
International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

DOI : 10.5121/ijsea.2013.4406 65

SOFTWARE ENGINEERING FOR TAGGING
SOFTWARE

Karan Gupta1, Anita Goel2

1Department of Computer Science, University of Delhi, Delhi, India
guptkaran@gmail.com

2Department of Computer Science, Dyal Singh College, University of Delhi, New Delhi,
India

agoel@dsc.du.ac.in

ABSTRACT

Tagging is integrated into web application to ease maintenance of large amount of information stored in a
web application. With no mention of requirement specification or design document for tagging software,
academically or otherwise, integrating tagging software in a web application is a tedious task. In this
paper, a framework has been created for integration of tagging software in a web application. The
framework follows the software development life cycle paradigms and is to be used during it different
stages. The requirement component of framework presents a weighted requirement checklist that aids the
user in deciding requirement for the tagging software in a web application, from among popular ones. The
design component facilitates the developer in understanding the design of existing tagging software,
modifying it or developing a new one. Also, the framework helps in verification and validation of tagging
software integrated in a web application.

KEYWORDS

Software Engineering, Web Application, Tagging Software, Integration, Framework

1. INTRODUCTION

In today’s world, web applications use tagging software to aid in maintenance of large amount of
stored information. The integration of tagging software in a web application allows the web
application to easily categorize as well as classify information and also improve searching of
information. Tagging software allows its users to add keywords to a resource. Resource can be of
different types like video, audio, blog, books etc. Tags belonging to a resource can describe the
resource; define its type, its use, pros and cons or something entirely different.

Due to absence of a formal design document or requirement specification for tagging software,
tagging functionality is integrated on-the-fly depending on whims and fancy of the developer and
stated requirements of a web application. The web application owner may use free available
tagging software or write a completely new code for tagging. Generally, free tagging software is
integrated after adapting it according to the needs of a web application. The code is altered to
match the look and feel of a web application.

In this paper, the focus is on creating a framework that helps the user during integration of
tagging software into a web application. The framework would used during the Software

mailto:guptkaran@gmail.com
mailto:agoel@dsc.du

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

66

Development Lifecycle of the web application. The framework aids the user during requirement
elicitation and specification phase. It also helps the developer in understanding structure of the
tagging software and adapting or developing tagging software based on the user’s requirement.
Here, a framework of tagging software is presented for integration of tagging software in a web
application. The work by Gupta et al. [1] forms basis for the design of tagging software and
weighted requirement checklist for easing integration of tagging software. The framework consist
four components – (1) Tagging_Requirement, (2) Tagging_Design, (3) Tagging_Development,
and (4) Tagging_Test. Each component has a specific task like Tagging_Requirement component
performs the task of requirement generation. Similarly, the design component performs the task
of generation of design. These components interact with the web application owner and the
developer to generate and integrate the tagging software into web application. Each component is
divided into sub-component so as to ease the completion of its task.

The framework, presented here, is used by both the developer and the owner of web application
during integration of tagging software into a web application. The developer uses the framework
to understand the structure of the tagging software. Moreover, the developer also gets to
understand interaction among the different components of the tagging software. The owner of
web application gets to know the different kind of users accessing the tagging software as well as
the different kind of features provided by the tagging software. The owner of the web application
is able to select these requirements.

The framework is based on software engineering paradigms and aids the various phases of the
software development process. During the requirement phase, the framework helps in defining the
requirements of the tagging software. In the design phase, the framework is used for outlining the
design of the tagging software. Moreover, the framework can be used during the testing phase for
verifying as well as validating the tagging software.

In this paper, section 2 explains the background work associated with out framework. Section 3
describes the related work. The framework is discussed in section 4. Section 5 lists the benefits.
Limitations and future work is explained in section 6. Section 7 states the conclusion.

