
International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

DOI : 10.5121/ijsea.2013.4206 75

SIMULATION-BASED APPLICATION SOFTWARE
DEVELOPMENT IN TIME-TRIGGERED

COMMUNICATION SYSTEMS

Alexander Hanzlik

Austrian Institute of Technology, Vienna, Austria
alexander.hanzlik.fl@ait.ac.at, ahanzlik@gmx.at

ABSTRACT

This paper introduces a simulation-based approach for design and test of application software for time-
triggered communication systems. The approach is based on the SIDERA simulation system that supports
the time-triggered real-time protocols TTP and FlexRay. We present a software development platform for
FlexRay based communication systems that provides an implementation of the AUTOSAR standard
interface for communication between host application and FlexRay communication controllers. For
validation, we present an application example in the course of which SIDERA has been deployed for
development and test of software modules for an automotive project in the field of driving dynamics
control.

KEYWORDS

Simulation Based Software Development, Time-Triggered Communication Systems, FlexRay, Distributed
Systems, Software Development Process Acceleration

1. INTRODUCTION

Distributed fault-tolerant real-time systems are more and more deployed for dependable control
systems in the automotive industry. Modern vehicle control systems are built from spatially
separated electronic control units (ECUs) interconnected via a shared communication resource.
ECUs are embedded systems that control one or more of the electrical systems or subsystems in a
vehicle. Different ECUs are assigned different control tasks, like engine control, transmission
control, convenience electronics control and more.

For communication between the different ECUs in a car, time-triggered communication systems
like Flexray [5] are particularly suitable due to their deterministic behavior. Among other
benefits, time-triggered communication systems guarantee a-priori known maximum message
transmission times using a collision-free access to the shared communication resource. The
FlexRay industry consortium drove forward the standardization of a time-triggered fault-tolerant
communication system for advanced automotive applications. With the completion and the
delivery of the final version of the FlexRay specification the consortium disbanded in 2010.
Currently, activities are in progress to integrate the FlexRay standard into the ISO (International
Standardization Organization) catalogue of norms.

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standardized automotive
software architecture, jointly developed by automobile manufacturers, suppliers and tool
developers. The AUTOSAR consortium provides, among others, standard specifications for the
FlexRay communication stack that define the interaction between host application and FlexRay

mailto:fl@ait.ac
mailto:ahanzlik@gmx.at


International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

76

communication controllers via standardized interfaces. These interfaces hide hardware related
dependencies from the host application and allow to incorporate FlexRay communication
controllers from different vendors without impacts on the application software.

SIDERA [9] (SImulation model for DEpendable Real-time Architectures) is a simulation
environment for time-triggered communication systems. The environment is based on the Time-
Triggered Architecture TTA [13] and allows the execution of the FlexRay protocol on simulated
communication controller networks; SIDERA has been used for the investigation of
synchronization mechanisms in the Time-Triggered Architecture [8][12] and in FlexRay based
communication systems [10]. It is a pure software solution - simulation is performed on a single
computer system without the need of special (communication controller) hardware. A host
application interface allows to incorporate and run user provided code on the simulated
communication controllers. This mechanism allows analysis and debugging of existing
application software modules in a simulation environment as well as development and test of new
application software modules prior to integration into the real system.

The technical challenge is to switch between a development and test environment and the real
system without modifications of the original application code. This challenge is addressed in this
paper.

2. MOTIVATION AND OBJECTIVES

Why should a simulation based approach for ECU software development make sense? The
following reasons and considerations are, among others, inspired from daily practice.

Building and loading. The application software for a typical ECU consists of many different
modules like the real-time operating system, the communication protocol, drivers for peripheral
devices, diagnostic management services and others. A common method is to compile all
modules and to link them into one binary file that is loaded into a non-volatile memory area
(usually a flash memory) on the ECU from where it is started after each power-on of the ECU.

