
International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

DOI : 10.5121/ijsea.2013.4405 53

A MAPPING MODEL FOR TRANSFORMING
TRADITIONAL SOFTWARE DEVELOPMENT

METHODS TO AGILE METHODOLOGY

Rashmi Popli1, Anita2 and Dr. Naresh Chauhan3

Department of Computer Engineering, YMCA University of Science & Technology,
Faridabad Haryana, India

rashmimukhija@gmail.com
anitaarora_20@rediffmail.com
nareshchauhan19@yahoo.com

ABSTRACT

Agility is bringing in responsibility and ownership in individuals, which will eventually bring out
effectiveness and efficiency in deliverables. Agile model is growing in the market at very good pace.
Companies are drifting from traditional Software Development Life Cycle models to Agile Environment for
the purpose of attaining quality and for the sake of saving cost and time. Nimbleness nature of Agile is
helpful in frequent releases so as to satisfy the customer by providing frequent dual feedback. In
Traditional models, life cycle is properly defined and also phases are elaborated by specifying needed input
and output parameters. On the other hand, in Agile environment, phases are specific to methodologies of
Agile - Extreme Programming etc. In this paper a common life cycle approach is proposed that is
applicable for different kinds of teams. The paper aims to describe a mapping function for mapping of
traditional methods to Agile method.

KEYWORDS

Agile Software Development, Pair programming, Mapping function.

1. INTRODUCTION

In the last few years Agile software development life cycle appeared as a reaction to traditional
ways of developing software and acknowledges the need for an alternative to documentation
driven, heavyweight software development processes. Lifecycle of any model is the time span
between activities that comprises of release of first version to last version (at customer desk).
Software effort needed for development follows one lifecycle. The aim of software development
[4, 15] is to utilize the resources and time to its fullest but not at the cost of sacrificing quality.
Lifecycle models provide a starting point for defining what will be done. There is a big difference
between process and life cycle. A process is a sequence of steps for achieving any goal. A process
refers to the specific steps used in a specific organization to build systems. It indicates the specific
activities that must be undertaken and artifacts that must be produced. The process definitions
include more detail than provided lifecycle models.

mailto:rashmimukhija@gmail.com
mailto:anitaarora_20@rediffmail.com
mailto:nareshchauhan19@yahoo.com

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

54

More traditional approaches, like the Waterfall model and its variances, facilitate knowledge
sharing primarily through documentation. They also promote usage of role based teams and
detailed plans of entire software development lifecycle. The allocation of work specifies “not
only what is to be done but how it is to be done and the exact time allowed for doing it”. This
shifts the focus from individuals and their creative abilities to the processes themselves. These
traditional approaches are often referred to as “plan-driven” or “task-based”. In contrary, agile
methods namely extreme programming [6, 9, 16] emphasize and value individuals and
interactions over processes.

Dynamic business environments for software development and the need to anticipate even late
requirement changes led to many different management approaches [17]. Since the establishment
of the Agile Manifesto in 2001 they have been called agile methods [18]. These methods promise
higher customer satisfaction, better adherence to delivery dates, better working climate for
developers and so on.

1.1. Agile Manifesto

According to Agile Manifesto [5] ‘individuals and interactions over processes and tools” is the
foremost proverb while working in agile environment. It means processes and tools are of less
value as compared with individuals and interactions. On the other side, in traditional approaches
like waterfall, spiral, prototyping etc. process remains fixed. Phases are properly defined and
documented so that any one can follow this static approach.

This static and dynamic approach of traditional and agile models makes this issue debatable as
transition is taking place from waterfall to agile in most of the software companies. Agile
software development [10] is adopted as a required support for attaining quality and quality is
respected by each and every customer. To ensure this change, software industry requires many
concerns to be discussed namely top level management interest, infrastructure needed, resources
attitude and many more. For accommodating Agile in the software industry a mapping is required
that need to be discussed so that transition can take place between two software development life
cycles in proper manner.