2. BACKGROUND

Web applications use tagging for promoting categorization and classification of information.
Tagging software allows users to apply keywords to resources like blog, music etc. The resource
to which the tag is applied may be uploaded by a web application itself or by the user. Each
resource has specific features that identify a resource, like, a video has a date of creation while a
book has a publish year.

In our earlier paper [2], we have identified different type of users that access the tagging software
in a web application. Also, we have identified the requirements of the tagging software and
present them as a weighted requirement checklist in [1]. Using the weighted requirement
checklist, the web application owner can select and define what features are to be made available
in the tagging software. The design of tagging software for web application is defined by us in
[1]. The developer can use the design to find components that are required for providing the
required features. In the following subsections, we present an overview of the kind of users
accessing the tagging software, the weighted requirement checklist and the design.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

67

2.1 Actors of Tagging Software

In [2], Gupta et al. identify the actors of the tagging software based on their interaction with the
tagging software in a web application. Using the use-case based approach, three kinds of actors
have been identified as follows –

• Web Application - the software in which the tagging software is integrated.
• Administrator - any person performing task of maintaining the tagging functionality.
• Visitor - a user who uses the tagging software in a web application.

Of the three actors listed above, the visitor has multiple levels of flexibilities. The web application
chooses the level of flexibility to be provided to a visitor accessing the web application, for
tagging. The permissions that are provided to a visitor for tagging in a web application fall in
three categories –

• UseTagResource (UsTR) - Visitor is able to use tags and resources only. The visitor
cannot edit the resource or the tags applied to the resource.

• UseTagResource_UpdateTag (UsTR_UpT) - Visitor is able to use tags and resources and
also update tags. The added or updated tags are to be approved by the administrator.

• UseTagResource_UpdateTagResource (UsTR_UpTR) - Visitor is able to use tags and
resources, add tags to an already existing resource and also add a new resource and add
tags to it. The administrator is given the right to moderate the changes to resources and
tags.

Here, a user in the category UsTR are provided with least rights and users in UsTR_UpTR are
provided with maximum rights.

2.2 Weighted Requirement Checklists

Tagging software may be incorporated into web applications for different purposes. Sometimes,
tagging may be integrated for providing simple features of tagging like add a resource or a tag.
Others might integrate tagging for using advanced features like creating bundles of tags or writing
descriptions of tags. Since the requirements of web application are different, a weighted
requirement checklist has been generated by Gupta in [1]. The generated weighted requirement
checklists are used for selecting operations of the tagging software during its inclusion in a web
application.

Weight – Features of tagging software have different level of popularity. Features like add tag to
a resource, delete tags from resource are highly popular. On the other hand, features like
describing a tag or subscribing to a resource can be optional for the user of tagging software.
Three categories defined for describing the different level of importance of a feature in the
tagging software –

• Highly-Popular for specifying highest level of popularity and is denoted by weight ‘3’.
• Intermediately-Popular for those that may be helpful in the software but are not a

necessary requirement. It is denoted by weight ‘2’.
• Least-Popular specifies the lowest level of popularity, and is assigned weight ‘1’.

The weighted requirement checklist for tagging software consists of three checklists, namely, (1)
Tagging Home, (2) Tagging Dashboard and (3) Tagging Parameters. Tagging Home contains

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

68

operations provided to a visitor of the tagging software. This checklist allows the selection of
operations for the visitor of the tagging software. Tagging Parameter consists of operations
available to the web application. The checklist helps the web application to identify the
parameters and their settings that are to be included in a web application during the requirement
phase. Tagging Dashboard checklist contains tasks performed by the administrator in the tagging
software in a web application. The checklist allows determination of the functionality to be
included in the dashboard. Table 1 shows a small part of Tagging Home Weighted Requirement
Checklist.

