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ABSTRACT 

In this paper using the main feature of our proposed Model in its inflection point, we propose a software 

reliability growth model, which relatively early in the testing and debugging phase, provides accurate 

parameters estimation, gives a very good failure behavior prediction and enable software developers to 

predict when to conclude testing, release the software and avoid over testing in order to cut the cost during 

the development and the maintenance of the software. Two real world experimental data previously 

analyzed have been used to compare our proposed Early Estimation Logistic Model effectiveness with 

several pre-existing models. 
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1. INTRODUCTION 

The increasing dependency on computers along with an increasing need for safety, efficiency and 

cost reduction, causes not only for a higher demand for software and make software testing a 

crucial phase of the development of any software to produce highly reliable packages. It is clear 

that air traffic control software will demand a very accurate failure behaviour prediction, and then 

software designed for a fun game. A crucial decision any software developer has to make, in 

software testing and debugging phase, is the following: given all the restrictions, can we stop the 

testing and debugging phase and release a software package for use, or should we continue 

testing? 

Since the occurrence of software failures are random, if the testing and debugging team hits a 

long random run where no software mistake is found; they are likely to stop testing and falsely 

conclude that the software is error free. This leads to a premature end of the testing and 

debugging phase that affect the reliability of the software to be released for marketing. Satoh and 

Yamada’s software reliability growth models do not yield accurate reliability estimates in spite of 

a small amount of failure data causing their procedure and justification do not lead to a good 

estimation at the early stage of the testing and debugging phase. In this paper, we propose a more 

realistic model that is more effective and eliminates many of the difficulties that the S-Y models 

require. Our proposed software reliability growth model is simple to implement and does not 

assume any prior distribution. Relatively early in the testing and debugging phase, it provides 

accurate parameters estimation, gives a very good failure behaviour prediction and it is possible 
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for software developers to predict when to conclude testing, release the software and avoid over 

testing in order to cut the cost during the development and the maintenance of the software. 

2. STATISTICAL ABREVIATIONS AND NOTATIONS 

(i) . LR-EE-Model: our Logistic Regression Early Estimation Model 

(ii). S-Y Models: Satoh and Yamada’s Software Reliability Growth Models 

 

3. PRELIMINARIES 
 
Here, we shall give a brief description of Satoh and Yamada statistical models. 

 

3.1 Satoh and Yamada’s models and conclusions 

Satoh and Yamada reported that, their two software reliability growth models yield accurate 

parameter estimates even with a small amount of data, [1]. Their proposed models give the same 

parameters estimates. According to Satoh and Yamada, although the conventional model uses a 

discrete equation as a regression model, the model itself is a continuous time model, thus, it 

includes errors generated by discretization, however, their models do not have this problem 

because they are themselves discrete models and that they can analyze the software reliability 

without a continuous time model. 

The Satoh and Yamada discrete models were reported to have three advantages over the 

conventional model [1]. 

(1). The parameter estimation in the discrete logistic curve models reproduced the values of the    

parameters very accurately, even with small data that do not include the inflection point. When 

the exact solution is used as the input data, the conventional model provides inaccurate parameter 

estimates with data that do not include the inflection point. 

(2). The discrete models are independent of time scale. The same parameters estimates are 

obtained no matter what value of the time scale they choose. When the conventional model is 

used we have to choose the time scale carefully, because the time scale needs to be used in the 

regression equation. As a result, the estimates depend on the choice of the time scale. 

(3). The discrete logistic curve models enable them to accurately estimate the parameters in the 

early testing phase with real data. 

The parameter estimates of the conventional model vary with the number of data points. The 

discrete models provide stable values of parameter estimates for various number of data points. 

This characteristic is very important for software reliability growth models. 

3.2 Remarks 

We believe that Satoh and Yamada’s conclusion results from not simulating the data properly; 

they use the exact solution is used as the input data not adding any noise. As a result, the problem 

is purely deterministic. Since there are three parameters k, m, and α to estimate in 

)exp(1
)(

tm

k
tL

α−+
= , if no noise is added to an exact solution when preparing the data, as a 

Saturated model one only needs as many data points as there are parameters to estimate the 

parameters. While Satoh and Yamada’s approach perfectly reproduces the values of the 

parameters, when the data set satisfy an exact solution with no noise, in early stage of the 
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debugging and testing phase (three data points), their parameter estimation with too small data 

points does not give accurate parameter estimates on prepared data with noise and on actual data. 