In this paper, a mapping has been presented so that transition task can be achieved with
convenience of team members and top management. In this paper, Section II summarizes the
phases of different traditional approaches in comparison with Agile, Section III is about proposed
mapping between Agile and traditional models, Section IV list out the benefits of this mapping
and how it can be functional and Section V briefs the conclusion and future work.

2. SOFTWARE DEVELOPMENT LIFE CYCLE MODELS

Traditional methodologies try to be predictive - to create a schedule at the beginning of a project
and to conform to this schedule for the life of the project. Complex software systems can be built
in a sequential, phase-wise manner where all of the requirements are gathered at the beginning, all
of the design is completed next, and finally the master design is implemented into production
quality software. This approach holds that complex systems can be built in a single pass, without
going back and revisiting requirements or design ideas in light of changing business or
technology conditions. Yet a common complaint is “the problem with this project is that the users
keep changing their minds”. In the physical world people accept that requirements need to be
fixed because it's intuitively obvious to them that, because of the expensive construction phase,
it's very expensive to make changes after a certain point.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

55

2.1. Linear Sequential Model

It was first proposed in 1970 by W.W. Royce. Royce advocated iterations of waterfalls adapting
the results of the precedent waterfall. In it, development flows steadily through requirements
analysis, design implementation, coding, testing, integration, and maintenance [4]. This model
formed the basis for the many software frameworks. In it, with every phase one deliverable is
compulsory. This is basically document driven model in which proper sequence is maintained.
Problem of this classic approach is mainly inflexibility which is related with change in customer
mind set by seeing changing needs of time. Also, bugs keeps on propagating from one phase to
another. On the other side, in agile environment requirements keep on changing as per the market
need and business value.

Figure 1. The Classic Waterfall Model

2.2. The Prototyping Model

The process of this model involves many small activities viz identification of basic requirements,
developing of initial prototype, review and enhancing of prototype. There are two types of
prototyping including close-ended or throwaway prototyping and breadboard or evolutionary
prototyping. In the former case, prototype of the requirement is created that will eventually be
discarded rather than becoming part of the final delivered software. The main goal of latter is to
build a robust prototype in structured manner and constantly refine and rebuilt it. This
acknowledges that work on those requirements that are well understood. The problem with this
prototyping approach of software development is the cost and time as in the former case
prototype is thrown away after reviewed by the customer. Also, presence of customer may be an
issue.

In Agile way of software development, customer interactions are more important and either
customer or one of the representative of customer is always present with the team members so
that feedback can be received for the improvement at any time and requirements can be modified
by changing trends of market. Communication is the basis for the good quality of the software.

Requirements

Design

Implementation

Testing

Maintenance

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

56

Also, prototype here is not created rather stories are developed and demo is shown to the
customers.
2.3. Iterative Incremental Model

Incremental model is an evolution of waterfall model. The product is designed, implemented,
integrated and tested as a series of incremental builds. The Incremental software development
model may be applicable to projects where:

 Software Requirements are well defined, but realization may be delayed.
 The basic software functionality are required early.

It generates working software quickly and early during the software life cycle. It is more flexible -
less costly to change scope and requirements. It is easier to test and debug during a smaller
iteration. Also, it is easier to manage risk because risky pieces are identified and handled during
its iteration. In this case, problems may arise pertaining to system architecture because not all
requirements are gathered up front for the entire software life cycle.

In agile context, builds are gradually created. Then review is done with the help of
demonstrations to the customer. Also, review is possible within the existing team members or
product owners.

2.4. Spiral Model

The Spiral model was first defined by Barry Boehm. It combines elements of evolutionary,
incremental, and prototyping models. The term spiral refers to successive iterations outward from
a central starting point. The goal of it is to identify risk and focus on it early. In theory, risk is
reduced in outer spirals as the product becomes more refined. Each spiral

 starts with design goals
 ends with the client reviewing the progress thus far and future direction
 was originally prescribed to last up to 2 years

Figure 2. Spiral Model

The basic concepts of spiral model are Planned system, System Modeling, performance
evaluation, performance evaluation as shown in Figure 2. Major applications of spiral model are

Planned System

Performance
Evaluation

Performance
Improvement

System Modelling

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

57

mainly high risk projects in which requirements are not clearly understood, architecture is not
clear, quality issues, and problem in the underlying technology. Problem with this model is its
management cost as it is complex way of software development. Also, amount of documentation
required in intermediate stages is a tough affair.