Each modification in any single ECU software module makes the following steps necessary:

1. Implement the changes in the software module.
2. Build the ECU application binary.
3. Load the binary into the ECU non-volatile memory.
4. Test the software.

Steps 2) and 3) typically take 5-10 minutes (this duration is based on personal experience made in
typical software deveopment projects for embedded systems). This is a considerable delay
between implementing a possibly simple modification in the software and being able to test this
modification. Especially in early development phases where many modifications and tests are
necessary much time gets lost for such ”idle” phases in the development process.

Debugging. Debugging in a distributed real-time environment is an ardous task due to the
following adversaries:

• Probe effect. Setting breakpoints in one application task may change the timing behavior
of other ECU components. Effects that are observed during debugging may not occur in
the running system and vice versa.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

77

• Breakpoint limitations. Some processors only allow a limited number of on-chip
breakpoints to be set. It’s quite hard to realize reasonable debug sessions having only a
handful (or less) breakpoints available.

• External components. Debugging communication with an external component (e.g. a
sensor) that is not in the scope of control of the debugger is quite hard. Setting a
breakpoint in the host application will not stop operation of the external component.

• Watchdogs. Safety measures (e.g. hardware watchdog timers) may cause the ECU to
reset when a task is stopped by a breakpoint.

Hardware availability. A quite pragmatic aggravation that should not occur, but that is however
observed practical experience, especially in very busy development phases: there is always some
piece of hardware missing, be it the ECU itself, the debugger, the power supply, some special
cable or anything else.

The objectives of a simulation-based approach for software development and testing are
straightforward: it shall be possible to

• Execute host applications on simulated FlexRay communication controllers
• without the need of FlexRay communication controller hardware,
• without the need of ECU hardware and
• without modifications of the original code

with the following aims:

• Speed up the software development process by eliminating ”idle” phases due to time
consuming load generation in early development phases.

• Ease the analysis of distributed system behavior by removing obstacles to debugging
in distributed realtime systems, like the probe effect.

• Overcome hardware non-availability by testing software components on simulated
ECUs.

• Speed up the integration process by testing the correctness of the control flow of the
software part in the simulation environment prior to integration into the hardware system.

3. PREREQUISITES AND ASSUMPTIONS

3.1. System Structure

For the considerations in this paper we assume a system structure as shown in Figure 1.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

78

Figure 1. FlexRay Cluster

A system consists of a set of nodes that concurrently execute a distributed real-time application.
The nodes communicate by sending and receiving messages over a dedicated communication
channel. The nodes and the communication channel form a cluster.

Each node contains a Host CPU and a Communication Controller (CC). The host CPU executes
the real-time application whereas the CC executes the communication protocol and provides
access to the communication medium for the host CPU.

The CC contains a controller host interface (CHI) and a protocol engine (PE). Via the CHI, the
host computer can issue commands to the PE (e.g. send a message) and receive indications from
the PE (e.g. a message has been received). The PE is responsible for execution of the
communication protocol and provides protocol services for the host via the CHI.

3.2. SIDERA Software Architecture

Figure 2 shows the software architecture of SIDERA.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

79

Figure 2. SIDERA Software Architecture

It consists of a set of layers, namely the host application layer, the kernel interface layer
SKERNELAPI and the runtime kernel layer SKERNEL. The AUTOSAR FlexRay module is the
protocol-specific part of the architecture and contains the implementation of the FlexRay
Interface for the host application (an implementation of the Time-Triggered Protocol TTP [13] as
well as a basic implementation of the Time-Triggered Ethernet (TTE) [11] protocol functions are
also available). The mapping of the different software layers to the system model components is
also shown in Figure 2.

The host application layer contains the host application under test. The host application
communicates with one or more communication controllers using the AUTOSAR FlexRay
module.

