
International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

DOI : 10.5121/ijsea.2012.3407 87

DEFECT PREVENTION BASED ON 5 DIMENSIONS OF
DEFECT ORIGIN

Sakthi Kumaresh1 and Baskaran Ramachandran2

1Department of Computer Science, MOP Vaishnav College, Chennai, India
sakthimegha@yahoo.co.in

2Baskaran Ramachandran, Anna University, Chennai, India

ABSTRACT

“Discovering the unexpected is more important than confirming the known [7]. In software development,
the “unexpected” one relates to defects. These defects when unattended would cause failure to the product
and risk to the users. The increasing dependency of society on software and the crucial consequences that a
failure can cause requires the need to find out the defects at the origin itself. Based on the lessons learnt
from the earlier set of projects, a defect framework highlighting the 5 Dimensions (Ds) of defect origin is
proposed in this work. The defect framework is based on analyzing the defects that had emerged from
various stages of software development like Requirements, Design, Coding, Testing and Timeline (defects
due to lack of time during development). This study is not limited to just identifying the origin of defects at
various phases of software development but also finds out the reasons for such defects, and defect
preventive (DP) measures are proposed for each type of defect. This work can help practitioners choose
effective defect avoidance measures.

In addition to arriving at defect framework, this work also proposes a defect injection metric based on
severity of the defect rather than just defect count, which gives the number of adjusted defects produced by
a project at various phases. The defect injection metric value, once calculated, serves as a yardstick to
make a comparison in the improvements made in the software process development between similar set of
projects.

KEYWORDS

Defect, Defect avoidance, Defect Injection Metric, Defect Severity

1. INTRODUCTION

Profound confusion prevails at the final stages of software development as to which defect
discovered belongs to which phase of software development life cycle. Techniques like root-
cause analysis and orthogonal defect classification are some of the commonly used practices.
These Techniques are applied jointly with the software process to determine each defect attribute
in terms of its type, trigger, source etc [3]. However, the need is to find a mechanism to determine
the origin of those defects and ways to eliminate them at origin itself and the same has been
realised in this study by way of proposing defect prevention mechanism for each defect type
under 5Ds.

Everybody likes Defect prevention as nobody likes defects, especially those defects that are found
by our customers. We need to stop defects from reaching our customers by catching them before

mailto:sakthimegha@yahoo.co

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

88

we deliver them to our customer [2]. Nevertheless, having one vague value in terms of percentage
of defects found for each phase have proved to be an inaccurate way due to the variations of
defect severities and impact to the software schedule, effort and quality [3].

Due to this, a severity factor for various defects with respect to their impact to the software
schedule, effort and quality has been taken into consideration for calculation of defect injection
metric. This paper proposes defect injection metric that finds out the defect count under each
phase of software development and for the project as a whole. This work also suggests ways to
reduce the defect count on subsequent projects. The defect injection metric value, once
calculated, will serve as a common denominator for comparison between projects as well as one
of the best parameters as a Quality Metric.

Figure 1 shows the work flow involved in this study for defect prevention.

2. SOFTWARE DEFECT FRAMEWORK

The software defect framework highlighting the 5 Ds of defect origin is proposed in this work.
Each one of the D’s concentrates on defects in one particular stage of software development
lifecycle like Requirements, Design, Coding, Testing and defects due to timeline problem. After
doing a thorough analysis of various defect types under each stage of software development, the
most prominent defects are identified. The defects are then prioritized based on their importance
and the top six defects from each category are taken for study. Certain type of these defects are
marked with Explicit (E) to signify the in-process influence and certain other defect types are
marked with Implicit (I) to signify those defects that are reported by customer. Utmost care
should be given to such defect types in order to satisfy customers. For each one of the identified
defect type, the reason for such defect is found out and the DP actions are suggested. These DP
actions, when introduced at all stages of a software lifecycle, can reduce the time and resource
necessary to develop high quality systems. Figure 2 depicts the software defect framework.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

