
International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.5, September 2012

DOI : 10.5121/ijsea.2012.3507 81

EFFECTIVE CONCURRENT ENGINEERING
WITH THE USAGE OF GENETIC
ALGORITHMS FOR SOFTWARE

DEVELOPMENT

D.Sundar1, Dr.K.Alagarsamy2

1 Assistant Professor, Thiagarajar School of Management, Madurai, India
2 Associate Professor, Computer Center, Madurai Kamaraj University, Madurai, India

ABSTRACT

Software specifications are useful to the organizations to enforce a consistent approach in designing,
implementing and the maintenance of the software. There are numerous principles employed for the
assurance of the quality of the software. Concurrent engineering with Genetic algorithms have been
adopted for the software development. The results obtained are appreciable and detailed discussion is
done.

KEYWORDS:

MOGA, Concurrent Engineering etc.

1 INTRODUCTION

Concurrent engineering is a business approach which replaces the conventional product
development method with one in which tasks are done in parallel and there is an early
consideration for every aspect of a product's development process. This policy focuses on the
resources of the enterprise to be dispersed in the devising and the implementation process to
assure an efficient software development process.

In today's business world, corporations must be able to react to the changing market needs
rapidly, effectively, and responsively. They must be able to reduce their time to market and adapt
to the changing environments. Decisions must be made quickly and they must be made right the
first time out. Enterprises could not offer the process to be repeated which incurs more time and
cost to deliver the product to the channel. Concurrent engineering is being the alternative has
emerged as a way of bringing rapid solutions to product design and development process.

Concurrent engineering is unquestionably the gesture of the future for new software development
for all enterprises in spite of of their size, complexity or product range. In order to be outstanding,
enterprises must modify their deliverables and software development cycle to be able to whole
varied processes concurrently. This new model will add advantage to the enterprise, although it
will require a large amount of refinement in its implementation. Concurrent Engineering is to be
properly assessed before the deployment. This is because concurrent engineering is a process that
must be analyzed and accustomed for unremitting enhancements of business process.



International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.5, September 2012

82

Concurrent engineering is not a one size fits all solution to a firm's development processes. This
continuous improvement cycle consists of planning, implementing, reviewing, and revising. This
must be regularly investigated and the process must be reviewed in the due course of
implementation to enhance the process of concurrent engineering.

2 BASIC PRINCIPLES OF CONCURRENT ENGINEERING

The concurrent process model can be represented schematically as a series of major technical
activities, tasks, and their associated states. For example, the development activity defined for the
spiral model is consummated by initiation the following tasks: prototyping and/or analysis
modeling, requirements specification, and design [1].

The earliest design decisions in product development have significant impact on the operational
and support (O&S) aspects of the software product. These support considerations can best be
handled concurrently to the planning, requirements definition, and high level design activities [2].

The advantageous things that the concurrent engineering can invite are more even but the process
is difficult for deployment. The payback will be not only enjoyed by the enterprise deploying but
also the users, stakeholders and the end consumers. They reap the benefit of using the concurrent
engineering by reduction of the cost, time etc. The cross functional team also enjoys the benefit,
but not depended on the applications alone. [3].

Some of the Concurrent Engineering (CE) multidisciplinary team structures include [4]
Functional Team, Light weight Team, Heavyweight team, autonomy team,  Collocated
Autonomy Team and Virtual team.

The effective new business product development process can decrease the development lead
times which also enhances the upstream and downstream processes which are to be considered at
the conceptual development phase [5]. This approach is typically described as Concurrent
Engineering. Hence, CE in an organization signifies the ability of the organization to embrace
product development as a series of overlapping stages, which provides customer satisfaction and
also the right price by delivering products on time. This is effectively accomplished by employing
numerous engineering tools and system techniques during the project management of design
product development.

3 PROBLEM FORMULATION

Firms looking for bloodthirsty advantage to amplify market share, turnover, and expansion have
bowed to concurrent development to pace with the introduction of novel products and strike their
rivals to market. Concurrent engineering is a complex problem in that a large number of
considerations in the software development have to be brought to bear during the design stage.
The problems are likely to encompass constraints of widely varying complexity. Previous
approaches have concentrated on finding good solutions to simplified problems or, alternatively,
to finding a feasible solution which may not be close to optimal. The researcher presents an
approach to concurrent engineering problems that extends the multi objective genetic algorithm
approach to handle the complexity that is inherent in a typical concurrent engineering problem.
This poses some severe research challenges.

Software engineering problems grow in complexity and so too grow the models necessary to
solve these problems. This increased complexity translates directly to a greater number of
required activities, longer model evaluation times, and slower design development. One way of



International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.5, September 2012

83

overcoming this obstacle is through the optimization of the sequence of routines in the
development activities.