As shown in Figure 3, the AUTOSAR FlexRay module consists of the FlexRay Interface (FrIf) [6]
that controls one or more FlexRay Device Drivers (Fr) [7]. The Fr part hides the vendor specific
hardware and implementation details of each communication controller in a set of standardized
functions accessible by the FrIf. As also shown in Figure 3, the host application of a single ECU
may control a set of communication controllers of different types (e.g. CC1 Type A, CC1 Type B
and CC1 Type C). Each of the different controller types is managed by a dedicated device driver
(e.g. CC1 Type A is managed by driver FR_1_A, CC1 Type B by driver FR_1_B and CC1 Type
C by driver FR_1_C, respectively). The different device drivers are managed by the FrIf. A
unique addressing scheme determines how the possibly different communication controllers are
referenced by the host application.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

80

Figure 3. AUTOSAR FlexRay Module

The SKERNELAPI layer provides access functions for control and of the SKERNEL. These
functions can be grouped into

• Configuration functions
for configuration file handling. Example: Read/Write configuration file.

• Control functions
for interaction with the Graphical User Interface (GUI). Example:
Start/Stop/Pause/Resume simulation.

• User code integration functions
for interaction with the host application. This function group allows to associate user
defined functions to specific events during simulation. Example: call a given function
whenever a message is received.

• Kernel access functions
for manipulation of specific system components. Example: take a specified node out of
service.

• Protocol functions
implement protocol specific functionalities. Example: Determine the FlexRay frame
identifier of a received message.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

81

Figure 4. FlexRay Frame Format

The runtime kernel layer SKERNEL contains the hardware related part of the system architecture.
It implements the complete FlexRay cluster, i.e. the set of ECUs communicating via the FlexRay
communication channel as shown in Figure 1. For the communication between the different
ECUs, the FlexRay Standard Specification [5] defines the frame format shown in Figure 4.

3.3. Host Application Integration

The integration of the host application proceeds in two steps. Figure 5 shows the principle of
operation.

Figure 5. Host Application Integration – Principle of Operation

Initialization of the host application. The simulation environment provides the global variable
g_pUserInitFunc that contains a pointer to the host application init function. The
g_pUserInitFunc pointer has to be initialized by the host application. The host application init
function is called by the SKERNEL layer when the simulation starts.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

82

Installation of event functions. In a second step, so-called event functions are associated to
specific events during simulation. These event functions are called by the SKERNEL layer every
time a specified event occurs (e.g. if a message has been received). The event functions are
passed the cluster number iCluster and the node number iNode as parameters to know at which
node the specified event has occured. Figure 6 shows a code sample of a host application
integration process. The host application init function host_app_init() installs two event
functions: host_app_callback_macrotick is called when a new macrotick is generated,
host_app_receive_msg is called upon reception of a message, respectively.

#include <skernelapi.h>

int host_app_callback_macrotick (int iCluster, int iNode)
{

int MacroTick = skernel_get_macrotick_counter(iCluster, iNode);
ADD_LOG_ENTRY (

"Node %d’s clock in Cluster %d shows global time %d.\n",
iNode, iCluster, MacroTick);

return (0);
}

int host_app_callback_receive_msg (int iCluster, int iNode)
{

ADD_LOG_ENTRY(
"Node %d in Cluster %d has received a message.\n",
iNode, iCluster);

return (0);
}

void host_app_init()
{
/* init user data here */

skernel_user_callback_announce(USERFUNC_MACROTICK,
host_app_callback_macrotick);

skernel_user_callback_announce(USERFUNC_RECEIVE_MSG,
host_app_callback_receive_msg);

}

userfunc_t g_pUserInitFunc = (userfunc_t)&host_app_init;

Figure 6. Host Application Integration – Code Sample

3.4. Scope of Services

SIDERA provides the following scope of services for host application software development and
testing:

Graphical User Interface (GUI). A GUI is provided that allows control of the simulation
process as well as subsequent analysis of simulation experiments. The visualization of simulation
results can be customized. The user may select what is logged and how the logged data is
presented (see right hand side of Figure 7).

