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ABSTRACT

Today, Software measurement are based on various techniques such that neural network, Genetic
algorithm, Fuzzy Logic etc. This study involves the efficiency of applying support vector machine using
Gaussian Radial Basis kernel function to software measurement problem to increase the performance and
accuracy. Support vector machines (SVM) are innovative approach to constructing learning machines that
Minimize generalization error. There is a close relationship between SVMs and the Radial Basis Function
(RBF) classifiers. Both have found numerous applications such as in optical character recognition, object
detection, face verification, text categorization, and so on. The result demonstrated that the accuracy and
generalization performance of SVM Gaussian Radial Basis kernel function is better than RBFN. We also
examine and summarize the several superior points of the SVM compared with RBFN.
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1. Introduction

Software Measurement is the process which helps the organizations to improve a measurement
program. It does not provide guidance for application of some measurement such as software cost
measurement or to analyze software complexity. Instead of it does help on effective software
measurement program and for understanding some of the key lessons that how the work.
Klayman et al. (1999) reported that the measurement is accurate judgment process which depends
upon confidence people but overconfidence increases with the difficulty of the task [1].  The
purpose of the Software Measurement has grown up of successful measurement applications.
Stone and Opel (2000) report about probability judgment accuracy by examining the effects of
two different training techniques such as performance feedback or environmental feedback. They
measured their improvement in calibration and discrimination as a function of feedback type
which require separate training techniques for improvement [2]. It presents the specific
procedures and activities which play the roles to achieve the goals and also roles of the people
involved.

Measurement is the process by which numbers or symbols are assigned to attributes of entities in
the real world in such a way as to characterize the attributes by clearly defined rules. Thus,
measurement requires
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 Entities (objects of interest).
 Attributes (characteristics of entities).
 Rules (and scales) for assigning values to the attributes.

Entity is an object or an event in the real world. An entity is important to distinguish one entity
from another by identifying characteristics.

An attribute is a feature or property of an entity.  An entity defined by attributes and attribute
using numbers or symbols. These numbers and symbols are abstraction that we use to reflect our
perceptions of the real world. Software entities are described by attributes such as size, cost,
elapsed time, effort expended, response time, transaction rates, number of defects found, and
operational reliability.

In software measurement various factors have made development effort and cost difficult,
complex and inaccurate. These factors influencing total development time between expert
programmer and average programmer team. Software development cost measurement models can
be used to determine development effort which can then transformed into the development time
and cost. Although, these all are closely related with each others.

Accurate Software measurement is important for reasons such as
 It can provide the facility for classify and design different development projects for

various business applications.
 The measurement model can determine how the resources can be used in well manner.
 It can be used to assess the impact of changes and support preplanning.
 The resources can be used to fulfill the needs of project application.
 Customers expect actual development costs and time to be in line with estimated costs and

time.

2. A Review on Software Measurement

This software measurement based survey presents information to show the importance of
measurement. It discusses significant specific strategic procedure and activity for software project
measurement in terms of quality, complexity, cost, effort and schedule estimation. Software cost
is related closely to software quality and productivity. Unrealistically low cost estimates
frequently lead to poor product quality and low project productivity [3].

• G. R. Finnie et al. (1997) conclude that an artificial intelligence models are capable of
providing adequate measurement models. Their performance is to a large degree
dependent on the data on which they are trained, and the extent to which suitable project
data is available will determine the extent to which adequate effort measurement models
can be developed [4].

• Anita Lee  et al. ( 1998 ) concluded that an integrated neural network model with cluster
analysis is provide  accurate measurement for software cost measurement to increase the
training efficacy of the network [5].

• Hearst et al. (1998) positioned the SVM algorithm at the intersection of learning theory
and practice: ‘‘it contains a large class of neural nets, radial basis function (RBF) nets,
and polynomial classifiers as special cases. Yet it is simple enough to be analyzed
mathematically, because it can be shown to correspond to a linear method in a high
dimensional feature space nonlinearly related to input space.’’ [6].
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• Tony Van Gestel et. al. (2001) was described in this paper; the Bayesian evidence
framework is combined with least squares support vector machines (LS-SVMs) for
nonlinear regression in order to infer nonlinear models of a time series and the
corresponding volatility. On the first level of inference, a statistical framework is related
to the LS-SVM formulation which allows to include the time-varying volatility of the
market by an appropriate choice of several hyperparameters. In the second level inferred
hyperparameters, related to the volatility, are used to construct a volatility model within
the evidence framework. Model comparison is performed on the third level  to infer the
tuning parameter of the RBF-kernel by ranking the evidences of the  different models [7].