Table 1. Portion of Weighted Checklist for Component - Tagging Home

Entity Sub-entity Operations
Name W Name W Name W

Resource
View

3 View 3
View a resource, Details - Title, Resource, Features*, Tags 3

Details – Date 2
Resource Use 3 Sharing 3 Share 3

Tag Cloud 1 View 1
(System), (User), (Related) 2

(Resource), Order(Alphabet/Count), Order(Cloud/List),
On(Bundled/ Unbundled/All), Usage(1/2/5), Show/Hide Count

1

Tag Sharing 1 Sharing 1 Share 1

The three weighted checklists are used during the selection of features for the tagging software. In
the next sub-section, a design of the tagging software is presented. The design eases the
understanding of the tagging software.

2.3 Design for Tagging Software

The two building blocks of tagging software are - Resource and Tags [3]. The design presented in
[1], is based on these two building blocks. The design displays the interaction of the visitors of
different permission levels as well as the administrator with the tagging software. For the purpose
of design, the entities for resource and tag have been identified as follows –

• Resource - Resource Update Single, Resource Update Multiple, Resource Subscription,
Resource Use, Resource View, Resource Search, Resource List.

• Tag - Tag Update, Tag Bundle, Tag description, Tag Subscription, Tag Search, Tag
Sharing, Tag Cloud.

The identified entities form basis of the design. The entities are extendible in nature and can be
accommodate any new feature or functionality. The entities identified are further divided into a
group of sub-entities. Sub-entities are created for designating a specific task performed within a
particular entity. Sub-entities are written as an extension of entities. Each sub-entity contains a
group of operation(s) performed by the sub-entity.

The Resource part of the design is accessed by two kinds of users – Administrator and Visitor.
The administrator can access all entities except Resource View and Resource Subscription. On the
other hand, the visitor interacts with the design using two level of permissions - lowest access
permission (UsTR) and highest access permission (UsTR_UpTR). The tag part of design interacts
with two kinds of users - administrator and visitor. A visitor having access permissions UsTR and
UsTR_UpT interact with entities of the tag. Administrator is able to access all entities in tag
except T_Search and T_Subscription.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

69

3. RELATED WORK

Much academic work has been carried with respect to tagging. Different fields like, identification
of type of tags, behavior of users as well as categories of users has been researched by
academicians. Also, several research publications exist for the effect of poorly managed tags in
the tagging software. Moreover, a few frameworks have been created for assisting in Chinese
Word Segmenting, assessing navigability of tagging system, semantic relation extraction.

Golder and Huberman [5] present information dynamics in “collaborative tagging systems”. They
standardize the form a tag takes in tagging software. They have defined seven categories of the
tag, from which tag can take any form. Robu [6] focus on categorization of tags. Here,
delicious.com [7] is used for examining dynamics of collaborative tagging. The aim is to find a
categorization scheme that emerges from unsupervised tagging by individual users.

Behavior of users is discussed in Santos-Neto et al. [8]. The authors characterize interest sharing
in the system using pair wise similarity between users' activity. Korner et al. [9] distinguishes the
users of the tagging software into two parts - categorizers, who categorize resources, and,
describers, who describe resources using tags. Schöfegger et al. [10] use supervised learning
mechanisms to analyze online tagged academic literature and extract user characteristics from
tagging behavior.

Marvasti et al. [11] use delicious.com to find effects of poorly managed tags. According to
authors, poorly managed tags obscure much of the collective sense making and implicit
community structure. They make suggestions for improving collaborative tagging systems. Helic
et al. [12] apply a pragmatic framework to folksonomies for their evaluation. A decentralized
search on a network of tags is carried out. Their aim is to provide improved navigability of social
tagging systems and to evaluate different folksonomy algorithms from a pragmatic perspective.
Tourné et al. [13] performed an empirical study on value of tags in resource classification. They
illustrate effects of applying several filtering and pre-processing operations to reduce ambiguity
and noise in tags. The results are analyzed to find the increase in quality of resource classification.
Zhang et al. [14] examine temporal factor in users' tagging behaviors. The examination is done by
investigating occurrence patterns of tags and incorporating this into a novel method for ranking
tags.