FIBEX file handling. For simulation of FlexRay clusters, a FIBEX [4] file is needed. This file
contains all characteristics of the FlexRay cluster, including the hardware structure (among
others, the number of nodes and the number of communication channels) and the communication
schedule (the assignment of communication bandwidth to nodes).



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

83

FlexRay Cluster Hardware Simulation. The hardware simulation part includes simulation of
the host CPU, the communication controller and the FlexRay communication channel according
to the contents of the FIBEX file.

Figure 7. SIDERA Graphical User Interface

FlexRay Protocol Simulation. The FlexRay protocol simulation part provides simulation of the
FlexRay protocol services (according to the FlexRay Communications System Protocol
Specification [5]) including clock synchronization, communication (static and dynamic segment,
symbol window, network idle time) and frame construction and distribution.

AUTOSAR Software Interface. For communication between a host application and the
simulated communication controller(s), SIDERA provides implementations of the AUTOSAR
FlexRay Interface and of the AUTOSAR FlexRay Device Driver Interface, respectively
(according to the AUTOSAR Standards [6] and [7]).

4. APPLICATION EXAMPLE: DEVELOPMENT OF AN ALGORITHM FOR
SENSOR COMMUNICATION

This section presents an extensive application example to illustrate the concepts presented.
SIDERA has been used for development and test of software modules for an automotive
application, a driving dynamics control unit.

4.1 System Architecture

The aim of the project was the development of ECU firmware software modules for a driving
dynamics controller application. Figure 8 shows the project relevant hardware components of the
system architecture.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

84

Figure 8. Target System Components

The host CPU is a TC1766 [1] 32-bit TriCoreTM based microcontroller for automotive
applications from Infineon. The FlexRay Communication Controller is a CIC310 [2], also from
Infineon, supposed for interconnection with the AUDO NG-32 bit microcontroller device family,
where the TC1766 belongs to. The connection between the TC1766 and the CIC310 is done via
theMLI (micro link serial bus) interface, a proprietary pin-based serial communication inferface
between two Infineon microcontrollers.

Finally, a ZMD31150 sensor signal conditioner [3], delivering lateral acceleration data from a
pressure sensor, is connected to two port pins of the TC1766 host CPU; one output port pin is for
sending commands to the ZMD31150 and one input port pin is for receiving data from the
ZMD31150. The TC1766 and the ZMD31150 communicate via a serial digital one-wire interface
using pulse-width modulation (PWM) for bit encoding/decoding.

4.2 Application Description

When the ignition key is turned and the car is started, the host application performs a series of
hardware checks. One of these checks verifies functionality and identity of two pressure sensors.
For this purpose, the values of 3 registers, each of 16 bit length, are read from the sensors via a
serial digital interface provided by the ZMD31150 signal conditioner. The information contained
in these registers unambiguously identifies the type and is referred to as the fingerprint of the
sensor. The fingerprint information is used to verify the functionality and integrity of the sensor
and shall ensure that only properly working sensors of appropriate type are used (e.g. when a
sensor is replaced in the course of car maintenance). Both operability and integrity of the pressure
sensors are essential for proper operation of the driving dynamics controller. In case of a failed
check of one or both sensors, the driving dynamics control unit shall be deactivated and the driver
shall be informed by an indication on the car dashboard.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

85

The fingerprint reading process comprises the following steps:

1. The host initializes the ZMD31150 for reading from the sensor.
2. A 16bit CRC is read from the sensor.
3. The values of three 16bit registers are read from the sensor.
4. A checksum is calculated at the host and compared to the CRC retrieved from the sensor.
5. If the calculated CRC equals the retrieved CRC, the integrity check was successful; else,

the procedure is repeated starting with Step 1.
6. If fingerprint reading is not successful after 3 attempts, sensor integrity verification fails.