Organizations involved in concurrent software development not only experience the dynamics
common to single projects, but also face interactions between different releases of their product:
they share resources among different stages of different projects, including customer support,
they have a common code-base and architecture that carries problems across releases, they use
the same capabilities, and their market success in early releases impacts their resources in later
ones.

Software phases which involve the various resources for the allocation must have and to meet
some pre defined purpose. Input data for schedule planning and optimization are a set of routines
and their durations, description of resource constraints and a set of priority relations.

i. Let R = ( 1,2,…n} a set of routines,
dr ( where r Є R) is the duration of the rth routine, dr > = 0 for every r.

ii. Priority relations in a set R as a set of pairs
P={ ( i,j) where i must be done before j}

iii. Set of available resources for the project development L = {1,….l}.
iv. Set of human resources H = { 1, 2,…h} and each h Є H is associated with a set of S = {

s1,s2,….sh} the skill set of each human resource.

So the fitness function can be drafted based on the following objective functions
1. Minimize (L ,H)
subject to
2. Rk ≤ Ri-Ri    i =1,….,n, k є Pi
3. Ri ≥ 0          i =1,….,n

The objective function

a) Minimizes the resources (both L and H) required for the process n.
b) Imposes the precedence relations between process and constraints
c) Forces the resource to be non-negative.

4 PROPOSED METHODOLOGY

Genetic algorithms (GAs) are powerful, general purpose adaptive search techniques which have
been used successfully in a variety of learning systems. In the standard formulation, GAs
maintain a set of alternative knowledge structures for the task to be learned, and improved
knowledge structures are formed through a combination of competition and knowledge sharing
among the alternative knowledge structures.        J. David Schaffer extended the GA paradigm by
allowing multidimensional feedback concerning the performance of the alternative structures.
The modified GA is shown to solve a multiclass pattern discrimination task which could not be
solved by the unmodified GA.

Multi Objective evolutionary algorithms using the properties like non non-dominated sorting and
distribution is criticized for the complexity of the algorithm, non elitist property and not
specifying the parameter for the distribution.

Kalyanmoy Deb suggested a non-dominated sorting based multi-objective evolutionary algorithm
(we call it the Non-dominated Sorting GA-II or NSGA-II) which alleviates all the above three
difficulties. In this algorithm computational complexity is addressed. The problem of the



International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.5, September 2012

84

selection operator is also addressed. Simulation results on a number of difficult test problems
show that the proposed NSGA-II, in most problems, is able to find much better spread of
solutions and better convergence near the true Pareto-optimal front compared to the PAES and
SPEA two other elitist multi-objective EAs which pay special attention towards creating a diverse
Pareto-optimal front. Moreover, we modify the definition of dominance in order to solve
constrained multi-objective problems efficiently. Because of NSGA-II's low computational
requirements, the elitist approach, the parameter-less niching approach, and simple constraint-
handling strategy, NSGA-II should find increasing applications in the coming years.

The presence of multiple objectives in a problem, in principle, gives rise to a set of optimal
solutions (largely known as Pareto-optimal solution), instead of single optimal solution. This type
of problem is known as multi-objective optimization problem (MOP). In general, a MOP has
been solved using weighted sums or decision-making schemes. The problem is to look for the
alternative Pareto-optimal front. An alternative way is to look for the Pareto-optimal front.Many
evolutionary algorithms (EAs) like genetic algorithm (GA) have been suggested to solve a MOP,
and hence termed as multi-objective evolutionary algorithms (MOEAs). Amar Kishor, 2004
presented an application of NSGA-II in order to solve a multi-objective series system reliability
optimization problem. Here, the conflicting objectives such as the system reliability maximization
and system cost minimization have been considered [16] – [15].

5 EXPERIMENTAL ENVIRONMENT

The data for the study is collected from a software firm located in Madurai. The pilot survey is
made by the interaction with the Project Head and the Human Resource Manager of the firm. The
existing allocation is done manually and the skill of the employees is measured in the numeric
scale rated for fitting into the project.

The chosen problem has ten resources allocated for a set of five jobs. The expected cost using
MOGA is given in table 5.1. The expected time for development using MOGA is given in table
5.2. The expected efficiency using MOGA is given in table 5.3.

