
International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.3, May 2013

DOI : 10.5121/ijsea.2013.4302 21

Distributed Graphical User Interfaces to Class
Diagram: Reverse Engineering Approach using

Pattern Recognition
Akram Abdel Qader1, Khaled Musa2

[1][2]Faculty of Science and Information Technology,
Al-Zaytoonah University of Jordan

1Akrama@zuj.edu.jo , 2Dr.khalid@zuj.edu.jo

ABSTRACT

The graphical user interfaces of software programs are used by researchers in the soft-ware engineering
field to measure functionality, usability, durability, accessibility, and performance. This paper describes a
reverse engineering approach to transform the cap-tured images of the distributed GUIs into class
diagram. The processed distributed GUIs come from different and separate client computers. From the
distributed GUIs, the inter-faces are captured as images, attributes and functions are extracted and
processed through pattern recognitions mechanism to be stored into several temporary tables
corresponding to each client’s graphical user interface. These tables will be analyzed and processed into
one integrated normalized table eliminating any attribute redundancies. Further, the normalized the one
integrated table is to create a class diagram.

KEYWORDS

Reverse Engineering, Graphical User Interfaces (GUIs), Pattern Recognition, Optical Character
Recognition (OCR), Unified Modeling Language (UML), Class Diagram.

1. INTRODUCTION

Software re-engineering is the examination analysis, and alteration of an existing software system
to recreate it in a new form. Software re-engineering is reorganising and modifying existing
software systems to make them more maintainable [1]. The reversed engineering approach of the
software re-engineering process is used to identify the system’s components and their
interrelationships to create representations of the system in another form of its design and
specification [2].

The reverse engineering technique is widely used to reconstruct or recover design systems [13].
The reverse engineering is reconstruction or decomposing existing code, analyze it to start the
redesign process through the use of UML notations where the class diagram is drawn to clarify
the new system process flow.

In this paper, the reverse engineering approach is used to construct the UML class diagram from
the distributed Graphical User Interfaces (GUIs) [11]. Agarwal ans Sinha [3] perceived that the
class diagram and interaction diagram is an easy, and user friendly notations. Te,eni et al [4]

mailto:1Akrama@zuj.edu
mailto:khalid@zuj.edu

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.3, May 2013

22

affirms that over fifty three percent of software projects uses class diagrams. The implementation
of a class diagram is in direct relation with most object oriented programming languages such as
Visual Basic.Net, Java, and other languages, where each class diagram construct an interface or
code class.

The process of transformation a GUI into class diagram was proposed using petri nets models [5].
In this paper a reverse engineering approach is used to transform distributed GUIs into class
diagram through the use of OCR, temporary tables, and the normalization.

This paper is organized into four sections: section 2 discusses the related concepts used in the
process, section 3 describes the proposed approach, section 4 is the conclusion, and the section 5
discusses suggested potential future work.

2. RELATED CONCEPTS

This section introduces the related concepts used in this paper that contributes to the addressed
reverse engineering approach. The concepts used are the Optical Character Recognition (OCR)
and Class diagram.

2.1 Pattern Recognition

Pattern Recognition is the classification, which attempts to assign each input value to one of a
given set of classes such as determining whether a given email is "spam" or "non-spam". Pattern
recognition algorithms generally aim to provide a reasonable solution for all possible GUI inputs,
and a "fuzzy" matching of inputs is done. This is compared using pattern matching algorithms,
which look for the matches of the inputs with the pre-existing patterns. The results of pattern
recognition comparison is very accurate due to the set of algorithms that matches the scanned
inputs to the existing set of characteristics to determine what type of object it is [6].

2.2 Optical Character Recognition (OCR)

Optical Character Recognition (OCR) is an external device that uses software to analyze and
electronically translate scanned images to recognize scanned images of handwritten, typewritten
or printed text into machine-encoded text [6].

The new OCR engines add the multiple algorithms of neural network technology to analyze the
stroke edge, the line of discontinuity between the text characters, and the background elements.
Allowing for irregularities of printed ink on paper, to be matched with a known characters and
makes a best guess to which characters they belong [12].

The OCR approach used is to capture the attributes that are located within the GUI labels,
textboxes, and its functions such as buttons.

2.3 Class Diagrams

The class diagram used in the object oriented software design is a static structure diagram and is a
type of the Unified Modeling Language (UML). The class diagram notations describe the
structure of a system by showing the system's classes, and their attributes, operations or methods,
and the relationships among the classes [7].