Figure 9. OWI Protocol

Communication between the Host-CPU and the pressure sensors takes place via a serial digital
one wire interface (OWI) using PWM for bit encoding/decoding with a bit duration tOWI_BIT of
2000μs. Figure 9 shows the bit encoding scheme. Each bit starts with a transition from low to
high (rising edge) of the line signal. The duty ratio is the duration between a rising edge and a
falling edge of the line signal related to the bit duration. According to Figure 9, the duty ratios are
¼ (500μs) for representation of a logical ”0” and ¾ (1500μs) for a logical ”1”, respectively.

4.3 Algorithm Analysis

For correct bit decoding, the line signal must be sampled with a sample period dsample that is lower
than the minimum duration between any two changes of the line signal in case of an undisturbed
line. Transient disturbances of the line signal are disregarded; they will reliably be detected by the
subsequent CRC calculation.

Figure 10. OWI Timing Characteristics

For determination of the sample period dsample, two factors have to be taken into account:



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

86

• Figure 10 shows the OWI timing characteristis. It can be seen that the effective bit period
duration may differ between 55% and 125% from the nominal bit duration. Further, the
effective duty ratios may also differ between 87,5% and 112,5% from the Further, the
effective duty ratios may also differ between 87,5% and 112,5% from the nominal duty
ratios. These deviations account for variations in the manufacturing process of the signal
conditioner as well as for variations in environmental conditions during operation, e.g.
changes in the ambient temperature.

• Line signal sampling is done in the context of a periodic task. The jitter imposed by the
operating system with regard to task activation is 50μs.

Which sample period dsample is necessary and sufficient to guarantee correct results (in the absence
of line faults)? The following calculation answers this question:

dsample < 190μs

= 2000 [bit duration in μs]
× 0,25 [duty ratio bit 0]
× 0,55 [bit period deviation]
× 0,875 [min. duty ratio bit 0]
−50 [task activation jitter in μs]

The above calculation determines the worst case scenario where the operational tolerances of all
variables are pushed to their limits: minimum bit period duration and minimum duty ratio in the
OWI timing characteristis coincide with a minimum task invocation period. If all operational
tolerances are observed, correct operation of the fingerprint reading mechanism can be guaranteed
for a sample period dsample < 190μs.

4.4 Algorithm Implementation

To implement and test the algorithm in the simulation environment, three steps were necessary:

1. A model of the ZMD31150 had to be implemented, needed for subsequent
implementation of the fingerprint mechanism in the host application.

2. The fingerprint mechanism had to be integrated into the simulation environment.
3. The OWI protocol had to be implemented.

Implementation of a model of the ZMD31150 signal conditioner. A model of the ZMD31150
was implemented based on the datasheet and the functional description provided by the
manufacturer [3]. The therein described behaviour of the ZMD31150 was mapped to a state
machine that covered all operational states necessary for implementation of the fingerprint
reading mechanism in the host application.

Integration of the fingerprint module into the simulation environment. The fingerprint
reading mechanism is a software module that is linked to the host application. It contains an entry
function fpEntry that is periodically called by the host application (i.e. by the operating system
scheduler) every dsample μs. This function triggers the processing of a state machine handling the
fingerprint reading process (see Section 4.2). For integration and testing, it is sufficient to
periodically execute the fpEntry function from within the simulation environment. The task
activation jitter imposed by the operating system is taken into account by configurable variation
of the execution period dsample within the tolerance interval of 50μs.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

87

Connection of the fingerprint module to the ZMD31150 model. Finally, the OWI protocol was
implemented both in the model of the ZMD31150 and the fingerprint module. The
implementation is based on the OWI protocol definition contained in the functional description of
the signal conditioner. The possible deviations for the effective bit period duration and the
effective bit duty ratios, respectively (see Figure 10), are taken into account by configurable
variation of both the bit duration and the bit duty ratios within the specified tolerance regions. The
port pins used for communication between the TC1766 host CPU and the ZMD31150 are
modelled by two global variables, ”PIN” and ”POUT”, having a value of ”1” if the line signal is
“high” and ”0” if the line signal is ”low”. The ZMD31150 model writes to the ”PIN” variable (the
input pin of the TC1766), the fingerprint mechanism writes to the ”POUT” variable (the output
pin of the TC1766), according to the OWI protocol timing characteristics (see Figure 10).

