
International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

DOI : 10.5121/ijsea.2012.3403 25

A DDS-BASED SCALABLE AND RECONFIGURABLE
FRAMEWORK FOR CYBER-PHYSICAL SYSTEMS

Ismael Etxeberria-Agiriano1, Isidro Calvo2, Liliana Montero1 and Ivan Alonso1

1 Dept. of Computer Languages and Systems, EUI Vitoria-Gasteiz, UPV/EHU Spain
ismael.etxeberria@ehu.es

2 Dept. of Automatic Control and Systems Engineering, EUI Vitoria-Gasteiz, UPV/EHU
Spain

isidro.calvo@ehu.es

ABSTRACT

Cyber-Physical Systems (CPSs) involve the interconnection of heterogeneous computing devices which are
closely integrated with the physical processes under control. Often, these systems are resource-constrained
and require specific features such as the ability to adapt in a timeliness and efficient fashion to dynamic
environments. Also, they must support fault tolerance and avoid single points of failure. This paper
describes a scalable framework for CPSs based on the OMG DDS standard. The proposed solution allows
reconfiguring this kind of systems at run-time and managing efficiently their resources.

KEYWORDS

CPS, Distributed Systems, Fault-tolerance, DDS, Middleware

1. INTRODUCTION

Cyber-Physical Systems (CPSs) are embedded computers and networks which interact with
physical processes integrating computation, communications and the dynamics of physical
processes. Applications of CPSs include automotive and traffic control, healthcare, factory
automation, infrastructure control (e.g. electricity, water and communications), distributed
robotics and process control [1]. Shi et al. [2] describe the main features of CPSs as well as
showing three classical application domains. CPSs are considered a next step forward in control
and computing co-design. Unfortunately, there exists a surprisingly small amount of theory about
how to design computer-based control systems [3]. Wu et al. [4] review some research activities
in the field of wireless sensor networks as applied to CPSs.

However, CPSs face many challenging problems such as fault tolerance or reconfiguration. In
these systems individual elements may fail but the whole distributed system must be reliable and
capable to perform correctly even in degraded reconfigured modes. Maintenance must be easy
and affordable.

mailto:etxeberria@ehu.es
mailto:calvo@ehu.es

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

26

CPSs use intensively communications, which in most cases are based over IP protocols [5].
However, as the complexity and size of CPSs grows, the use of distribution middleware solutions
is desirable to help developers to manage the use of communications among the distributed nodes
that may be executed over heterogeneous hardware platforms and operating systems. Some
examples of well established distribution middleware technologies that allow the integration of
the devices involved in CPSs are CORBA [6, 7], OPC [8] or Web Services [9]. In particular,
DPWS (Devices Profile for Web Services) [10], defines a specification of Web Services aimed at
devices with low resources that allows secure Web service messaging, discovery, description and
eventing on resource-constrained devices.

More recently, the Object Management Group (OMG) released DDS (Data Distribution Service
for Real-Time Systems) [11], which is a data centric middleware specification which follows the
publisher/subscriber paradigm. DDS is a unique standard middleware specification that allows
combinations of different programming languages (mainly C, C++ and Java), operating systems
(such as Windows and Unix/Linux derivatives) and hardware platforms. The DDS specification is
aimed at providing a high-performance publisher/subscriber middleware layer which is highly
configurable through a rich set of QoS (Quality of Service) parameters. This is particularly
interesting in contexts where communication services with different requirements coexist. Table 1
provides a list of the most relevant DDS QoS policies.

Table 1. DDS Quality of Service Policies.

Deadline History Partition Time-Based Filter
Destination Order Latency Budget Presentation Topic Data
Durability Lifespan Reader Data Lifecycle Transport Priority
Durability Service Liveliness Reliability User Data
Entity Factory Ownership Resource Limits Writer Data Lifecycle
Group Data Ownership Strength

DDS is a valuable technology for CPSs since it provides a platform-independent middleware
layer for Data Centric Publish/Subscribe many-to-many communications. Actually, several
authors such as [12, 13, 14, 15] propose solutions on top of this specification. DDS has been
designed so that assuming that the underlying network infrastructure is deterministic, the
middleware layer does not introduce indeterminism. Furthermore, DDS allows the management
of many aspects of the communication behaviour to meet application requirements. As opposed
to message-oriented approaches, DDS does not exchange data in the form of messages, but data is
formally defined in a platform independent way. This approach allows the automatic generation
of source code for specific target platforms. In addition, since DDS follows the
publisher/subscriber paradigm, it allows decoupling producers and consumers of information. As
a consequence, DDS may be seen as a kind of virtual bus software which abstracts the underlying
network infrastructure.