4. DEVELOPMENT OF THE PROPOSED MODEL : EARLY ESTIMATION 
 
The crucial decision any software developer have to make, in software testing and debugging 

phase is whether to stop, conclude the testing and the debugging phase of a software or continue 

testing and debugging it. Having to take into consideration factors like reliability of the software 

being developed and the cost of its development process, it is of gold for the software developers 

to have a stopping rule, at the early stage of the testing and debugging phase, associated with a 

high confidence level that testing and debugging phase must be concluded at some time t¤, to 

reduce cost of over testing the software or that testing must proceed a bit longer to avoid a 

premature ending of the debugging process to produce more reliable or highly reliable software. 

 

The objective of this section is to develop a software reliability growth model that 

 

(i). Does not assume any prior distribution 

 

(ii). is free of any major convergence assumptions 

 

(iii). is simple 

 

(iv). fits very well the cumulative number of software faults found and corrected 

 

(v). Provides accurate parameter estimates relatively early in the testing phase once the available 

data points during testing and debugging phase include a bit more then the inflection point. 

 

(vi). Our proposed model provides stable values of parameter estimates once the available data 

includes a bit more then the inflection point; this characteristic is very important for software 

reliability growth models. 

 

(vii). Provides an additional decision-making rule to the software developers respective to when 

to conclude the testing phase, manage their resources, and schedule the release time of the 

software package to be marketed for use. 

 

(viii). Not subject to errors generated by discretization. 

 

(ix).our LR-EE-Model, by providing a stopping and release rule, saves time and cuts cost in 

preventing over-testing the software to be marketed, and produces a more reliable software in 

preventing an early release of the software to be market, specially when the testing and debugging 

team hits a long run where not software fault is found. 

 

4.1 Model Description 

 
The proposed model is dependent on an accurate estimated number of software faults in the 

software k̂ , before complete modelling of the cumulative failure behaviour is obtained. In this 

chapter, we propose a new way of estimating the parameter k, as an increasing number of 

available failure data are recorded, while the testing and debugging phase proceeds. Our new 

estimate of the parameter k is based on an accurate method to locating the inflection point of a 

gradually increasing amount of actual failure data points. Once the inflection point is located, a 
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prediction of the total number of software faults k̂  is obtained, then estimation of the remaining 

parameters m and n is obtained. 

 

5. PARAMETERS ESTIMATION 
 
Clearly, if k the initial number of software faults in the software prior the debugging phase or the 

total number of software faults found and corrected in debugging phase during an infinitely long 

exposure time interval, when a Cumulative logistic curve model is fitted, at the inflection point 

k/2 software faults have been found and corrected. In this section, we propose a method for 

locating the inflection point; then an estimate of k is found via estimating k/2. 

 

Let T1 < T2 < T3 <…… <Tn be the first n successive random failure times, as software ages, with 

their corresponding cumulative number of software faults found and corrected: 

 

L(T1) = 1, L(T2) = 2, L(T3) = 3 , ..., L(Tn) = n. 

 

We run sequential linear regression on two kind of successive overlapping chains of size N 

ordered pairs (Ti, L (Ti) = i) that we will refer to as Chain1 or Chain2. 

 

5.1. Description of overlapping chain 1 
 
Our chain I consists of overlapping chains of size N ≥2 constructed as follows: Our first run 

consist of finding the equation of the regression on the first N ordered pairs (Ti , L(Ti) = i), i = 

1,……,N and recording its slope, then for any other successive k
th
 run k ≥ 2, we run a linear 

regression line on (Ti , L(Ti) = i), where i = (k¡1)(N¡1); i + 2, i + 3, ……, i + N. 

 

5.2. Description of overlapping chain 2 

 
Our chain II consists of overlapping chains of size N≥4 and N is even, constructed as follows: 

Our kth
 run consists of finding the equation of successive regressions lines on the ordered pairs 

(Ti, L(Ti) = i), where i = (k-1)(N/2 ) + 1; i + 1, i + 2,……, i + (N ¡1). 

 

5.3. Locating the inflection point 
 

For both successive overlapping chains of size N ordered pairs (Ti, L(Ti) = i), the slopes of the 

successive regression lines are recorded and their patten is observed. To locate the inflection 

point, we look for the chain on which the successive slope behaviour is maximal then consistently 

decreasing. Once the chain including the inflection point is identified, averaging is used to 

estimate k. 

 

(1) Select using the maximum slope criteria an ith
 chain 

(2) In the selected ith
 chain, two times the actual cumulative faults is a candidate for . 

(3) Test each candidate for k̂  in the selected i
th

 chain, using the minimum mean square error 

criteria: 

 

Let N, M, and three candidates from the selected i
th
 chain such the N < M < L If MSEN >MSEM, 

discard candidate N and proceed with comparing the mean square errors MSEM and MSEL. 