89

R1-Customer’s not
provide clear
requirements

R2-Customer’s have
Unreasonable Timeline

R3-Inadequate End User
Participation

R4-Missing Requirements

R5-Gap in Understanding
the requirements

R6-Entertaining Scope
Creep

S1-Effort Estimation
Problem

S2-Lack of availability of
hardware/

software and
Human resource

S3-Not analyzing risk
upfront

S4-Project Control not
exercised properly

S5-Development team /
Programmer ability to do

work

S6-Environment
dependency not
considered while
estimation

D1-Inadequate Design

D2-Changes in technical
Design

D3-Database
Normalization not done

D4-Non availability of
design document

D5-Design feature not
clear

D6-Inconsistency
between design and

requirement specification

T1-Test cases not sufficient
to do requirement’s

traceability

T2-Acceptance Criteria not
met for passing to next

level

T3-Non availability of
proper test environment

T4-Simulation of test bed
not done up to the mark

T5-Omission of certain
types of testing

T6-Project get only a few
hours for testing before

delivery

C1-Project Leader is not
efficient in resource

allocation

C2-Inadequate
Programming
Knowledge /
Deficient Project
Knowledge

C3-Non availability of
Coding artifacts

C4-Coding standards not
followed properly

C5-Program Spec, UAT
Test cases not
reviewed by PL

C6-Errors in Logic,
Navigation, Performance,
Sub program interface

etc.

DEFECT FRAMEWORK

Parameters inRED: Implicit Defects–Customer Reported

Parameters in BLACK : Explicit Defects– In Process Influence

Figure 2: Software Defect Framework

2.1 Deficiency in Requirements (D1)

We accept that testing the software is an integral part of building a system. However, if the
software is based on inaccurate requirements then, despite well-written code, the software will be
unsatisfactory. Instead of limiting our testing to code, we should start testing as soon as we start
work on the requirements for a product [5]. The aim of this work is to find requirements-related
defects as early as they can be identified and hence prevent them from being incorporated in the
design and implementation. The list of top six defects identified at the requirement stage with its
root causes and defect prevention action to be taken [8] for such type of defects is shown in the
Table 1.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

90

Table 1: Requirement Defects with their root causes and Defect Prevention action

Pain Points Root Causes Defect Prevention
Vague Customer
Needs

Business Analyst (BA) not well
Qualified

Extensive Training to BA in the domain
in which he/she is working should be
given

TimeLine
Problem

Accepting unreasonable timeline of
the customer

Customer timeline should be accepted
after doing an In depth feasibility study
of the project

Inadequate End
User Review

End User not spending quality time
for review

The requirements should be made to sign
off properly by the end user

Partial
Prerequisites

Not using a formal requirements
checklist for analysis

Quality Team should validate if
requirements checklist is followed by
BA

Misinterpreted
Requirements

Communication gap between project
stakeholders

The BA and the PM should play a vital
role to make the Development Team
understand the Customer domain and the
project requirements..

Futurities Add-on to the existing requirement,
without knowing it is a new
requirement

The BA along with the PM should freeze
the scope of the project before starting
the development.

2.2 Design Flaws (D2)

The design should be perfect for software development. It is observed that many projects fail due
to poor design. It may be architectural design, conceptual design, database design etc. Much
software has been developed, installed and passed to maintenance with a faulty design. The faulty
design should be detected and corrected in order to have high customer satisfaction [5]. List of
defects that would emerge out of design phase with their root causes and steps to be taken to
avoid such defects are given in the form of preventive actions and the same is listed in Table 2[8].

Table 2: Design Defects with their root causes and Defect Prevention action

Pain Points Root Causes Defect Prevention
Sub Optimal
Design

Design features described does not provide
the best approach (optimal approach)
towards the solution required

PM and Design experts in the
Organization should
formalize the best design
approach before starting the
development of the project.

Change in
Technical
Design

The design change would have a maximum
impact when new requirement is introduced
at a later stage of the project

Any new requirement which
has impact on the design
should undergo formal
Configuration management
process to take up the new
requirement in the next phase
of the project.

Database
Design Issues

The design team might not have the
expertise to handle the normalization.

PM can seek the help of
Design experts in the
Organization to handle
normalization.

Missing Design
Artefact

The Design template may have many
sections and only the major mandatory
sections might have got covered.