The manpower provided for the implementation and test of the algorithm was one software
developer.

4.5 Testing the Algorithm

The testing procedure consists of several test cases that shall validate the correctness of the
algorithm in the presence of

• Variations of the OWI timing characteristics
To test the stability of the algorithm, the model was exposed to variations in the OWI
timing characteristis as well as to variations in the activation period of the fpEntry
function.

• Transient signal line faults
To validate the error detection and recovery mechanisms of the algorithm, transient line
faults were injected to check the proper functionality of the CRC calculation and the
triggering of the retry mechanism. The line faults were simulated by manipulation of the
”PIN” and ”POUT” variables.

Figure 11. Successful Fingerprint Reading Operation

Figure 11 shows the visualization of a successful reading operation. The x-Axis denotes the
progression of time. The upper half of Figure 11 shows the different state machine transitions of



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

88

the algorithm in the course of the reading process. In the lower half, the communication between
the host and the signal conditioner is shown, whereas the upper bitstream shows the commands
from the TC1766 and the lower bitstream shows the responses from the ZMD31150.

4.6 Effective Benefit of Simulation Approach

The application example demonstrated the principle of operation using a practical example.
However, before deploying a simulation based software development approach, the following
question arises:

When does it make sense to switch to a simulation environment for software development?
The portation of (parts of) the application software to a simulation environment means costs in
terms of time. These costs have to be compensated by winnings in software development time.

But how can these winnings be quantified? As already outlined in Section 2, a simulation
environment provides some benefits like the possibility to develop application software without
needing target hardware, but these benefits are difficult to express in terms of time savings. The
only legitimate criterion to assess the usability of a simulation based approach in a given context
is the time saving in building and loading.

For the subsequent analysis, we will use the following parameters:

• dprog
sim: The development effort of the program in the simulation environment.

• dprog
HW: The development effort of the program in the hardware environment.

• dprep
sim: The effort to prepare the software development process for the simulation

environment.
• dbuild

HW: The average duration of a build and load phase in the hardware environment.
• dbuild

sim: The average duration of a build and load phase in the simulation environment.
• dcode: The estimated (average) duration of a coding phase followed by a build and load

phase. This is an empirical value dependant on the coding style and therefore pretty sure
different for different programmers.

We assume that dbuild
sim << dbuild

HW unless otherwise it would not make sense to use a simulation
environment. We further assume that the development process is constituted by development
cycles DC. A DC consists of a coding phase and a build and load phase. The duration of a
development cycle dDC

sim in the simulation environment and the duration of a development cycle
dDC

HW in the in hardware environment, respectively, equals

dDC
sim = dcode + dbuild

sim (1)
dDC

HW = dcode + dbuild
HW

The overall duration of the development process is the sum of the durations of all development
cycles. This calculated duration is of course shorter than the real duration of the development
process, because we only consider the times of productivity here.

For the overall duration of the development process dprog
sim in the simulation environment and

dprog
HW in the hardware environment, respectively, we get

dprog
sim = n x dDC

sim (2)
dprog

HW = n x dDC
HW



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

89

where n is the overall number of development cycles required for the development of the
program.
The use of a simulation environment pays if the effort induced by the use of the simulation
environment for development of a given software component is smaller than the development
effort for this software component if only the hardware environment is used:

dprog
sim + dprep

sim < dprog
HW (3)

The effective benefit EB in development time saving for a given software component equals the
development effort for this software component if only the hardware environment is used minus
the effort induced by the use of the simulation environment for the development of this software
component:

EB = dprog
HW - dprog

sim - dprep
sim (4)

The use of a simulation environment pays if EB > 0.