In agile, manifesto says that working software is more desirable over comprehensive
documentation. Here, displaying of information is preferred as compared with keeping piles of
documents.

3. AGILE SOFTWARE DEVELOPMENT LIFE CYCLE

Agile is a very recent software development methodology (or more correctly, a group of
methodologies) based on the Agile manifesto. This was developed to solve some shortcoming in
traditional software development methodologies. Agile methods are based on giving high priority
to the customer participation early in the development cycle. It recommends testing by the
customer in every phase and often as possible. Testing is done at each point when a stable version
becomes available. The foundation of agile is based on starting testing from the beginning of the
project and continuing throughout to the end of the project. The Agile methods, concentrate (1)
more on individuals and interactions than processes and tools, (2) more on working software than
comprehensive documentation, (3) value customer collaboration more than contract negotiation,
and (4) focus more on responding to change than following a plan. The Scrum and Extreme
programming are two of the most popular variations of agile methods.

Agile SDLC contains the six phases as shown in Figure 3: Pre project planning (first cycle), Start,
Construction, Release, Production and Retirement. In Pre-project planning phase, firstly the goals
of the project and market aspects are defined. It explores how the new functionality improves the
organization’s presence in the market, how it will impact profit of organization, and how it will
impact the people of an organization. It helps in identifying the potential stakeholders and their
goals. Then in the Start phase the requirement modeling is done. In this phase active participation
of stakeholders is needed to identify the initial requirement modeling or high-level, requirements
for the system. Main goal of Start phase is to understand the problem and solution domain.

During Construction iterations, high-quality working software is delivered incrementally, which
meets the changing needs of the user or customer. In Agile Software Development change in the
requirements is allowed to meet the exact needs of the customers. The stakeholders are given
complete control over the scope, budget, and schedule – they get what they want and spend as
much money as required and for as long as they’re willing to do so. At the end of each
development cycle or iteration there is a partial, working system to show it to the customer. Pre-
production testing can be done like system integration testing. During the Release iteration phase,
also known as the "end game", the system is transit into production. The goal of the Production
Phase is to keep systems useful and productive even after the product has been deployed to the
user community. The goal of the Retirement Phase is the removal of a system release from
production, and occasionally even the complete system itself. This activity also known as system
decommissioning.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

58

Figure 3. Agile Life Cycle

4. PROPOSED AGILE MODEL

Accepting change is the mandatory requirement for the agile teams. Without accepting change
agile cannot exist in industry. Issue is how to do the transition when one of the traditional models
is the heart of the company and everybody has expertise in that. One thing is for sure that if
somebody is ready for accepting change then in the beginning things would seem to be complex
but with the support of the organization / management, team and proper coach agile can be
implemented with good success rate. In this section, a mapping model has been discussed by
considering the existing model of the organization. Before concentrating on individual mapping
of the different process models a general agile model is presented in which life cycle of the
software product in agile context is elaborated. The main components (Refer Figure 4) of the life
cycle are:

 Team Formation by good recruitment policy (TFR)
 Goal Building cycle with Quality Analyst, business Analyst and Customer. (GBC)
 Effort and Budget estimation (EBE)
 Coding & Testing activities with Communication (CTC)
 Demonstrations in Review with feedback (DRF)
 Risk evaluation and correction (REC)
 Satisfaction for all parties (SFP)

These components are the base of an agile culture. On this platform different pillars can be placed
which can be helpful to achieve the more quality standards which are desired by the customer.
Description of each and every component is given below:

TFR- In Agile working Environment, Team can be formed by devoting time by trainers in
upgrading the technical and managerial skills, polishing the right kind of attitude and embracing
the change from time to time (Refer Figure 5) and by following good recruitment policies to
identify the right person. In the team, there can be experienced members as well as fresher but
attitude is the biggest factor while doing recruitment.