• Zan Huang et. al. (2004) reported in their study a newly introduced learning method
based on statistical learning theory, support vector machines, together with a frequently
used high-performance method, backpropagation neural networks, to the problem of
credit rating prediction.  They used two data sets for Taiwan financial institutes and
United States commercial banks for experiment. The results showed that support vector
machines achieved accuracy comparable to that of backpropagation neural networks [8].

• M. Jorgensen (2004) concludes on their review that expert estimation is the dominant
strategy when estimating the effort of software development projects, and that there is no
substantial evidence supporting the superiority of model estimates over expert estimates.
There are situations where expert estimates are more likely to be more accurate, e.g.,
situations where experts have important domain knowledge not included in the models or
situations when simple estimation strategies provide accurate estimates [9].

• Mohammed Abdullah Al-Hajri et. al. (2005) report that in software measurement
includes the standard Function Point (FP) and many different models derived from it. In
this paper a new FP weights system was established using Artificial Neural Networks.
This method is a modification of the complexity weights of FP measure and the results
were very accurate and much suitable when they were applied on real data sets of
software projects [10].

• Kai-Bo Duan and S. Sathiya Keerthi (2005) stated that  Multiclass SVMs are usually
implemented by combining several Binary (two-class) support vector machines (SVMs)
classification techniques which is a very well developed technique. Due to various
complexities, a direct solution of multiclass problems using a single SVM formulation is
usually avoided. The better approach is to use a combination of several binary SVM
classifiers to solve a given multiclass problem. Popular methods are (WTA_SVM);
(MWV_SVM). In the paper numerically study the performance of the four methods such
as winner-takes-all strategy (WTA_SVM), max-wins voting (MWV_SVM), pairwise
coupling with Platt’s probabilities (PWC_PSVM) and pairwise coupling with Kernel
logistic regression (PWC_KLR). PWC PSVM gives the best classification results and has
significantly smaller mean values of test error but in WTA SVM, MWV SVM and PWC
KLR, it is hard to tell which one is better [11].

• Yuming Zhou et. al. (2007) report Accurate software metrics-based maintainability
prediction can not only enable developers to better identify the determinants of software
quality and thus help them improve design or coding, it can also provide managers with
useful information to help them plan the use of valuable resources. In this paper, The
prediction accuracy of the MARS models are evaluated and compared using multivariate
linear regression models, artificial neural network models, regression tree models, and
support vector models. The results suggest that for one system MARS can predict
maintainability more accurately than the other four typical modeling techniques [12]

• YuShen Su and Chin-Yu Huang (2007) propose an artificial neural-network-based
approach for software reliability measurement based on numerical analysis viewpoints of
software reliability modeling and applying this approach to build a dynamic weighted
combinational model (DWCM). In their experimental analysis two real software failure
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data sets are analyzed by which gives you a better predictions result for proposed
dynamic weighted combinational mode [13].

• Dr. Karanjeet Singh Kahlon et al. (2010) propose of measurement by selecting the most
popular models among Artificial-Neural-Network Based Model (ANN) and Halstead,
Walston-Felix, Bailey-Basili and Doty models to improve accuracy to utilize NASA
software projects. The proposed Neuro based system is able to provide good
measurement capabilities [14].

• Chintala Abhishek et al.( 2010 ) focuses on finding a method which gives a best analysis
report for effort prediction in testing phase by using  large number of test cases by
selecting the  unique feature of learning through usage. The proposed model developed
can also be evolved a minor effect on the effort measurement which affect the accuracy
of model [15].

3. ANN Overview

The first neural network architecture that we have chosen is the Ward Network [16]. Neural
network is a highly interconnecting network of a complex and large number of processing
element called neurons. Neural network architecture classify besides processing on input and
output layer and also have one or more intermediately layer called hidden layer. The input layer
neurons are linked to hidden layer neurons and the hidden layer neurons are linked to output layer
called Hidden output layer weights. An artificial neural network (ANN) is an efficient
information processing system which resembles in characteristics with biological neural
networks. ANN process large no of highly interconnected processing element called nodes or
units or neurons, which usually operate in the parallel and are configured in regular architectures
shown in Figure 1. Each neuron is connected with the other by a connection link. Each
connection link is associated with weights which contain information about input signal. This
information is used by the neurons net to solve a particular problem.

Figure 1:- Mathematical model of artificial neuron
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4. Neural Network Learning Algorithm Classification

The classification of the neural network learning algorithm is illustrated as in Figure 2;-

The neural network learning algorithms have been categorized as Supervised Learning (SL),
Unsupervised Learning (USL) and Reinforcement Learning.

In Supervised Learning every input pattern is used to train the network is associated with the
output patterns. During the Supervised Learning process the computation are based on actual and
expected output to determine the errors and the errors can be used to improve the performance of
the network model. In the Unsupervised Learning method the target output is not given to the
network model. Now the system will capable to learn of its own desired pattern and observing
expected structure for input pattern. In Reinforce Learning (RL) algorithm is used both SL and
USL algorithm approach for prediction of result where the various options related with correct
option is given to the examiner and the examiner would capable to identify the correct expected
answer by using their own approaches.