This paper describes a reconfigurable framework that uses DDS as distribution middleware and
exploits some of its features. Namely, it benefits from its efficiency and the rich set of QoS
management properties. It is important to remark that the proposed framework must coexist with
the distributed tasks that define the functionality of the application. More specifically, it provides
an additional layer on top of DDS with mechanisms for managing fault-tolerance, reconfiguration

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

27

to adapt to changes both in the functionality and in the environmental conditions, and resource
management of the distribution application nodes. Finally, this framework improves the
scalability of the system.
The reminder of this paper is structured as follows. Section 2 describes some preliminary
concepts related to the proposed framework and its requirements in CPSs. These are the basis for
the construction of a family of virtual topologies as detailed in Section 3. These topologies are
used in Section 4 to maintain global state information using the DDS middleware. The evaluation
of this framework is described in Section 5 simulating Poisson distribution task activations.
Finally, Section 6 draws conclusions and proposes future evolution threads of this research.

2. PRELIMINARY CONCEPTS

This Section introduces some preliminary concepts that will be used hereafter. It must be noted
that the framework cohabitates with the distributed applications. So the messages required by the
framework will share the same network infrastructure as the messages exchanged by the
distributed application. Consequently, DDS can be considered as a software virtual bus for the
whole CPS.

2.1. Resource Availability Modelling

Reconfiguring a CPS requires some criteria. Typically, one reconfiguration criterion is based on
the resource availability in order to determine which nodes are best suited to carry out a task.
Therefore, it is necessary to model the available resources Examples of potential resources are
CPU, memory or battery [16].

A clairvoyant ideal system knows at each instant the resource capacity of every node. Brought to
practice, this approach introduces some drawbacks, especially as the complexity of the system
increases. Also, it may be difficult to maintain in dynamic environments.

For the sake of describing the resource availability the term status is used here. It is assumed that
the underlying operating systems provide mechanisms for measuring the values of these resources
by the local applications at run-time.

In order to refresh the resource status information two approaches can be followed: (1) event
triggered, that is, updates are pushed by significant resource status changes or (2) time triggered,
that is resource status is periodically updated.

2.2. Fault Tolerance and Reconfiguration

Some CPSs require fault-tolerance mechanism, whereas in other cases it is a desired design
feature. A basic scenario can be a device running out of batteries. If the device is capable of
detecting that a battery threshold is surpassed, it may signal it to its neighbors so one of them
replaces it without experiencing service disruption. Otherwise, a periodic heartbeat may be used
to check whether all devices are alive.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

28

2.3. Process migration and data distribution

Dynamic CPSs may require the migration of code, data or running processes from one node to
another. In addition, these mechanisms may be used for other features such as installing or
updating new software versions at run-time. Some authors present solutions for this problem,
some of them on top of DDS. An example may be found in Park et al. [13].

Also, appropriate mechanisms must be set to distribute relevant data to the processing unit. A
data-centric middleware like DDS is very adequate for this purpose, since it provides QoS control
mechanisms. As a matter of example, DDS allows reassigning ownership on data readers and
writers which, combined with the persistence QoS, may be employed as useful and efficient
strategies to redirect data from a faulty device to its replacer.

2.4. Reconfiguration Candidate Selection

There are multiple situations that may trigger reconfiguration. Sometimes, the failure or the
replacement of a node will require a quick solution to avoid that some running functionalities
remain unattended. More frequently, resource usage optimization or environmental changes can
motivate reconfiguration.

In a reconfiguration stage it may be necessary to decide which node is the best candidate to take
over to carry out a task. This process is known as candidate selection.

There are two main candidate selection types of approaches: some are (1) sender initiated, when
the nodes requiring a service initiate the reconfiguration process. However, this strategy has no
reference of current system status. Additionally, together with a delay, it also introduces an extra
overhead when the overall system is highly loaded, which is not desirable. Other approaches are
(2) receiver initiated. In this case, nodes with spare resources offer services that are used only if
necessary. One interesting option is to establish a virtual communication topology to provide the
identity of nodes capable of taking over some tasks.

3. STATUS INFORMATION EXCHANGE STRUCTURE

This section introduces a family of information exchange structures called Reliable Friend (RF).
This name comes intuitively from the idea that, in its simplest version, each node will try to keep
the identity of one node with spare resources to replace it. The reliable candidate will be based on
the resource availability information. The advantage of limiting this information to one or just a
few nodes is that information exchange is reduced, producing highly scalable systems. In CPSs
with hundreds or even thousands of participant nodes, nodes are given a local view of an
alternative to solve failures or temporal high workload situations.

It is based on a simple structure. Some alternatives are also described to illustrate the potential of
these structures, which never rely on a centralized single point of failure entity.