TABLE 5.1

EXPECTED COST BASED ON THE RESOURCE USAGE USING MOGA (IN THOUSANDS)

Number of Job(i)/
resources (j) 1 2 3 4 5 6 7 8 9 10

1
300 299 314 306 336 337 325 314 303 319

2
312 309 290 319 337 345 336 336 325 329

3
322 323 336 337 349 389 336 323 338 322

4
292 314 336 367 314 349 337 303 334 390

5
314 336 294 323 336 317 305 337 296 336



International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.5, September 2012

85

TABLE 5.2

TIME BASED ON THE PRIORITIZATION OF THE CONSTRAINTS USING MOGA (IN MAN DAYS)

Number of Job(i)/
Constraints (j) 1 2 3 4 5 6 7 8 9 10

1
42 53 68 74 49 88 101 79 110 121

2
79 105 66 78 109 70 69 55 111 67

3
74 110 59 44 105 111 44 86 59 83

4
53 99 77 69 50 100 79 110 66 87

5
49 99 109 66 99 77 111 77 91 77

TABLE 5.3

EXPECTED EFFICIENCY BASED ON MOGA

Number of the Jobs Efficiency using MOGA

1 6

2 9

3 5

4 9

5 7

The environmental set up for the execution based on the multi objective genetic algorithm is
summarized in Table 5.4

TABLE 5.4

ENVIRONMENTAL PARAMETERS FOR MOGA

Parameters Values
Population size 100

Crossover rate (C ) 0.8

Mutation rate (M) 0.1

Stopping criteria 100 generations



International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.5, September 2012

86

Based on the above environment the concurrent engineering is applied and the objectives of the
minimization of resources, imposing the precedence of the constraints and the minimization of
the development time are enforced. The results are discussed below.

6 RESULTS AND DISCUSSIONS

The experiments are carried out and the results have been depicted in terms of graphs. In the
above discussed environment the following results are obtained.

Table 6.5 gives the results obtained from the optimized resource usage based on cost through the
application of MOGA with concurrent engineering.

TABLE 6.5
COST BASED ON THE CONCURRENT ENGINEERING

(IN THOUSANDS)

TABLE 6.6

PERCENTAGE OF IMPROVEMENT IN COST



International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.5, September 2012

87

In fig 6.1 the improvement between the existing approach and the proposed approach is
calculated based on the cost. The cost associated with the both the methods have been compared
and the proposed method outperforms the existing method.

FIG 6.1 : THE IMPROVEMENT BETWEEN THE EXISTING APPROACH AND THE PROPOSED
APPROACH

Table 6.7 gives the results obtained from the optimized software development time based on cost
through the application of MOGA with concurrent engineering.

TABLE 6.7
DEVELOPMENT TIME BASED ON THE CONCURRENT ENGINEERING (IN MAN DAYS)

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.5, September 2012

87

In fig 6.1 the improvement between the existing approach and the proposed approach is
calculated based on the cost. The cost associated with the both the methods have been compared
and the proposed method outperforms the existing method.

FIG 6.1 : THE IMPROVEMENT BETWEEN THE EXISTING APPROACH AND THE PROPOSED
APPROACH

Table 6.7 gives the results obtained from the optimized software development time based on cost
through the application of MOGA with concurrent engineering.

TABLE 6.7
DEVELOPMENT TIME BASED ON THE CONCURRENT ENGINEERING (IN MAN DAYS)

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.5, September 2012

87

In fig 6.1 the improvement between the existing approach and the proposed approach is
calculated based on the cost. The cost associated with the both the methods have been compared
and the proposed method outperforms the existing method.

FIG 6.1 : THE IMPROVEMENT BETWEEN THE EXISTING APPROACH AND THE PROPOSED
APPROACH

Table 6.7 gives the results obtained from the optimized software development time based on cost
through the application of MOGA with concurrent engineering.

TABLE 6.7
DEVELOPMENT TIME BASED ON THE CONCURRENT ENGINEERING (IN MAN DAYS)



International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.5, September 2012

88

TABLE 6.8 PERCENTAGE OF IMPROVEMENT IN DEVELOPMENT TIME

In the fig 6.2 the improvement between the existing approach and the proposed approach is
calculated based on the time of development under the given constraints using the concurrent
engineering. The proposed method outperforms the existing method.

FIG 6.2 THE IMPROVEMENT BETWEEN THE EXISTING APPROACH AND THE PROPOSED
APPROACH

In table 6.9 the deviation measure has been computed and the deviation indexes prove that the
performance of the proposed system changes on the case basis. The other influencing factor is
that the various constraints are considered.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.5, September 2012

88

TABLE 6.8 PERCENTAGE OF IMPROVEMENT IN DEVELOPMENT TIME

In the fig 6.2 the improvement between the existing approach and the proposed approach is
calculated based on the time of development under the given constraints using the concurrent
engineering. The proposed method outperforms the existing method.