4.1 Radial Basis Function Network

RBF networks have been proven to be universal approximates and have the properties of fast
convergence, easy solution to regularization, and robustness to outliers [17]. The construction of
Radial Basis Function network (RBFN) based on three layer architecture namely, an input layer is
made up of source nodes that connected to the network. The second layer hidden layer with non-
linear Radial Basis activation function, such as Gaussian function that receives non linear
transformation from the input layer to the hidden layer. The output layer implements a linear
combination of Radial Basis Function that constitutes hidden layer function in a network to the
activation pattern applied on it. Miyoung Shin (2000) pointed out that many desirable features
and properties of RBF are flexible and potentially very useful for software measurement
application [18]. The RBFN is used to applied on to focus complex pattern classification problem
is basically solved by the transforming it into a high dimensional space in nonlinear manner.
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Step 1:- Set the weight to small random values.

Step 2:-Perform Step 2-8 when the stopping condition is false.

Step 3:- Perform Step 4-8 for each input.

Step 4:- Each input unit receives input signals and transmits to the next hidden layer unit.

Step 5:- Calculate the radial basis function.

Step 6:- Select the centers for the radial basis function. The centers are selected from the Set of
input vectors. It should be noted that a sufficient number of centers have   to be selected to ensure
adequate sampling of the input vector space.

Step 7:- Calculate the output from the hidden layer unit:
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where

îjx
= Center of the RBF unit for input variables

σ i = width of ith RBF unit

xji = jth variable of input pattern

Step 8 :- Calculate the output of the neural network :
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where

k = number of hidden layer nodes (RBF function).

ϒnet = output value of mth node in output layer for the nth incoming pattern.
wim = weight between ith RBF unit and mth output node.

wo = biasing term at nth output node.
Step 9: Calculate the error and test for the stopping condition. The stopping condition may be
number of epochs or to a certain extent weight change
.

5. Radial Basis Function Optimization using Support Vector
Machine

Support vector machines (SVM) are innovative approach to constructing learning machines that
Minimize generalization error. SVMs are based on very simple and intuitive concepts. They are
constructed by locating a set of (hyper) planes that separate two or more classes of data. By
construction of these hyper planes, the SVM discovers the boundaries between the input classes; the
elements of the input data that define these boundaries called support vectors. SVMs can classify data
separated by nonlinear boundaries. Through the use of kernel function, it problem is implicitly
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mapped to a higher dimensional space in which hyper planes suffice to define the boundaries.
Let us define labeled training examples [vi, yi], an input vector , a class value yi є{-1,1},
i=1,.,ɭ. Here following SVM algorithm define hyper plane decision function for non-linearly
separable case and multi class support vector classifier.

Step 1 :- Initialize Data needs to be trained under normal  and faulty condition.
Step 2 :- Build the structure of SVM and Define the optimal hyper planes in terms of the support
vector

(3)

Where is the outcome, is the class value of the training example vi, and . represents the
inner product. The vector v= (v1,v2,.,vt) corresponds to an input and the vectors vi , i=1,.,t, are the
support vectors. In Eq. (3), b and αi are parameters that determine the hyper plane.

Step 3 :- For the non-linearly separable case, a high-dimensional Version of  Eq.  (3) is given as
follows:

(4)

The function is defined as the kernel function and formula for a Gaussian radial basis
function machine with kernel function is given a
s

Where, γ is radial basis function kernel.
Step 4:- Determine the constraint C by cross validation.
Step 5:- Construct the classification function and Compute the SVM model.
Step 6:- Remove low rank feature and stop when features will be ended.

6. RESULT SIMULATION

The present work have tried to find out the Development Time (DT) by applying first the Neural
Radial Bias Function Network Model and then the Support Vector Machine. Following
methodology was adopted to carry out the development time prediction measurement using both
the approaches. The evolution criteria of performance analysis is based on Magnitude of Relative
Error (MRE), Mean Magnitude of Relative Error (MMRE) and Percentage of the Prediction
(PRED) which are mentioned below as .:-

MRE = |ADT-EDT|/ADT

PRED(X) = P/N
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Where, ADT is actual development time and EDT is estimated development time and P is the
number of  instances of projects with MRE less than or equal to X which is accepted at level of
0.25 and N is the number of considered projects used. The selected model comparisons are given
in Table 1 with various criteria such as Standard Deviation (SD), Mean Absolute Error (MAE)
and with Min, Max and Mean error values.