GBC- Stories [8] are identified, evaluated and approved by customer, quality analyst and
business analyst by considering the market demand and return on investment value. Evaluation is
carried out by finding the competitive level of the existing products. Presence of QA along with
customer helps in setting the template in mind so that at pair programming moment he or she can

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

59

supply the right kind of feedback to the developer. Also he or she can design test cases before
development can go in progress.

Figure 4. Proposed Agile Model

EBE- Effort and budget are estimated by considering the resource and tool requirements for each
story from time to time by product owner or customer by keeping in mind the story priority. After
identification of iteration or sprint stories two weeks cycle starts. In some cases, this time period
of sprint can be smaller as less is always more. Estimation related with effort can be done by
planning poker or any other famous technique. Estimation is possible at three scales namely
iteration plan, release plan and project estimation. Estimation units are story points and ideal time.
Also, velocity is very important for estimating how many stories get completed in one sprint or
for finding throughput of the team.

Figure 5. An Agile Team Interaction

Agile
Life Cycle

TFR

GBC

CTCDRF

REC

SFP

EBE

Requirements

Architecture and
design

Development

Test and Feedback

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

60

CTC- Implementation of story starts when estimation are properly done. Pair programming (Refer
Figure 6) approach [1, 2, 11] is used while doing coding and testing in which one person is the
leader or executor and second person is the reviewer by working on the single terminal. This
immediate feedback helps in reducing number of bugs which may otherwise keep on propagating.
Remote pair programming, also known as virtual pair programming or distributed pair
programming, is pair programming where the two programmers are in different locations

By pair programming knowledge get distributed, programming skills are shared and mistakes are
reduced. Also, test driven development [3, 7, 12, 13, 14] (TDD) approach is used in which test
cases are written before writing the code for the story.

Figure 6. Pair Programming

DRF- At the time of review, team members, management and customers sat together for the
purpose of demonstrations of the software product. One of the representatives of team gives the
demo for the product. Then, goal matching action is performed meaning that whether story
approved has been the end product or not. In the figure 7 (shown below), two boards are there,
one is for demonstration purpose and second one is for the feedback. Feedback can be given by
any member including customer, management or also existing member in the team. This review
meeting is informal kind of meeting.

Figure 7. Feedback System

REC- Further, in the agile cycle, risk evaluation is done for the future stories so that things can be
improved or taken to the next level of quality. Actually customer is not just customer or end user

Customer
Stakeholder
onsite team

Development
Team

Customer
Network typically
On shore

Iterative
Development by
Developer team

Pair
Programming

Customer
Stakeholder
onsite team

Development
Team

Working Product after
each Iteration

Immediate
Customer feedback

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

61

rather he or she is bothered about money, quality, time and last but not the least about
sustainability of the product in the market for long time. In short, he or she is worried about return
on investment (ROI) [16]. So, there is a need of early detection of high risk stories so that risky
outcomes are in mind before finishing the current stories. After effect of it can be significant viz
chances in quality improvement to many more.

SFP- Ultimately, all parties are satisfied namely customer, team and management as product can
be delivered on time by following continuous delivery, continuous feedback, continuous
integration, continuous testing and continuous ROI.

Now, question of mapping arises, when there is a need to do transition from existing model to
agile. Issues that may come during mapping are:

 What is the reason for the transition?
 Is management interested or customer?
 Whether team is of that much calibre or not?
 Whether infrastructure requirements are sufficient like open workspace or not?
 Whether automated tool knowledge is needed?