Zhao et al. [15] creates a framework for character-based Tagging Framework for Chinese Word
Segmentation. The authors consider Chinese word segmentation as a character-based tagging
problem and provide a framework for solving this problem. Trattner et al. [16] present a
framework, NAVTAG, for assessing and improving the navigability of tagging systems. The
framework calculates the navigability of tag network using different tag cloud and resource list
generation algorithm. Shen et al. [17] propose a framework, called REACTOR, for evaluating
real-world enterprise data set and extracting relation extraction from enterprise data.

Generally, a freely available tagging functionality like FreeTag or cocoa [18] is adapted and
incorporated into a web application. However, the web application has little knowledge about
possible features that tagging software can provide, and their need in a tagging software.
Similarly, with absence of design document, the task of updating the tagging software becomes
cumbersome for the developer. Thus, some kind of formal specification is required for easing the
integration of tagging software into the web application. An extensive search for research papers
related of such kind for tagging software in web application has not yielded results. In the next
section, we discuss our framework.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

70

4. FRAMEWORK

Web Applications use tagging software to manage large amount of stored information. Generally,
the tagging software is integrated into web application on the fly with no formal document or
specification available for help. Based on the discussion in the previous section, a framework has
been developed to aid the integration of tagging software into web application. The framework is
based on software engineering paradigms and is designed to be used during different phases of
software development. The framework is divided into components based on its use in respective
software development phase. The framework consists of 4 components as follows –

1. Tagging_Requirement
2. Tagging_Design
3. Tagging_Development
4. Tagging_Test

The mapping of the software development lifecycle of a web application and our framework is
depicted in Figure 1.

It can be seen that the various components of framework are used during the different phases of
software development lifecycle like, the Tagging_Requirement component is used during the
requirement specification phase and the Tagging_Development component is used during the
implementation phase. The web application interacts with Tagging_Requirement and
Tagging_Test components. The developer, on the other hand, interacts with Tagging_Design,
Tagging_Development and Tagging_Test components. In the following sub-sections, each of the
components is explained.

4.1 Tagging_Requirement

The Tagging_Requirement component is used to elicit requirements of the tagging software. The
component consists of five sub-components, namely, Resource Type, Tag Purpose, Visitor
Permissions, Requirement Gatherer and Software Estimator. The component is depicted in figure
2.

Requirement
Specification Design TestImplementation

Tagging
_Requirement

Tagging
_Design

Tagging
_Test

Tagging
_Development

Figure 1. Correlation between Framework and Software Development Lifecycle

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

71

As shown in figure 2, the Resource Type sub-component allows the web application to identify
the kind of resource on which tagging has to be performed. This identification helps in finding out
the features of the resource. The Tag Purpose sub-component allows the web application to
identify the purpose of using tags. This process is carried out to determine the kind of restriction
is required on the tags.

The Visitor Permissions sub-component allows the web application to select the level of
flexibility to be provided to the visitor as defined in [2]. The three levels of flexibilities from
which the web application can choose are UseTagResource (UsTR), UseTagResource_UpdateTag
(UsTR_UpT) and UseTagResource_UpdateTagResource (UsTR_UpTR). The visitor level, UsTR,
provides the lowest level of usage among these and the level UsTR_UpTR has the highest level.
It is necessary that the visitor will have the lowest level of permission (UsTR) for accessing the
system by default. The other two levels of systems are optional and web application can choose
either of three available levels.

The Requirement Gatherer sub-component collects the output of three of its peer sub-
components, Resource Type, Visitor Permissions and Tag Purpose. It, then, produces the
requirement checklist as output based on the output of these three sub-components and the
weighted requirement checklist presented in [1]. The output of Resource Type sub-component is
used to define the features of the resource in the checklist. The output of Tag Purpose sub-
component aides in determination of restrictions associated to tag. The output of Visitor
Permissions is used to determine the features that would be available to the visitor of the tagging
software. Below given table 2 shows the scenario applicable, based on the output of Visitor
Permissions sub-component.