Table 1:-Experimental Result Evaluation of Proposed Model

Measurement

Model

Mean SD Min Max MAE

RBFN 0.619 2.83 -5.639 6.59 2.09

SVM 0.299 2.194 -3.72 5.055 1.772

Table 2 shows the dataset used for carrying out experimentation which has Lopez-Martin dataset
with results of MRE and MMRE of both model RBFN and SVM with Gaussian Radial basis
kernel function.

Table 2 :  Detailed Lopez-Martin dataset with their standard numeric values.

Lopez-Martin Data MRE (Mean Relative Error)

S No mc dc loc dt RBFN SVM

1 1 0.25 4 13 0.476545 0.059047

2 1 0.25 10 13 0.312803 0.025356

3 1 0.333 4 9 0.593678 0.193875

4 2 0.083 10 15 0.129818 0.135453

5 2 0.111 23 15 0.049379 0.170883

6 2 0.125 9 15 0.038338 0.073344

7 2 0.125 9 16 0.098442 0.00626

8 2 0.125 14 16 0.034378 0.032723

9 2 0.167 7 16 0.100582 0.057817

10 2 0.167 8 18 0.126528 0.157953

11 2 0.167 10 15 0.168749 0.021511

12 2 0.167 10 15 0.168749 0.021511

13 2 0.167 10 18 0.026043 0.148741

14 2 0.2 10 13 0.079027 0.126504

15 2 0.2 10 14 0.001954 0.046039

16 2 0.2 10 15 0.064843 0.023697

17 2 0.2 15 13 0.189461 0.158854
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18 2 0.25 10 12 0.021553 0.135947

19 2 0.25 10 12 0.021553 0.135947

20 3 0.083 17 22 0.235077 0.150225

21 3 0.125 11 19 0.016144 0.087879

22 3 0.125 15 18 0.048932 0.017935

23 3 0.125 15 19 0.006275 0.069622

24 3 0.143 13 21 0.005145 0.184149

25 3 0.143 14 20 0.070109 0.139021

26 3 0.143 14 21 0.019152 0.18002

27 3 0.143 15 19 0.036894 0.08915

28 3 0.143 15 20 0.01495 0.134693

29 3 0.167 13 15 0.234724 0.108913

30 3 0.167 14 13 0.433771 0.286179

31 3 0.2 18 19 0.016411 0.13808

32 3 0.25 9 13 0.035132 0.120768

33 3 0.25 12 12 0.246924 0.235027

34 3 0.25 17 12 0.337953 0.27072

35 4 0.077 16 21 0.184967 0.058482

36 4 0.077 31 21 0.228694 0.004777

37 4 0.111 16 19 0.056199 0.005272

38 4 0.2 24 18 0.058955 0.003508

39 5 0.143 22 24 0.232901 0.168949

40 5 0.143 22 25 0.263585 0.202191

41 5 0.2 22 18 0.052967 0.04327

MMRE (Mean Magnitude Relative

Error)

0.13508 0.108056

In the Table 3 MMRE and PRED (0.25) criteria is analyzed over the complete dataset. It can be
seen that the SVM model outperform the RBFN model. The performance of SVM and RBFN
model is compared for development time prediction problem in the present work.

Table 3: Result analysis of different prediction model with various performance criteria

Performance Criteria Prediction Model
RBFN SVM

MMRE 0.13508 0.108056
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PRED(0.25) 0.75609 0.951219

The results have minimized error as compared with actual value. These results emphasize the
importance of software development time measurement. Figure 3 shows the behavior of
measurement of the optimal software development time in available dataset used in thesis work.
In the Figure 3 red fluctuated line denotes the estimated development time mean relative error
(MRE) of SVM model and compares it with blue fluctuated line of RBFN model. From the
Figure 3, it is found that both RBFN and

Comparision in MRE of RBFN and SVM model
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Figure 3: Comparison in MRE between both Software Measurement model RBFN and SVM

SVM model fluctuated in the neighborhood of the actual development time and MRE is taken on
various observation points.
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Figure 4: Graph on MMRE (Mean Magnitude Relative Error) of different Prediction Model.
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Figure 5: Graph on PRED (0.25) of different Software Prediction Model.

From the graph drown in Figure 4 and Figure 5  based on result analyzed by Table-3, it is clearly
recognize that SVM approach give better performance then the existing RBN model.

5. CONCLUSION

This work illustrated a review on neural network and SVM approaches for software measurement
to predict software development time. The proposed analysis gives the better result to compare
their work done and result over the year. The review clearly points out the potential of artificial
neural networks being used as a tool for classification and prediction problems. This work
evaluates the capability of SVM using Gaussian basis kernel function which have been
successfully applied for solving both classification and regression problems in many applications.
The results showed that support vector machines achieved accuracy comparable to that of redial
bias neural networks. The methodology can be used to helpful for proposing an efficient method
using both techniques such as RBFN and SVM which can be applied over the other measurement
model for software measurement with the efficient manner.
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