FIG 6.2 THE IMPROVEMENT BETWEEN THE EXISTING APPROACH AND THE PROPOSED
APPROACH

In table 6.9 the deviation measure has been computed and the deviation indexes prove that the
performance of the proposed system changes on the case basis. The other influencing factor is
that the various constraints are considered.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.5, September 2012

88

TABLE 6.8 PERCENTAGE OF IMPROVEMENT IN DEVELOPMENT TIME

In the fig 6.2 the improvement between the existing approach and the proposed approach is
calculated based on the time of development under the given constraints using the concurrent
engineering. The proposed method outperforms the existing method.

FIG 6.2 THE IMPROVEMENT BETWEEN THE EXISTING APPROACH AND THE PROPOSED
APPROACH

In table 6.9 the deviation measure has been computed and the deviation indexes prove that the
performance of the proposed system changes on the case basis. The other influencing factor is
that the various constraints are considered.



International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.5, September 2012

89

TABLE 6.9
STANDARD DEVIATION OF THE RESULTS OBTAINED IN THE PROPOSED APPROACH

7 CONCLUSION

A novel approach has been proposed in the paper to trounce the existing approaches using
concurrent engineering process. The problem for the Human resource management is based on
their skills, number of resource availability and the cost attached to the person for the multiple
modules has been considered. The priorities and the sequence of routines are also concentrated.
MOGA obtained the best Pareto optimal solutions when compared to the manual assignment
method. A comparative analysis table and graph are provided at the end of this paper. Form this
we can conclude that an Optimized approach for the Improvement of Capability Maturity Model
Integration (CMMI) in Human Resource Management using Multi Objective Genetic Algorithms
can be used. In future we can extend this technique for other issues unsolved by CMMI.

8 REFERENCES

[1] http://www.mymanagementguide.com/project-constraints-and-project-assumptions-planning-for-
project-success.

[2] http://wiki.answers.com/Q/What_is_the_concurrent_development_model.
[3] Keene, K.C., Keene.S.J, Concurrent engineering aspects of software development, Proceedings. Of

Software Reliability Engineering, 1992.
[4] http://best.berkeley.edu/~pps/pps/concurrent.html.
[5] R. Addo-Tenkorang, Concurrent Engineering (CE): A Review Literature Report, Proceedings of the

World Congress on Engineering and Computer Science 2011 Vol II, WCECS 2011, October 19-21,
2011, San Francisco, USA.

[6 ] Tennant, C., and Roberts, P., (2000), ‘A faster way to create better quality products’.International
Journal of Project Management, Vol. 19, pp. 353–362.

[7] Abdullah Konak, David W. Coit, Alice E. Smith, Multi-Objective Optimization Using Genetic
Algorithms: A Tutorial, ie.rutgers.edu/resource/research_paper/paper_05-008.pdf.

[8] Coello, C.A.C., A comprehensive survey of evolutionary-based multi objective optimization
techniques, Knowledge and Information Systems 1(3) (1999) 269-308.

[9] Coello, C.A.C. An updated survey of evolutionary multiobjective optimization techniques: state of the
art and future trends. In Proceedings of the 1999. Congress on Evolutionary Computation-CEC99, 6-9
July 1999. 1999. Washington, DC, USA: IEEE.

[10] Coello, C.A.C., An updated survey of GA-based multi objective optimization techniques, ACM
Computing Surveys 32(2) (2000) 109-143.

[11] Fonseca, C.M. and Fleming, P.J. Genetic algorithms for multi objective optimization: formulation,
discussion and generalization. in Proceedings of ICGA-93: Fifth International Conference on Genetic
Algorithms, 17-22 July 1993. 1993. Urbana- Champaign, IL, USA: Morgan Kaufmann.

[12] Jensen, M.T., Reducing the run-time complexity of multi objective EAs: The NSGA-II and other
algorithms, IEEE Transactions on Evolutionary Computation 7(5) (2003) 503- 515.

[13] Xiujuan, L. and Zhongke, S., Overview of multi-objective optimization methods, Journal of Systems
Engineering and Electronics 15(2) (2004) 142-146.

[14] Zitzler, E., Deb, K., and Thiele, L., Comparison of multi objective  evolutionary algorithms: empirical
results, Evolutionary Computation 8(2) 173-195.

[15]Zitzler, E. and Thiele, L., Multi objective evolutionary algorithms: a comparative case study and the
strength Pareto approach, IEEE Transactions on Evolutionary Computation 3(4) (1999) 257-271.

http://www.mymanagementguide.com/project-constraints-and-project-assumptions-planning-for-
http://wiki.answers.com/Q/What_is_the_concurrent_development_model
http://best.berkeley.edu/~pps/pps/concurrent.html