4.7 Application Example Evaluation

We now evaluate the effective benefit of the application of the simulation environment in the
course of the development of the fingerprint reading algorithm application example presented in
the last section.

To determine the number of development cycles n (see Section 4.6, Equation 2), we used a batch
script that invokes the build process and that increases a counter with each invocation of the
script. Using this method, we were able to determine the total number of development cycles n in
the simulation environment:

n = 771
To determine the overall duration of the development process dprog

sim in the simulation
environment, we need the following parameters which have been observed and measured during
the case study:

dcode ≈ 15min
dbuild

sim ≈ 0,5min
For dprog

sim, it follows from Equations (1) and (2):
dprog

sim = n x dDC
sim = n x (dcode + dbuild

sim) ≈ 771 x (15+0,5) ≈ 11950min ≈ 199h

To estimate the overall duration of the development process dprog
HW in the hardware environment,

we need the average duration of a build and load phase in the hardware environment dbuild
HW. This

duration has been determined by measuring the build and load time of another software module of
similar size as a reference:

dbuild
HW ≈ 10min

For dprog
HW, it follows from Equations (1) and (2):

dprog
HW = n x dDC

HW = n x (dcode + dbuild
HW) ≈ 771 x (15+10) ≈ 19275min ≈ 321h

Finally, we have to consider the effort to prepare the software development process for the
simulation environment:

dprep
sim ≈ 80h



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

90

Now we have all information needed for determination of the effective benefit of the simulation
based development procedure according to Equation (4):

EB = dprog
HW - dprog

sim - dprep
sim ≈ 321 – 199 – 80 ≈ 42h

For the simulation based development of the fingerprint algorithm, the time saving is about 13%
compared to the development time in the hardware environment. The actual effective benefit is
presumably higher because build and load process acceleration is not the only positive
implication of using the simulation environment for the software development process (see
Section 2).

5. DISCUSSION AND CONCLUSION

It may not make sense to portate the host application software to a simulation environment as a
whole. However, if the host application is composed of a set of single modules that fulfill
specified functions, the development of single modules in the simulation environment may make
sense.

In the presented case study, a time saving of 13% of the overall software development time could
be achieved. However, this case study involved only one software developer who did the whole
work consisting of two steps:

1. Preparation of the simulation environment for implementation of the algorithm
2. Implementation and test of the algorithm

This example shows that even for a one-person-show a considerable time saving can be achieved
using a simulation based development approach. If more developers are involved in Step 2
(Implementation and test of the algorithm), the overall time saving increases, because the effort
for Step 1 has only to be spent once and is of benefit for all developers.

Howver, the portation of host application software modules to a simulation environment as well
as the creation of simulation models of existing hardware components increases the development
effort. Obviously, this additional effort has to be justified by some benefits. Possible benefits are

Acceleration of the software development process. Single modules can be developed and tested
in isolation using the simulation environment. If a software module is developed from scratch, it
makes sense to validate the correctness of the control flow of the software in the simulation
environment and to switch to the hardware environment for development of the hardware related
parts.

Development without hardware components. Hardware components are not yet available when
the project starts but are delivered by the manufacturerat a later point in time. This situation
typically occurs in prototype development projects, where innovative hardware components are
integrated. Given that the interface to the hardware component is specified, it may be useful to
create a model of the component and to develop the host application using the model until the
hardware component becomes available.

Improved capabilites for analysis. Based on experience, debugging in a distributed environment
can be a wicked problem. For instance, analyzing the communication with some remote
component may be hard because in the hardware environment this component usually is not in the
sphere of control of the debugger. If the host application stops at a breakpoint, the remote
component continues operation making it hard to pinpoint possible sources of error in the host



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

91

application. Modelling the behaviour of the remote component on the base of its interface
description and integrating the model into the simulation enviornment may help to locate and
correct bugs in the host application.

