no Large Class bad smell at all.

6.4 Comparisons with PMD and Checkstyle tools

In the section of related work, the refactoring tools PMD and Checkstyle are introduced. PMD
and Checkstyle have the ability for Large Class bad smell detection, and no refactoring operation
suggestion. As mentioned, in these tools, if the line number of one class is higher preset threshold,
the class is detected as Large Class. The threshold of PMD for Large Class is 1000, and the

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

12

threshold of Checkstyle is 2000. But PMD and Checkstyle cannot provide refactoring schemes
for existing Large Class bad smells. The detecting results from these two refactoring tools are
compared with the approach in this paper.

The results of comparison are shown in Table 6. After manual confirmation, the precision
comparisons of the methods in this paper and PMD & Checkstype are displayed in Table 7.

Table 6. Cohesion metrics of group 7 class members of JFreeChart1.0.13 program

Detection
tools &
methods

Tyrant0.96 JFreeChart1.0.13
Large
Class
Number

Large Class
Name

Large
Class
Number

Large Class Name

Method in
this paper

2 Creature
GameScreen 4

AbstractRenderer, PiePlot,
DatasetUtilities, ChartPanel

PMD 0 --

12

AbstractRenderer, PiePlot,
DatasetUtilities, ChartPanel,
DateAxis, ChartFactory,
AbstractXYItemRenderer,
ContourPlot, ThermometerPlot,
AbstractCategoryItemRenderer
XYPlot, CategoryPlot

Checkstyle 0 -- 2 XYPlot, CategoryPlot

Table 7. Precision comparisons of the methods in this paper and PMD & Checkstype

Program Bad smell detection Precision (%) Refactoring scheme
Precision (%)

PMD Checkstyle This paper method This paper method
Tyrant0.96 -- -- 100 100
JFreeChart1.0.13 33.33 0 100 100

“--” means that the precision rate cannot be computed.

From the comparison in Table 7, the method in this paper is much better than the existing Large
Class bad smell detection tools.

In small scale programs the classes are general small, the potential probability of Large Class is
low, and vice versa. The CLDM is more suitable for larger scale programs Large Class bad smell
detection and refactoring schemes. Small scale programs have less Large Class, so the false
positive rate of CLDM is higher.

In addition, because of the different threshold, the detecting Precision and Recall of PMD and
Checkstyle are not the same in different scale programs. But it is not sure which threshold is more
effective for all the programs.

7. CONCLUSION

In this paper the approach of Large Class bad smell detection and refactoring scheme has been
proposed. Fixed-threshold-based detection method is analyzed to be rigid and error-prone. And a

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.5, September 2013

13

new model is developed to describe the statistic distribution of class length. In this model, the
class groups that are far away from the distribution curve are treated as containing bad smells
potentially. And combining with cohesion metric computing, the bad smell classes are confirmed
in the class groups. After using Agglomerative Clustering Technique, the scheme of Extract Class
is proposed for refactoring.

The contributions of this paper are as follows. First, the characteristics of Large Class bad smell
are quantified with statistical analysis. Second, the length and cohesion metrics based approach is
proposed for Large Class bad smell detection.

ACKNOWLEDGEMENTS

This research is supported by the National Natural Science Foundation of China under Grant
No.61173021 and the Research Fund for the Doctoral Program of Higher Education of China
(Grant No. 20112302120052 and 20092302110040).

REFERENCES

[1] M. Fowler, (1999) “Refactoring: Improving the design of existing code”, Addison-Wesley, pp89-92.
[2] B.F. Webster, (1995) “Pitfalls of Object Oriented Development”, first M&T Books, Feb.
[3] A.J. Riel, (1996) “Object-Oriented Design Heuristics”, Addison-Wesley.
[4] G. Travassos, F. Shull, M. Fredericks, & V.R. Basili., (1999) “Detecting Defects in Object-Oriented

Designs: Using Reading Techniques to Increase Software Quality”, Proceeding of 14th Conference in
Object-Oriented Programming, Systems, Languages, and Applications, pp47-56.

[5] R. Marinescu, (2004) “Detection Strategies: Metrics-Based Rules for Detecting Design Flaws”,
Proceeding of 20th International Conference in Software Maintenance, pp350-359.

[6] Ladan Tahvildari & Kostas Kontogiannis, (2003) “A Metric-Based Approach to Enhance Design
Quality through Meta-Pattern Transformations”, 7th European Conference Software Maintenance and
Reengineering, pp183-192.

[7] M. O'Keeffe & M. O'Cinneide, (2008) “Search-based refactoring: an empirical study”, Journal of
software maintenance and evolution: research and practice,pp345-364.

[8] K. Dhambri, H. Sahraoui & P. Poulin, (2008) “Visual Detection of Design Anomalies”, Proceeding of
12th European Conference in Software Maintenance and Reeng, pp279-283.

[9] G. Langelier, H.A. Sahraoui & P. Poulin, (2005) “Visualization-Based Analysis of Quality for Large-
Scale Software Systems”, Proceeding of 20th International Conference in Automated Software
Engineering , pp214-223.

[10] M. Lanza & R. Marinescu, (2006) “Object-Oriented Metrics in Practice”, Springer-Verlag. pp125-
128.

[11] E. van Emden & L. Moonen, (2002) “Java Quality Assurance by Detecting Code Smells”, Proceeding
of 9th Working Conference in Reverse Engineering, pp120-128.

[12] F. Simon, F. Steinbruckner C. Lewerentz, (2001) “Metrics Based Refactoring”, Proceeding of 5th
European Conference in Software Maintenance and Reengineering, pp30-38.

[13] D.X. Jiang & P.J. Ma, (2012) “Detecting Bad Smells With Weight Based Distance Metrics Theory”,
Proceeding of 2nd International Conference on Instrumentation, Measurement, Computer,
Communication and Control, pp299-304.

[14] H. Liu, Z.Y. Ma & W.Z. Shao, (2012) “Schedule of Bad Smell Detection and Resolution: A New
Way to Save Effort”, IEEE Transactions on Software Engineering, Vol. 38, No. 1, pp220-235.

[15] D. Fontana, A. Francesca & P.Braione, (2012) “Automatic detection of bad smells in code An
experimental assessment”, Journal of Object Technology, Vol. 11, No. 2, pp1-38.

[16] http://pmd.sourceforge.net.
[17] http://checkstyle.sourceforge.net.
[18] J.W. Han & M. Kamber, (2005) “Data Mining Concepts and Techniques”, Morgan Kaufmann

Publishers.

http://pmd.sourceforge.net
http://checkstyle.sourceforge.net