The Quality Team should
find out the reason as why
only certain sections are

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

91

considered as mandatory and
the reason should be
justifiable

Ambiguous
Design

Design document includes ambiguous use
of words or unclear design features

PM can seek help of
Document writers to help the
Design Team to write the
unambiguous documents

Traceability
Issues

Inconsistencies between design and
requirement specification

PM should start
mapping the
Traceability matrix on
completion of the
Design document, so
that these issues can
be handled upfront.

2.3 Defective Coding Process (D3)

It is observed that many applications reach the final stages without unit testing; review of unit test
cases, etc. Due to the lack of these processes, the application is released with uncovered defects,
which could have been rectified at an early stage if proper coding processes were in place. If such
an application is given to the customer, it will be returned for proper recertification and
revalidation [5]. This proves to be costly for the customer as well as the organization. Top six
defects identified at coding stage are shown in Table 3[8].

Table 3: Coding Defects with their root causes and Defect Prevention action

Pain Points Root Causes Defect Prevention
Project Leader's
Inability in Resource
Allocation

Inefficient Work Break Down (WBS)
structure

PM should review the WBS
assigned by the PL and
should take mitigation steps
if he foresees any risk in it.

Lack of Technical
Expertise

Project team members are not trained
properly (or) may not have worked in
similar technical domain.

Skilled resources with
Technical work experience
should be inducted into the
project, if project has tight
deadlines.

Missing Coding
Artefact

Due to shortage of time PL should find reasons for
time constraints and should
talk with PM to see if the
estimated effort has to be
relooked for sufficiency

Non adherence to
coding standards

To complete the code fast and due to
time constraints, developers may not
adhere to coding standards

PM/Quality Team can cross
check if PL is doing the
code review or not.

Incomplete code
review

PL might feel that testing the code
would suffice and may skip the
review.

Quality Team can do audits
/ checks to see if review is
done formally.

Coding Errors Programmers not familiar in
developing similar type of codes or
errors may be due to careless
mistakes

Training should have been
provided before the
development starts.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

92

2.4 Delinquency in Testing (D4)

The end of phase reviews or inspection is the key to removal of defects for the development
phases; however, for testing phases the testing by itself is the key [9]. When the defects identified
by testing are not dealt correctly, it may cause new defect injections. Table 4 lists top six defects
that would emerge out of testing phase [8].

Table 4: Testing Defects with their root causes and Defect Prevention action

Pain Points Root Causes Defect Prevention
Inadequate
test cases

The testers may lack
knowledge on the
possible scenarios of
test path for the
requirements.

The BA should run-through all possible scenarios
of the actual Business to the Test team so that the
Testers can build a strong Test Case base for the
project

Pretermission Due to lack of time
and schedule slippage,
pressure might mount
on the team to move to
the next level of
testing.

The PM shouldn't hide the facts as up to what level
the Testing is performed and should involve the
client for a joint decision.

Dissimilar
test
Environment

Space restrictions in
the Test machine

Space restrictions, if any, should be handled by PM
and client mutually.

Uncovered
test bed
simulation

Unavailability of
Database space may
restrict the Test bed
setup.

Size of database required for testing has to be
planned (by PM & PL) upfront and sufficient time
should be given to the IT Team for DB space
allocation.

Eclipses in
testing

Due to unavailability
of the Testing tool
S/W, Experienced
Testers not available.

While planning the project, the PM should decide
(along with the client) how these tests can be
performed Testers with expertise in such type of
testing can be used from other teams in the
Organization

Shortening
the testing
time

Inadequate testing Proper Planning should be done before start of
SDLC activities.

2.5 Duration Slippage (D5)

Software is developed to automate a set of business processes, but the requirements change so
frequently that the project gets far behind schedule and the output of the system becomes
unreliable. Periodically, the developer is pulled off the project in order to incorporate all the
requirements, which makes them fall even further behind the schedule. Due to this busy schedule,
there may be many defects in the application [5]. It may not be possible to capture all the defects,
but the most prominent one are listed in Table 5.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

93

Table 5: Reasons for Duration Slippage

Pain Points Root Causes Defect Prevention
Synthesising risk
upfront

PM may not be analysing all possible
risks.

PM should analyse all the risk
factors related to the project
like People, Environment,
Scope, Client, Sub vendors, etc
and all subcategories to it.

Programmer
Capability

Programmer may not be Technically
capable to finish the work in the
allotted time.

Skilled programmers are to be
employed for tasks in the
critical path.