 

If MSEN < MSEN, select candidate N as the estimate of the parameter k.After estimating k, we 

are ready to set up our Logistic Like Software Reliability Growth Model.  
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Having an estimate of k, we name it k̂ = iearly, we set up our best fit logistic like regression model 

in the minimal mean square error sense. 

Proposing 
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to estimate the true cumulative percentage number of software failures found and corrected 

during debugging and testing phase up to testing and debugging time t, we obtain estimates of m 

and α needed in Equation (1) as follows: 

 

By identification method we obtain 
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Now comparing the first and the last term of Equation 1, we obtain the following estimates of m 

and α: 
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Where β̂ 0iearly and β̂ 1iearly are the Maximum Likelihood Estimators of the parameters β̂ 0 and 

β̂ 1, using = iearly and iearly the positive integer from N, M, L at which slope is maximal and mean 

square error is minimal. Thus, an estimate of P(t) can be obtained using 
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Finally the cumulative failure behaviour of the proposed model for given software is given by 
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It will be shown that our proposed estimate of L(t) gives good results in comparison to the other 

models that are commonly used. 
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6.  COMPARISIONS  OF  MODELS : NUMERICAL  APPROACH  TO 

SOFTWARE  FAILURE  DATA 

 
In this section we shall illustrate our approach and compare the performance of our Early 

Estimation Logistic Model, using overlapping chains, and using the mean square error, with 

several frequently and pre-existing models on an actual software failure data already analyzed in 

the PL/I application program test data Table 1,  reported and studied by Ohba [10] in 1984. 

 

It will be shown that our proposed model yields accurate parameters estimates early into the 

testing and debugging phase, gives a very good modelling of the S-shaped cumulative number of 

software faults found and corrected curves during testing and debugging phase giving the 

software developers an early protocol as far as when to stop the testing and debugging phase and 

release the software for use, cutting cost on maintenance, and due to over testing. 

 

6.1. Our Early Estimation on the PL/I Software Failure Data 
 
From Tables 1, Table 2, Table 3, and Table 4, respectively we estimated a cumulative number of 

software fault of 350. Thus, our estimate k̂ = 350. Table 5, provides a comparative summary of 

our estimate k̂  along with several other estimates from some pre-existing models and the mean 

square error for each model. Table5 also shows that by predicting 350 faults associated with an 

overall mean square error of 92:31760154 our proposed model, LR-Model, without any major 

assumptions, fitting well trough the K-S goodness of-fit, demonstrates better performance than 

most of the pre-existing models when data points a bit after the inflection points are available. 

 

From Tables 1, Table 2, Table 3, and Table 4, respectively we estimated a cumulative number of 

software fault of 350. Thus, our estimate k̂ = 350.Table 5, provides a comparative summary of 

our estimate k̂  along with several other estimates from some pre-existing models and the mean 

square error for each model. Table5 also shows that by predicting 350 faults associated with an 

overall mean square error of 92:31760154 our proposed model, LR-Model, without any major 

assumptions, fitting well trough the K-S goodness of-fit, demonstrates better performance than 

most of the pre-existing models when data points a bit after the inflection points are available. 

 

6.2. Creating Overlapping Chains: PL/I Database Application Software 

 
Table 1: Overlapping Chain 1 of Size N = 2 -PL/I Database Application Software 

 

 

RUNS 

 

[Ti,T(i+1)][Ni,N(i+1)] Slope of RL 
r 

 

RUN1 
[1,3];[15,66] 

 
25.5 1 

RUN2 
[2,4];[44,103] 

 
29.5 1 

RUN3 
[3,5];[66,105] 

 
19.5 1 

 

RUN4 
[4,6];[103,110] 3.5 1 

RUN5 
[5,7];[105,146] 

 
20.5 1 
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RUN6 
[6,8];[110,175] 

 
32.5 1 

 

RUN7 
[7,9];[146,179] 16.5 1 

 
Note that only the data points up to the 9

th
 week are use to predict the total number of faults in the 

software. 

 
Table 2: Overlapping Chain 1 of Size N = 2 -PL/I Database Application Software 

 

 

N 

 

MSE Pair number 

N=88 6.61E-09 2 

N=132 15.30759212 3 

N=206 16.17930627 4 

N=220 179.7683445 5 

N=292 179.2839406 6 

N=350 165.1157652 7 

N=351 165.259913 8 

N=358 183.1532424 9 

N=412 189.5550172 10 

N=466 189.8825614 11 

 

Table 3: Overlapping Chain -I of Size N = 3-PL/I Database Application Software 

 

 

RUNS 

 

[Ti,T(i+1)][Ni,N(i+1)] Slope of RL r 

RUN1 [1,2,3];[15,44,66] 
25.5 

 
r:=0.9968748929 

RUN2 [2,4,5];[44,103,105] 
21.64285714 

 
r:=0.9539628928 

RUN3 
[4,6,7];[103,110,146] 