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.3, May 2013

23

The UML design class diagram illustrates software class definitions with simple attributes and
methods [14]. Class diagrams model class structure and contents using design elements such as
classes, attributes and functions or operations. The class diagram in Figure 1 illustrates the
common components of class name, class attributes, and class operations.

Customer
Name : String

Address : String
CreditRating()

Figure 1. Class Diagram

The class diagram demonstrates the characteristics of an interface and its class name such as
Customer, the attributes used within the interface such as Name and Address, along with the
operation constituted in the interface such as checking the customer CreditRating. The class
diagram of a software application is comprised of classes and a diagram depicting the relationship
between each of these classes.

3. PROPOSED APPROACH

The reverse engineering approach is discussed in this paper is capturing and collecting from each
client graphical interface over a network. These collected GUIs are to be transformed into to a
class diagram following the below process, figure 2, and will be discussed thoroughly in later
sections.

Figure 2. Reverse Engineering Process GUIs to Class Diagram

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.3, May 2013

24

3.1 Capturing Method

Using pattern recognition methodology is to be used in capturing the GUI of each client on the
network on the distributed systems. The pattern recognition capturing mechanism addressed in
figure 3, is to distinguish table names, fields, and functions for each client graphical user
interface.

Figure 3. Capturing Methodology

Capturing elements from all graphical user interfaces is done by looking for any related items on
each client graphical user interface as in figure 4, samples of GUIs.

Capturing Methodology

For each client in the network

Scan the image form and contribute the
following

For each form title define table name
For each label then space then text 
define attribute name (field1)
For each label then space define
table name or function name (after
scanning in key functions table)
For each labels or buttons define
function name after scanning in key
functions table
For each Tab scan table names if not
found add table name
For each form build new record in
captable (capturing table) (row data)

ForEnd

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.3, May 2013

25

Figure 4. Samples of GUIs

Hence, capturing is recognized. Captured images to extract captured table names, fields, and
functions using capturing analysis methodology applying a set of rules to all interfaces are done.
The captured images will follow a set of rules regulated in a predefined operation table (Oprtable)
to be able to match the different operations or functions to specific operation.

The Oprtable consists of predefined data for all functions and attributes in the graphical user
interfaces, figure 5, where several operations will be justified by a common operation or function
such as (Save, Add, Submit, New, Insert, Create) which will be replaced with (Save) and etc.

Figure 5. Operation Table (Optable)

Comparing functions in all images in the client graphical user interfaces with the attributes in the
images through recognition pattern mechanism will create a Captable that includes all functions
and attributes captured from all distributed graphical user interfaces. The capturing images are
analyzed using the below analysis methodology, figure 6, to create the Captable and normalized
table (Normtable).

Table name

Label, space,
text field

Buttonsfunction

Oprtable
Operation Operation Name
Save, Add, Submit, New, Insert, Create Save
Delete, Cancel, Erase Delete
Update, Modify, Change Update
Search, Find, Explore, Navigate, Select, Read, Print Search

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.3, May 2013

26

Figure 5: Predefined Operation table (Oprtable)

Figure 6. Analysis Methodology to create Capturing Table (Captable)

When analysis is complete, a client temporary capturing table (Captable) is created for each client
graphical user interface to store class attributes and their functions, figure 7.

The capturing table (Captable) for each client will contain all elements captured from each client
graphical user interface.

Figure 7. Capturing Table (Captable)

Analysis methodology

Scan all record in captable and normalize the tables as the following steps

1- Create new table names as normtable with the following fields
(table name,field1,field2, field3,….. fieldn, function1, function2,…,functionn,

relation, relation table)

2- Start from the first record in captable compare with normtable
Scan for table name

if not found add new record
Scan for fields
If not found()

Scan functionkey()
If not functionkey()

Add fields to that table
Else

Add function to that table
Endif

Else
Return table name

Add relation field to that table
Endif

Else
Return table name

Add relation to that table for different table name in (normtable and captable)
Endif

3- If not end of table goto step 3

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.3, May 2013

27

3. GENERATE A CLASS DIAGRAM

The created captable that corresponds to the scanned GUIs is to be combined and integrated into
one integrated table normalized table to aid the reverse engineering system process.

On the integrated normalized table, normalization process will be set to generate a normalized
database (Normtable), figure 8. The normalized database (Normtable) will consist of several
relations each with its own attributes. Based on the normalized relations, a UML Class diagram
notations are created. From the created Captable, a normalized table will be created (Normtable)
to eliminate any redundancies captured in the Captable. While the Captable process flows to
normalization, the functions are compared to the operations located in the Oprtable to eliminate
any redundancies. The normalized table will be created with all attributes by eliminating
redundancies.