Uncovered
Milestone
monitoring

Project control not exercised properly /
Monitoring milestones not done.

PM has to track in the Project
Management Tool and Quality /
Senior Management Team
should do periodic reviews on
this.

Entertaining
scope creep

PM may not distinguish if it is a new
requirement (or) an addendum to the
existing requirement.

PM should have the overall
control of the project

Resource
Unavailability

PM not judging on the exact resources
requirement for the project.

PM should plan for Human and
non-human resources in the
initial planning stage of the
project itself.

Inconsiderable
External
Dependency

PM / PL may under estimate for
external dependencies.

PM / PL should always have
some buffer while planning for
external dependencies.

3 DEFECT INJECTION METRIC

Software measurement is concerned with deriving a numeric value for some attribute of a
software product or a software process. Comparing these values to each other and to relevant
standards allows drawing conclusions about the quality of software product or the effectiveness of
software processes [4]. Working on this line, in order to know the effectiveness of software
processes, Defect Injection Metric based on defect severity is proposed in this study.

3.1 Defect Severity

The severity is the extent to which a defect causes a failure that degrades the expected operational
capabilities of the system of which the software is a component. The severity is classified from
the point of view of effect on business efficiency. Following classification of defect severity
assumes that the software remains operational [6].

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

94

Table 6: Classification of defect severity

High(h)
Weightage
factor - 1

These are the extremely severe defects, which have already halted
or capable of halting the operation of business system

Medium(m)
Weightage
factor - 3

These are also severe defects, which have not halted the system,
but have seriously degraded the performance of some business
operation

Low(l)
Weightage
factor - 5

These types of defects are the ones which are primarily related to
the presentation or the layout of the data. However, there is no
danger of corruption of data and incorrect values

3.2 Process of Obtaining Defect Count

In order to obtain the defect count at every phase of software development, the defect type under
each phase is considered. Later, these defect types are categorised into Low, Medium and High
according to the severity of the defect type. Weights are assigned to this scale of value as shown
in the table 6.

3.2.1 Calculation of Defect Injection Metric

The severity of the defects based on the impact of the defect in terms of timeline, risks, debugging
etc., makes some defects either truly negligible or to have a major impact. To adjust the effects of
such defects, a severity factor has been introduced to adjust the defect count to be more realistic
for our metrics purposes. Defect count for each defect type under each stage is calculated using
the formula 1
Defect Injection Metric (Stage X) = --------------------- (1)

Where DC = and = Number of defects

Defect Injection Metric would then be arrived for entire project as follows:

Defect Injection Metric (Project) TD --------------- (2)
Where TDC = Total Defect count

4 PROJECT CASE STUDY:

This study has been performed for telecom applications developed in Java in the year 2010. The
size of each application was around 100 KLOC. Defect detection activities like Inspection,
Review, testing etc were carried out to find out defects. Later these defects were analyzed for
defect counts, their severity, and the same has been listed. Based on the Defect prevention action
suggested in this study, enhancement was done and the defect count was checked for a similar
size project in the year 2011 and the findings are tabulated in the Table 7& Table 8. Table 7 is the
calculation for DC for requirements stage (D1) alone and the results of similar calculations for
D2-D5 are shown in Table 8.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

95

Figure 3: Defect Distribution per severity for D1

Table 7: Comparison of Defect Count values for D1

Figure 4: Defect Distribution across various defect types for D1

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

96

Table 8: Comparison of Defect Count values for D1-D5

2010 Project ---- Before DP Action
2011 Project -- After

DP Action
S

No
5 Ds

No of
Defects

∑DC No of
Defects

∑DC

D1 Deficiency in Requirements 38 95 28 71

D2 Design Flaws 49 115 32 93

D3 Defective Coding 62 165 39 98

D4 Delinquency in Testing 45 126 34 73

D5 Duration Slippage 45 116 31 71

∑TDC 617
∑TDC

406

Figure 5: Defect Distribution across 5D before DP action

4.1 Overall Results

Based on defect type, the appropriate defect prevention action as suggested in this study was
implemented in the set of projects done during the year 2011. Upon application of defect injection
metric on 5Ds, the defect counts were found out and compared with the earlier set of projects.
The considerable reduction in the defect count values for 2011 project is evident from the table 9
and the same is depicted in the figure 6