After resolving all these issues, work can be started for the mapping function from one model to
agile. Figure 8 is for the mapping function to take place in the existing organization when
transformation decision has been taken by the management. In the formula (2), mapping function
MF is important. Its role is to map the large teams into small teams (T), large tasks into small
stories (J), long iteration into small sprint (I), long feedback cycle into instant feedback (F), late
delivery into fast small delivery (D), long meetings into daily small meetings (M), late testing into
test driven testing (TG), two monitors into one terminal for pair programming (MO), estimation
in lines of code into story points (E), and last but not the least project manager into no boss
approach (B),co-ordination effectiveness(CE).The CE (Refer Figure 10) depends upon some
implicit and explicit factors (Refer Formula (1)).

CE=Implicit factors+ Explicit factors. (1)

MF = (T, J, I, F, D, M, TG, MO, E, B, CE). (2)

By using this mapping function, any of the traditional models can be converted to the agile
environment. In this function, mainly ten parameters are there which are needed for the complete
agile environment in an organization. Along with it at hardware ground, cubicles can be
converted into open work environment, many documents can be converted into one story board,
many automated tools can be converted into specific tool for specific technology/domain, and
more overtime is converted into 40hrs/ week of effective work. It means in short agile is “less is
more” approach which is more beneficial with less cost and time. But interactions are more
through face to face communication in collocated culture and through video conference in
distributed environment.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

62

Figure 8. Mapping Function

Figure 9. Factors of Coordination Effectiveness

By using this mapping function, any of the traditional models can be converted to the agile
environment. In this function, mainly ten parameters are there which are needed for the complete
agile environment in an organization. Along with it at hardware ground, cubicles can be
converted into open work environment, many documents can be converted into one story board,
many automated tools can be converted into specific tool for specific technology/domain, and
more overtime is converted into 40hrs/ week of effective work. It means in short agile is “less is
more” approach which is more beneficial with less cost and time. But interactions are more
through face to face communication in collocated culture and through video conference in
distributed environment.

Traditional Software Development Model

Agile Software Development Model

Mapping Function

Co-ordination Effectiveness

Implicit Factors Explicit
Factors

Know
why

Know
who is
doing
what

Know
what to
do and
when

Right
place
and
time

Know
what is
going
on

Right
thing

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

63

5. THE BENEFITS

The proposed mapping function can be functional when parameters are identified in the existing
model and transformation is done as per the mapping parameters mentioned in the previous
section. If input parameters are less in existing model then transformation would not take place
and left out parameters of the mapping function would be considered from the scratch in the new
model i.e. Agile. Major benefits that can be reflected from this mapping function are in terms of:

 Time consumption would be less.
 Simple approach.
 Everybody would be happy (team members, client, and management).
 Old resources would not be unemployed.

6. CONCLUSION AND FUTURE WORK

In this paper, an agile model is proposed for the purpose of adopting a new process in the
organization. After explaining all the components of this model, a mapping function is presented
for the sake of doing transformation from one traditional model to new agile model. This
mapping function is the backbone of the agile culture in the organization and success rate of any
agile project can scale up by matching all the mapping parameters.

In future, on the basis of this mapping function, one tool can be designed which can identify the
existing parameters in the existing traditional model and finally can do the transformation in the
form of new parameters namely team size, sprint size, effort size, and how many terminals are
needed and how frequently switching would take place among the team members in pair
programming scenario. Also, a real project can be prepared where transition takes place easily
and with less effort.

ACKNOWLEDGEMENTS

We would like to thank the reviewers for their useful suggestions that helped us to improve our
work. We would also like to extend our gratitude to our university who provided us with the
needed research facilities.

REFERENCES

[1] Duque, R. and Bravo, C.(2008) Analyzing work productivity and program quality in collaborative
Programming, .The 3rd International Conference on Software Engineering Advances, pp.270- 276.