Reduced costs for test equipment. Dedicated hardware equipment for testing distributed
systems is quite expensive. In automotive applications, for instance, testing the communication
behaviour of a single ECU in isolation requires special bus simulators. These simulators are
programmable hardware components that are connected to the ECU and that simulate the bus
communication according to the cluster communication schedule contained in the FIBEX file.
The message contents of the simulated communication partners (the other nodes) have to be
defined by the tester. Having a simulation model of the communication system at hand reduces
the need for hardware bus simulators. Modelling the communication partners in the simulation
environment is no remarkable additional effort (the messages sent have to be defined anyway).

Acceleration of the integration process. The integration phase of an ECU into a communication
network usually is a process of revealing and correcting errors. A thorough analysis of host
application software components in the simulation environment prior to integration may help to
diminish the number of errors. Further, the correction of errors may be supported by the improved
capabilites for analysis provided by the simulation environment, reducing the overall integration
effort.

REFERENCES

[1] Infineon Technologies AG. TC1766 Highly Integrated 32-bit TriCore(TM)-based Next Generation
Microcontroller for Automotive Applications. Product Brief, Infineon Technolo- gies AG, 2005.

[2] Infineon Technologies AG. SAK-CIC 310-OSMX2HT FlexRay Communication Controller. Data
Sheet, Infineon Technologies AG, 2007.

[3] ZMD AG. ZMD31150 Fast Automotive Sensor Signal Conditioner Data Sheet Rev. 0.7. Data Sheet,
ZMD AG, 2006.

[4] ASAM e.V. FIBEX - Field Bus Data Exchange Format. Standard, Association for Standardisation of
Automation and Measuring Systems (ASAM e.V.), 2006.

[5] Flexray. FlexRay Communications System Protocol Specification Version 2.1. Specification, FlexRay
Consortium, 2005.

[6] AUTOSAR GbR. Specification of FlexRay Driver V.2.2.1. Standard, AUTOSAR GbR, 2008.
[7] AUTOSARGbR. Specification of FlexRay Interface V.3.0.2. Standard, AUTOSAR GbR, 2008.
[8] A. Hanzlik. Investigation of Fault-Tolerant Multi-Cluster Clock Synchronization Strategies by Means

of Simulation. PhD Thesis, Vienna University of Technology, Institute for Computer Engineering,
Vienna, Austria, 2004.

[9] A. Hanzlik. SIDERA - a Simulation Model for Time- Triggered Distributed Real-Time Systems.
International Review on Computers and Software (IRECOS), Vol. 1(3):181–193, November 2006.

[10] A. Hanzlik. Stability and Performance Analysis of Clock Synchronization in FlexRay. International
Review on Computers and Software (IRECOS), Vol. 1(2):146–155, September 2006.

[11] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer. The Time-Triggered Ethernet (TTE)
design. Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing
2005 (ISORC 2005), pp 22– 23, May 2005.

[12] Hermann Kopetz, Astrit Ademaj, and Alexander Hanzlik. Integration of Internal and External Clock
Synchronization by Combination of the Clock-State and Clock-Rate Correction in Fault-Tolerant
Distributed Systems. 25th IEEE International Real-Time Systems Symposium (RTSS’04), pp 415–
425, 2004.

[13] H. Kopetz, Günther Bauer. The Time-Triggered Architecture. Proceedings of the IEEE, Vol.
91(1):112 – 126, January 2003.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.2, March 2013

92

AUTHOR

Alexander Hanzlik holds an Msc degree in Computer Science and a PhD degree in
Computer Engineering from the Vienna University of Technology as well as an MBA
degree from the PEF Private University of Management, Vienna. His main research
interests are Simulation, Fault-tolerant Computing and Distributed Real-Time
Systems. He has about 20 years professional experience in software development,
system design and project management. He is author and co-author of more than 20
scientific papers.

Currently, Alexander Hanzlik is under contract at the AIT Austrian Institute of Technology, where he is
concerned with design and simulation of distributed electronic control systems for automotive applications.