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

97

Figure 6: Comparison of Defect Count before and after Defect Prevention Actions

5 CONCLUSION

This research work provides a general framework of defect with its defect prevention measures
suggested in order to enhance quality culture establishment in an organization. Implementation of
defect prevention measures in subsequent projects would result in better performance, rapid and
sustained improvement in the product quality as is evident from the example. To get such results,
organization should fully consider the product Characteristics, make defect prevention activities
responsibilities for each stage of software development and demonstrate a firm senior
management commitment by employing a special independent team like Q-GoD (Quality- Guard
of Defects) to enforce strict quality traits under each phase of software development[8].

The Defect preventive actions that are proposed in this paper are limited to only few types of
defects under each category. There may be many other defects that would evolve at each stage;
but these defects are found to be more prominent as per the practitioner’s experience and hence
they are concentrated in this study. This study could be extended by adopting ODC way of
classifying defects [1], so that minute details about the defect can be captured and better defect
prevention action can be arrived out. When these DP actions are implemented in the project, the
quality of the project can be further enhanced.

REFERENCES

[1] Sakthi Kumaresh, R Baskaran (2010) “Defect Analysis and Prevention for Software Process Quality
Improvement”, International Journal of Computer Applications(0975-8887) volume 8-No 7, pages
42-47

[2] Omar Alshathry, Helge Janicke, Hussein Zedan, Hussein“ (2009), “Quantitative Quality Assurance
Approach” Proceedings of IEEE International Conference on New Trends in Information and Service
Science, Page 405-408.

[3] Meng Li, He Xiaoyuan, Ashok Sontakke (2006) “Defect Prevention: A General Framework and its
Applications” Proceedings of the IEEE sixth International Conference on Quality Software (QSIC06)
.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

98

[4] http://www.scribd.com/api_user_11797_Master%20Of%20Earth/d/7010681-Software-Quality-
Metrics

[5] 7 “S” of Defects Occurrence – A Case Study, Arupratan Santra
[6] Software Testing Genius – In & Out of software testing under one roof

http://www.softwaretestinggenius.com/articalDetails?qry=716
[7] George Box, Stuart Hunter, “25 Great Quotes for Software Testers”

http://hexawise.wordpress.com/2010/01/26/25-great-quotes-for-software-testers/
[8] Sakthi Kumaresh, Baskaran Ramachandran (2012) “ Experimental Design on Defect Analysis for

Software Process Quality Improvement”, Proceedings of IEEE International Conference on Recent
Advances in Computing and Software Systems” (RACSS)” Pages 293-298.

[9] Stephen H Kan, Metrics and Models in Software Quality Engineering, Pearson Education, 2nd
Edition, 2003

Authors

Sakthi Kumaresh is a Ph D candidate at Bharathiar University, Coimbatore, India; Currently working as
Associate professor at Department of Computer Science, MOP Vaishnav College, Chennai. She obtained
her Master’s Degree from Madurai Kamaraj University, Madurai, TN, India in 1996 and M Phil in
Computer Science from Periyar University, Salem, TN, India in 2006. She has decade of teaching
experience. Her areas of specialisation include Software Engineering, Software Project Management,
Software Testing, Software Quality Management and Unified Modelling Language. She is doing research
in the area of Software Quality Engineering. She has publications in National conferences and International
journal.

Dr. Baskaran Ramachandran is working as the Assistant professor in Department of computer science,
Anna University, Chennai. He has obtained his M.E. and Ph.D. in the field of Computer Science and
Engineering in Anna University, Chennai, India. He is having around a decade of experience as an
academician and his research areas include Multimedia and principles, Software quality engineering,
Software Agents and Distributed networking. He has published around 50 research papers in National and
International Journals and Conferences. He is the member of various forums. He is the editor and the
reviewer in various journals. He is guiding research scholars working in area of software standards for
Attributes Specific SDLC Models & Evaluation and Metric Based Efficient Traffic Management

http://www.scribd.com/api_user_11797_Master%20Of%20Earth/d/7010681-Software-Quality-
http://www.softwaretestinggenius.com/articalDetails
http://hexawise.wordpress.com/2010/01/26/25-great-quotes-for-software-testers/