Simulations of the behaviour of this algorithm show that it is an effective approach when
compared to non-cooperative, clairvoyant and random variants [17].

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

29

3.1. Basic Reliable Friend

The relationship among nodes can be established based on the bootstrap hazard or on some
communication convenience, among other possibilities. This relationship will determine the
reconfiguration target preference for each node, resulting in a virtual topology called the Official
Structure (OSt).

A directed cyclic graph has been chosen as the basic OSt. Fig 1.a depicts the OSt of a system with
10 participating nodes. Under resource availability node n0 will rely on node n1; node n1 will rely
on n2, and so forth. With this naming convention it can be seen that for m nodes, node nm-1 is
linked to n0. Under this relationship, two nodes ni and ni+1 are called Official Sender (OSe) and
Official Receiver (ORe) respectively.

Figure 1. Example of Basic Reliable Friend Structures with 10 nodes.

The willingness of nodes to receive or send workload from/to other nodes will depend on an
application dependent resource availability status, introduced in the previous Section. In the basic
case two possible states are considered: Available, or able to receive processes, and Unavailable,
or ready to send processes. From a node’s local point of view time or event triggered evaluation is
required in order to detect transitions from Available to Unavailable and vice versa.

A status information exchange mechanism can be used to establish a dynamic structure called the
Temporal Structure (TSt). Figure 1.b depicts the TSt of a system with 10 participating nodes
where some of them, namely n2, n5 and n6, are represented as Unavailable in dark colour. As a
consequence of this dynamic situation, nodes n1, n4 and n5, cannot rely on them and they need a
Temporal Receiver (TRe). It has been chosen that the TRe for a node is the first Available node
found following the OSt.

3.2. Bidirectional Reliable Friend

Sometimes having just one candidate is not enough to ensure high reliability, especially when
states change rapidly or the information is not regularly updated. On top of that, as a result of
reconfiguration, Unavailable nodes may accumulate resulting more hazardous.

An alternative to the basic RF structure can be the Bidirectional RF (BRF) structure. The OSt, as
depicted in Figure 2.a, provides the information of two official candidates for each node. The TSt
(Figure 2.b) is maintained in such a way that the identity of two Available nodes is kept,
whenever there is any present in the system.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

30

Figure 2. Bidirectional Reliable Friend Structure with 10 nodes.

3.3. Simplified Bidirectional Reliable Friend

The BRF provides the identity of two participant candidates for each nodes but maintaining the
structure can be more time consuming. The Simplified BRF (SBRF) reduces this information
update in the case of Unavailable nodes, so that for Unavailable nodes the identity of only one
candidate is kept. In Figure 3 it has been chosen that the TRe for a node to be the closest node (in
number of hops) in both directions, and the clockwise direction to break ties. The intention of this
alternative is that allow Unavailable zones expand in both directions.

Figure 3. Simplified Bidirectional Reliable Friend Structures with 10 nodes.

3.4. Other Reliable Friend Variants

Other variants of RF structures have also been considered which are more relevant for load
balancing, namely: Multi-Level RF (MLRF) and Multi-State RF (MSRF). Combinations of RF
structures can also be used in the form of Multi-Purpose RF and Multi RF. As they do not add
much to the main purpose of this paper they have been omitted. A more detailed description of
these topologies can be found in [18].

4. FRAMEWORK IMPLEMENTATION DETAILS OVER DDS

Previous Section presented a family of reconfiguration topologies called Reliable Friend (RF).
This Section discusses the RF framework implementation details on top of DDS. In particular, it
is discussed the definition of the topics to keep the topologies and the selection of the DDS QoS
parameters.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

31

4.1. Reliable Friend Official Structure Construction

Figure 4 illustrates the construction of the Official Structure (OSt) under different scenarios. First
case in Figure 4.a occurs when a node n0 is alone in the system, resulting in a single node
structure. Under that situation, when another node n1 arrives, as in Figure 4.b, it will become a
two node structure. Figure 4.c describes the situation where a two node structure exists and a new
node, n2, arrives. It illustrates how it is inserted at the end of the structure following the arrival
sequence. This process continues as nodes incorporate.

Figure 4. Insertion of a node a) n0 with no others; b) n1 with another; c) n2 with other nodes; d) the Arrivals
topic keeps a history of the identity in arrival order of m participants.