Resource Type

Tag Purpose

Visitor
Permission

s

Requirement
Gatherer

Software
Estimator

Web
Application

Identify

Select

Resource
Type

Identify

Visitor level
allowed

Select

Selected
requirement

Tag
Purpose

Estimated
Software

To Tagging
Design

Requirement
Checklists

To Tagging
Test

Figure 2. Working of Tagging_Requirement

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

72

Table 2. Influence of Visitor Permissions on Tagging Dashboard

Visitor’s level Tagging Dashboard for
Visitor containsUsTR UsTR_UpT UsTR_UpTR

Selected Not Selected Not Selected Nothing
Not Selected Selected Not Selected Tag Entities only
Not Selected Not Selected Selected All Entities

From table 2, it can be seen that, only three cases have been shown because the web application
can select only one level of flexibility out of the three. Hence, the other possible cases are not
depicted. Also, table 2 depicts that in case, UsTR, lowest level, is selected, then, there is no
separate requirement checklist generated. In case, UsTR_UpT is selected, then, only the tag
entities of tagging dashboard are included in the checklist. However, if the visitor type,
UsTR_UpTR, is selected, then all entities are included in the checklist, since this kind of visitor
has maximum privileges in the tagging software.

The Requirement Gatherer sub-component, then, provides checklists to the web application for
selection of features. Each checklist has three parts, Highly-Popular, Intermediately-Popular,
and Least-Popular. The web application can select some, all or no part from these checklists.
The requirement selected by the web application is, then, provided to the Tagging_Design and
Tagging_Test Component.

The Software Estimator sub-component performs the task of quantification of the selected
requirements. The sub-component takes the output of the sub-component Requirement Gatherer
and conducts the estimation using the weighted requirement checklist estimation formulas
described in [1]. Using the formulas, the weighted percentage for each of the checklist is
calculated. This calculated value is provided to web application for software estimation purposes.

4.2 Tagging_Design

The Tagging_Design component is used to create the design of the tagging software for
integration. The tagging design component consists of two sub-components which determine the
design of tagging software as displayed in figure 3. The first sub-component is the Splitter. This
sub-component is assigned the task to split the requirement into the basic buildings blocks of
tagging system, namely, resource and tag. The sub-component takes the output of sub-component
Requirement Gatherer and divides the selected requirement into resource and tag requirements.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

73

The second sub-component is Design Creator. This sub-component creates the design of the
tagging software using the output of its peer sub-component, splitter. The design is based on the
design of tagging software presented in [1]. The sub-component consists of three parts - resource,
tag and generate. The Resource part of the sub-component creates the design for the resource in
the tagging system. The Tag part generates the design for tag in the tagging system. The Generate
part of the Design Creator sub-component, then, uses these generated designs to create the design
for the complete tagging software. The generated design of the tagging system is, then, provided
to the developer and the Tagging_Development and the Tagging_Test component.

4.3 Tagging_Development

The Tagging_Development component performs the task of creation and integration of tagging
software into web application. The component consists of three sub-components, namely, Code,
Wrapper and Integrator as seen from figure 4. The Code sub-component aids the process of
creating tagging software. The developer is provided with two options, (1) select some Tagging
APIs or (2) write new code.

Tagging APIs or
newly developed

IntegratorCode
Tagging

APIs

Web
Application

Tagging
Design

To
Tagging

Test

Developer

Web Application +
Tagging Software

Wrapper
Tagging
Software

Interface

Create

Figure 4. Working of Tagging_Development

Resource

Splitter

Tag

Split
Components

Selected
requirement

Tagging
Design

To Tagging
Development

Developer

Design
Creator

Generate

To Tagging
Test

Figure 3. Working of Tagging_Design

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

74

The developer can use some already available tagging API like FreeTag [4] or, the developer can
exercise the option of writing new code for the tagging software. The second sub-component,
Wrapper, handles the creation of interface for allowing the use of tagging software into web
application. The interface allows the adaptation of the tagging API to match the stated
requirements as well as design specified of the web application. In case, the developer has
exercised the option of creating new code, the developer may not be required to create a wrapper,
if the newly developed code for tagging is in the form of software.