[2] Preston,D.,(2006) Using collaborative learning research to enhance pair programming pedagogy,
ACM SIGITE Newsletter, Vol.3, No.1, pp.16-21

[3] Kent Beck,(2002), “Test Driven Development” Addison Wesley.
[4] Abran, A., Moore, J. W., Bourque, P., & Dupuis, R. (2004). Guide to the software engineering body

of knowledge. Los Alamitos, CA: IEEE Computer Society.
[5] Agile Manifesto. (2001). Manifesto for agile software development. Retrieved January 1, 2009, from

http://www.agilemanifesto.org
[6] Beck, K. (2001). Extreme programming: Embrace change. Upper Saddle River, NJ: Addison-Wesley.
[7] Briggs, T., & Girard, C. D. (2007). Tools and techniques for test driven learning in CS1. Journal of

Computing Sciences in Colleges, 22(3), 37-43.
[8] Cohn, M. (2004). User stories applied: For agile software development. Boston, MA: Addison-

Wesley.

http://www.agilemanifesto.org

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

64

[9] Hedin, G., Bendix, L., & Magnusson, B. (2003). Introducing software engineering by means of
extreme programming. Proceedings of the 25th International Conference on Software Engineering
(ICSE 2003), Portland, Oregon, 586-593.

[10] Highsmith, J. A. (2002). Agile software development ecosystems. Boston, MA: Addison Wesley.
[11] Jacobson, N., & Schaefer, S. K. (2008). Pair programming in CS1: Overcoming objections to its

adoption. SIGCSE Bulletin, 40(2), 93-96.
[12] Janzen, D. S., & Saiedian, H. (2006). Test driven learning: Intrinsic integration of testing into the

CS/SE curriculum. Proceedings of the 37th ACM Technical Symposium on Computer Science
Education (SIGCSE 2006), Houston, Texas, USA, 254-258.

[13] Janzen, D. S., & Saiedian, H. (2008). Test driven learning in early programming courses.Proceeding
of the 39th ACM Technical Symposium on Computer Science Education (SIGCSE2008), Portland,
Oregon, USA, 532-536.

[14] Kollanus, S., & Isomottonen, V. (2008). Test driven development in education: Experiences with
critical viewpoints. Proceedings of the 13th Annual Conference on Innovation and Technology in
Computer Science Education (ITICSE 2008), Madrid, Spain, 124-127.

[15] Mead, N., Carter, D., & Lutz, M. (1997). The state of software engineering education and training.
IEEE Software, 14(6), 22-25.

[16] Rico, D. F. (2008). What is the ROI of agile vs. traditional methods? An analysis of extreme
programming, testdriven development, pair programming, and scrum (using real options).TickIT
International, 10(4), 9-18.

[17] Koch,(2005) Agile Software Development - Evaluating the methods for your Organization. Artech
House Inc., Norwood, Massachusetts

[18] K. Beck et al.,(2001) Manifesto for Agile Software Development, Available
at:http://agilemanifesto.org/

AUTHORS

1. RASHMI POPLI

Rashmi Popli is pursuing her Ph.D in Computer Engineering from YMCA University of
Science & Technology, M.Tech(CE) from M.D University in year 2008,,B.Tech(IT) from
M.D University in the year 2004.She has 9 years of experience in teaching. Presently she
is working as a Assistant Professor in department of Computer Engineering in YMCA
University of Science &Technology, Faridabad, Haryana, India. Her research areas
include Software Engineering, Software Testing and Software Quality.

2. ANITA

Anita is pursuing her Ph.D in Computer Engineering from YMCA University of Science
& Technology, M.Tech(CE) from M.D University in year 2009, B.Tech(CSE) from M.D
University in the year 2004. She has 11 months of industry experience and 7 years of
teaching experience. She is lifetime member of Computer Society of India and Agile
Software Community of India. Her research includes Software Engineering, Software
Testing and Software Quality.

DR. NARESH CHAUHAN

Naresh Chauhan received his Ph.D in Computer Engineering in 2008 from M.D
University, M.Tech(IT) form GGSIT,Delhi in year 2004,B.Tech(CE) from NIT
Kurukshetra in 1992.He has 20 years of experience in teaching as well as in industries
like Bharat Electronics and Motorola India Pvt. Ltd.Presently he is working as a
Professor in the department of Computer Engineering ,YMCA University of Science
and Technology, Faridabad, Haryana, India.. His research areas include Internet
Technologies, Software Engineering, Software Testing and Real Time Systems.

http://agilemanifesto.org/