The attributes will be matched to specific operation or function located in the portable to create
class diagram which contains attributes and their functions or operations. The process flow that
will allocate a finalized class diagram is addressed below in figure 6. The process flow starts with
opening the Captable, opening the Norrmtable, and using the portable. Following the logic of the
process flow will create the class diagram in the allocated system tables that contains system
attributes and their functions or operations. Each Class consists of attributes and operations or
functions where each corresponds to the previous normalized database relations attributes.

Figure 8. Normalized Table (Normtable)

4. CONCLUSION

The proposed graphical user interfaces of software programs are used by researchers in the
software engineering field to measure functionality, usability, durability, accessibility, and
performance. This paper proposed a reverse engineering approach to transform the captured
images of the distributed clients GUIs into class diagram. From the distributed GUIs, the
interfaces are captured as an image, and attributes are extracted and processed through pattern
recognitions to be stored into several temporary tables called “Captable” corresponding to each
client graphical user interface. These tables will be analyzed and processed into one integrated
normalized table called “Normtable” eliminating any attribute redundancies. Further, the
normalized integrated table will assist in creation of class diagram.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.3, May 2013

28

5. FUTURE WORK

A future work can be done by rebuilding a successful relational database from normalized table
and class diagrams to create an application forms in any programming language that are
normalized and verified from the proposed process.

REFERENCES

[1] S. Ian, Software Engineering, 8th edition. Addison Wesley, New York, NY, USA, 2007.
[2] L. Chih-wei, C. William, C. Chih-hung, C. Yeh-ching, L. xiaodong, Y. hongji, Reverse Engineering,

Department of Computer science, De Montfort University, Leicester, England.
[3] R. Agarwal, and A. Sinha, "Object Oriented Modeling wuith UML: A Study of developers'

Perceptions", Communication of the ACM Vol.46, No.9, 2003, pp.87-294.
[4] D. Te'eni, R. Gelbard, M. Sade, Increasing the Benefit of Analysis: The Case of systems Shat support

Communication, in Proceedings of the 11th International Conference of the Associations Information
and Management (AIM'06), June 8-9, 006, pp. 13-27.

[5] M. Mohammad, A. Rafa, A. Belkacem, From Graphical User Interface To Domain Class Diagram: A
Reverse Engineering Approach. Journal of Theoretical and Applied Information Technology, 2011.

[6] B. Kumar, Optical Pattern Recognition, Prentice hall, USA, 2003.
[7] R. Mills, K. Hamilton, Learnning UML 2.0, 1st edition, O’Rielly Media, USA, 2006. [2].H. Tran, U.

Zdun, and S. Dustdar, View-Based Reverse Engineering Approach for Enhancing Model
Interoperability and Reusability in Process-Driven SOAs, in Proceedings of the International
Conference on Software Reuse (ICSR’08), Beijing, China, May 25-29, 2008, pp.233-244

[8] Ranorex, Web Testing, online: http://www.ranorex.com/support/user-guide-20/web-testing.html,
visited on April 22, 2009.

[9] Bright-Hub, Sniffing Data with Ettercap for Linux and Windows,
online:http://www.brighthub.com/computing/smb-security/articles/35545.aspx, visited on April 22,
2009.

[10] QFS, Facts & Features, online: http://www.qfs.de/en/qftest/, visited on April 23, 2009.
[11] J. Pu, H. Yang, B. Xu, L. Xu, and W. C. Chu,Combining MDE and UML to Reverse Engineer Web-

Based Legacy Systems, in Proceedings of the 32nd Annual IEEE International Computer on Software
and Applications (COMPSAC’08), Turku, Finland, July 28 - August 1, 2008, pp. 718-725.

[12] B. Kumar, Optical Pattern Recognition, Prentice-Hall, USA, 2003.
[13] H. El Bouhissi, M. Malki, and D. Bouchiha, A Reverse Engineering Approach for the Web Service

Modeling Ontology Specifications, in Proceedings of the 2nd International Conference on Sensor
Technologies and Applications (SENSORCOMM’08), Cap Esterel, France, August 25-31, 2008, pp.
819-823.

[14] M. H. Alalfi, J. R. Cordy, and T. R. Dean, Automated Reverse Engineering of UML Sequence
Diagrams for Dynamic Web Applications, in Proceedings of the International Conference on
Software Testing, Verifica tion and Validation (ICSTW’09), Denver, CO, USA, April 1-4, 2009, pp.
287-294.

http://www.ranorex.com/support/user-guide-20/web-testing.html
http://www.brighthub.com/computing/smb-security/articles/35545.aspx
http://www.qfs.de/en/qftest/