Integrator handles the process of integration of tagging software into web application. The main
task of the Integrator sub-component is to check whether the created (or adapted) tagging
software matches the look and feel of the web application. The developer will have to alter the
tagging software according to the changes, if required. Moreover, the Integrator provides
guidance in regard to integration of tagging software into the web application as depicted in
below given table.

Table 3. Guidelines for integration of Tagging Software

Part of Design User Type Specific Instruction

Resource

Visitor (UsTR) Public Domain

Visitor (UsTR_UpTR) Login-based Mechanism

Administrator Private Domain

Tag

Visitor (UsTR) Public Domain

Visitor (UsTR_UpT) Login-based Mechanism

Administrator Private Domain

It can be seen that in the Resource part, the entities accessible through Visitor (UsTR) are to be
placed in Public Domain and is accessible to any visitor of the site. On the other hand, entities
available to Visitor (UsTR_UpTR) should be placed under Login-based Mechanism with access
available to visitors only after successful login. Similar premise is followed for the Tag part of the
design.

4.4 Tagging_Test

The fourth component conducts the task of testing the integrated tagging software. The
component consists of Verification & Validation sub-component as depicted in Figure 5. The
Verification & Validation sub-component uses the selected requirements, the tagging design and
the integrated tagging software to test whether the integration has carried out successfully or not.
The Verification & Validation sub-component verifies the statements that “the tagging software is
built right” and “the tagging software built is the right thing”.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

75

The framework explained in this section expedites integration of tagging software into web
application. In the next section, the benefits of using the framework are explained.

5. BENEFITS OF FRAMEWORK

Both the developer and the owner of web application can use the framework presented here
during the integration of tagging software into web application. The framework helps the
developer in understanding the structure of tagging software. Also, the design explains the
interaction that occurs between the tagging software and its users to the developer. Since the
framework is mapped into the SDLC of the web application, the developer can use the framework
during different stages of SDLC to accomplish various tasks. For example, during the design
stage, the developer can use the framework to create design while during the testing stage, the
developer uses the framework for testing the integrated tagging software.

The web application is also benefited by the framework. The web application uses the framework
during the requirement to select the features of tagging software. The framework, then, provides
the web application, an estimate of the software selected. Also, during the testing phase, the web
application can use the framework for testing the integrated tagging software. Moreover, the
extensibility of the design and the weighted requirement checklists allows the framework to be
extensible in nature and allows any feature or functionality.

6. LIMITATION AND FUTURE WORK

The framework presented here is for the purpose of integration of tagging software into web
application. Moreover, the associated design or the weighted requirement checklists are used for
the purpose of integration of tagging software into web application. However, the framework or
the associated design or weighted requirement checklist may not be used for creating a standalone
tagging software application. Our framework may not be sufficient for such purpose as standalone
tagging software would require much more functionality and features, which are out of scope of
this paper.

Also, design and weighted requirement checklists are based on study performed of most popular
and freely available tagging software. The commercial versions of the tagging software may
contain some functionality which is not included in the freely available software. This is a
limitation in our work. However, the design and the weighted requirement checklists and the
derived framework are extensible in nature. They can be easily updated to include any new
functionality or feature.

Web Application +
Tagging Software

Selected
Requirements

Output of
Testing

Developer

Web
Application

Verification
&

Validation

Tagging
Design

Figure 5. Working of Tagging_Test

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

76

We are in the process of developing a tool based on the framework presented in this paper. The
tool would help selecting the requirements as well as the outlining the design of tagging software.
Also, the tool would help in testing of the integrated tagging software.