 

12.78571429 

 
r:=0.8464894644 

RUN4 
[6,8,9];[110,175,179] 

 

24.35714286 

 
r:=0.9605519477 

RUN5 [8,10,11];[175,206,233] 18.78571429 r:=0.9887218045 

 
Note that only the data points up to the 11th

 week are use to predict the total number of faults in 

the software. 
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Table 4: Overlapping Chain-I of Size N = 5-PL/I Database Application Software 

 

 

RUNS 

 

[Ti,T(i+1)][Ni,N(i+1)] Slope of RL r 

RUN1 [1,2,3,4,5];[15,44,66,103,105] 23.9 r:=0.9778998350 

RUN2 
[4,6,7,8,9];[103,110,146,175,179] 

 
17.33783784 r:=0.9416620919 

RUN3 [8,10,11,12,13];[175,206,233,255,276] 20.60810811 r:=0.9952196625 

 
Note that only the data points up to the 13th

 week are use to predict the total number of faults in 

the software. 

 
Table 5: Summary of models estimations: PL/I Database Application Software 

 

 

Models 
a or k MSE 

 

AE 

 

Our early estimation model 350 92.31760154 2.23 

Our LR-Model 348 91.92380892 2.79 

HLM Model Group A, with Logistic function 

 
394.076 118.29 10.06 

HLM Model Group A, with Weibull function 

 
565.35 122.09 57.91 

HLM Model Group A, with Rayleigh function 

 
459.08 268.42 28.23 

HLM Model Group A, with Exponential 828.252 140.66 131.35 

HLM Model Group B with Logistic function 

 
337.41 163.095 5.75 

HLM Model Group B, with Weibull function 

 
345.686 91.0226 3.43 

HLM Model Group B, with Rayleigh function 

 
371.438 158.918 3.75 

HLM Model Group B, with Exponential 352.521 83.998 1.53 

HLM Model Group C, with Logistic function 

 
430.662 103.03 20.11 

HLM Model Group C, with Weibull function 

 
385.39 87.5831 7.65 

HLM Model Group C, with Rayleigh function 

 
379.947 406.71 6.13 

HLM Model Group C, with Exponential 385.179 83.3452 7.69 

HLM Model Group D, with Logistic function 

 
582.538 96.9321 62.72 

HLM Model Group D, with Weibull function 

 
958.718 124.399 167.79 
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HLM Model Group D, with Rayleigh function 

 
702.693 247.84 96.09 

HLM Model Group D, with Exponential 1225.66 169.72 242.36 

G-O Model 562.8 157.75 56.98 

Inflection S-Shaped Model 389.1 133.53 8.69 

Delayed S-Shaped Model 374.05 168.67 4.48 

Exponential Model 455.371 206.93 27.09 

HGDM 387.71 138.12 8.3 

Logarithmic Poisson Model NA 171.23  

 

7. CONCLUSIONS 

Modelling accurately the cumulative number of software faults k in a software package is crucial 

to software developers. In the present study we have introduced a logistic software reliability 

growth model for the purpose of early estimation of the cumulative number of faults in given 

software. The analytical form of this new model is given by 
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Where β̂ 0iearly and β̂ 1iearly are the Maximum Likelihood Estimators of the parameters β0 and 

β1, using k̂ = iearly and iearly the positive integer candidate at which slope is maximum and at which 

ESM  is minimal as the number of pairs increases. This model not only gives very good 

predictions of the cumulative number of software faults, but it is easy to apply and it is free of any 

major assumptions. The new model was compared with the following commonly used models in 

the subject areas. (i) Exponential Model, (ii) G-O Model, (iii) Delayed S-Shaped Model, (iv) S-Y 

Models,(v) C-Model,(vi)Hyper geometric Model, (vii) Huang, Kuo, Chen, and Lyu’s Models 

[5][6][7][9]. 
 

For a first application, we used one set of actual data, namely, the PL/I Database Application test 

data by Ohba, [10].Later we will apply our early estimation to the remaining sets analysed earlier. 

(i) The pattern of discovery of errors test Data by Tohma, [11]. (ii) The F 11-D program test data 

by Forman and Singpurwalla, [13] (iii) The pattern of discovery of errors STS2, STS3, STS4 by 

Misra [15] (iv) Musa’s System T1 [17].(v) The On-line data entry software package test Data by 

Ohba,[10].(vi) A field report test Data by Tohma, [11][16][18]. The mean square error criteria 

were used to compare the results of our proposed model with other models stated above. The 

results presented in tables form support the fact that the new model is more effective in estimating 

the number of faults found during the testing and debugging phase of given software. 

. 
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