7. CONCLUSION

A framework for integration of tagging software into web application is presented in this paper.
The framework is based on software engineering paradigms. The framework facilitates the
specifying of requirements during the software requirement phase. The framework also helps
during the design phase by outlining the design of the tagging software. Moreover, the framework
is used during the testing phase for verification and validation of the integrated tagging software.
The design and weighted requirement checklists of the framework can be easily updated to add
new features and functionality.

REFERENCES

[1] Gupta, Karan and Goel, Anita, (2012), “Requirement Estimation and Design of Tagging Software in
Web Application”. Manuscript submitted for publication (2012).

[2] Gupta, Karan and Goel, Anita, (2012), “Tagging requirements for web application”, Proceedings of
the 5th India Software Engineering Conference, ACM, pp. 81-90.

[3] Smith, Gene, (2007), Tagging: people-powered metadata for the social web, New Riders Publishing,
p. 216.

[4] Luk, Gordon, “freetag • GitHub”, https://github.com/freetag
[5] Golder, Scott A. and Huberman, Bernardo A., (2005), “The Structure of Collaborative Tagging

Systems”, Computing Research Repository.
[6] Robu, Valentin, et al., (2009), “Emergence of consensus and shared vocabularies in collaborative

tagging systems”, ACM Transactions on the Web (TWEB), vol. 3, no. 4, pp. 1-34.
[7] Hurley, Chad and Chen, Steve, “Delicious”, http://www.delicious.com/.
[8] Santos-Neto, Elizeu, et al., (2009), “Individual and social behavior in tagging systems”, Proceedings

of the 20th ACM conference on Hypertext and hypermedia, ACM, pp. 183-192.
[9] Körner, Christian, et al., (2010), “Of categorizers and describers: an evaluation of quantitative

measures for tagging motivation”, Proceedings of the 21st ACM conference on Hypertext and
hypermedia, ACM, pp. 157-166.

[10] Schöfegger, Karin, et al., (2012), “Learning user characteristics from social tagging behavior”,
Proceedings of the 23rd ACM conference on Hypertext and social media, ACM, pp. 207-212.

[11] Marvasti, A. Fani and Skillicorn, D. B., (2010), “Structures in collaborative tagging: an empirical
analysis”, Proceedings of the Thirty-Third Australasian Conferenc on Computer Science - Volume
102, Australian Computer Society, Inc., pp. 109-116.

[12] Helic, Denis, et al., (2011), “Pragmatic evaluation of folksonomies”, Proceedings of the 20th
international conference on World Wide Web, ACM, pp. 417-426.

[13] Tournéa, Nicolás and Godoy, Daniela, (2012), “Evaluating tag filtering techniques for web resource
classification in folksonomies”, Expert Systems with Applications, vol. 39, no. 10, pp. 9723-9729.

[14] Zhang, Lei, et al., (2012), “Integrating temporal usage pattern into personalized tag prediction”,
Proceedings of the 14th Asia-Pacific international conference on Web Technologies and Applications,
Springer-Verlag, pp. 354-365.

[15] Zhao, Hai, et al., (2010), “A Unified Character-Based Tagging Framework for Chinese Word
Segmentation”, vol. 9, no. 2, pp. 1-32.

[16] Trattner, Christoph, (2011), “NAVTAG: a network-theoretic framework to assess and improve the
navigability of tagging systems”, Proceedings of the 11th international conference on Web
engineering, Springer-Verlag, pp. 415-418.

[17] Shen, Wei, et al., (2011), “REACTOR: a framework for semantic relation extraction and tagging over
enterprise data”, Proceedings of the 20th international conference companion on World wide web,
ACM, pp. 121-122.

[18] Hoffart, J and GbR, DB, “Cocoa Tagging Framework,” 2006;
http://www.nudgenudge.eu/taggingframework.

http://www.delicious.com/