In order to apply this process with DDS, a topic called Arrivals (Fig 4.d) is used with a history
QoS value set to a value m high enough. An incoming node, ni, will publish its identity on this
topic and it will immediately after subscribe to it. On the first case, shown in Figure 4.a, node n0

will only find its own identity and it will form the single-node structure. In other cases nodes n1,
n2, … will find on this topic the identity of the node inserted just before themselves, i.e. n0, n1, …

Figure 5. Insertion of a node a) nz notifies nx; b) nx notifies nz; c) nx notifies ny;

To actually update this structure the action sequence shown in Figure 5 will be followed. In
Figure 5.a node nz wants to insert itself between nx and ny only knowing the identity of nx. nz

publishes its identity on a topic where nx waits subscribed for new ORe-s. Then nx will update
this information and publish two topics: one informing on the new OSe for nz (Figure 5.b) and
another (Figure 5.c) informing on the new OSe for ny.

4.2. Reliable Friend Temporal Structure Construction

Independently from the number of participating nodes the vision of the system for any of the
nodes is limited to itself (Me), its Official Sender (OSe), its Official Receiver (ORe), and
sometimes its Temporal Receiver (TRe). This is illustrated in Figure 6 under different scenarios

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

32

where any of the nodes, Me, can be the reference. For any node Me we may find that: Figure 6.a
its ORe is Available, so that it can be trusted; no state information on the OSe is present; Figure
6.b its ORe is Unavailable; the identity of the next Available is present, with no reference on how
many Unavailable nodes are in between; Figure 6.c all nodes but itself, Me, are Unavailable;
when this node becomes Unavailable the situation in Figure 6.d may arise, i.e. all nodes become
Unavailable; this situation can be detected as in Figure 6.c it detects that Me was the only
Available node.

Figure 6. Vision of the system state from the point of view of a node (Me)

In order to maintain this information consistently all nodes keep the following information:

• Me: my identity, identity of the node concerned
• ORe: identify of the Official Receiver (possible Me)
• TRe: identity of the Temporal Receiver (possibly Me or Null)
• OSe: identity of the Official Sender
• State: my availability state, Available or Unavailable

Nodes may publish and subscribe to DDS topics as necessary. All nodes ni publish a topic
MyBoxi with the identity of the first Available node in the sub-graph starting from itself.

All nodes always subscribe to the topic of the following node, the ORe. Additionally, whenever
the ORe of a node is Unavailable, nodes also subscribe to the topics published by the TRe as it
may provide updating information of the identity of another node further in the directed graph.

Three possible events may occur that make this structure change: a) the transition of a node from
Available to Unavailable, b) the transition of a node from Unavailable to Available and c) the
reception of a topic update, which may cause the propagation of Msg, the identity of an Available
node or Null when such a node is not present in the whole system. This latter case allows
distinguishing two cases: one coming from the ORe and another coming from the TRe, although
both could be treated in a uniform manner.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

33

4.2.1. State Change from Available to Unavailable

When a node becomes Unavailable and it was the last Available node in the system, then
no Available node remains in the system. This condition can be checked just by verifying
if the TRe corresponds with its own identity. The identity of the previous TRe or Null if it
was itself is published on MyBox and this information is received by all nodes subscribed
to it, being its OSe and many possible temporal senders. This action can be represented
algorithmically:

If TRe = Me Then
TRe ← Null

Publish (MyBox, TRe)

4.2.2. State Change from Unavailable to Available

When a node becomes Available, it just needs to inform its OSe, which will need to restore its
TRe to its ORe. This information will be propagated backwards in the Official Structure as
necessary. DDS allows a special case when all nodes become Unavailable, which is subscribing
all to a special OneBack topic, waiting for the first node to become Available. Instead of relying
on a one-by-one propagation this would profit the DDS distribution mechanism which is expected
to perform efficiently. The first node becoming Available will publish on this topic. This new
case can be represented algorithmically:

If TRe = Null Then
Publish (OneBack, Me)
TRe ← Me

Publish (MyBox, Me)

4.2.3. Topic Update on ORe, with a New MsgTRe

This update means either that the ORe has become Available and we get its identity or that the
identity of the TRe has changed. This may result from a status modification of our ORe or some
node found following the cyclic graph. If the node was subscribed to a TRe it must cancel this
subscription; if the identity received is not that of its ORe the corresponding subscription must be
issued. Finally if the node is Unavailable this information needs to be propagated backwards. An
exception must be considered when its identity has been propagated all around the directed graph.
In that particular case propagation is stopped. This can be represented algorithmically:

If TRe ≠ Null Then
CancelSubscription(TRe)

If Msg = ORe Then
TRe ← Null

Else

Re ← Msg
Subscribe (TRe)
If (State = "Unavailable" And Msg ≠ Me) Then
Publish (MyBox, Msg)

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

34

4.2.4. Topic Update on TRe, with a New MsgTRe

This update is similar to the previous one but always means that the current TRe of the node
receiving Msg has become Unavailable. The previous subscription is cancelled and a new
subscription is issued if Msg carries the identity of an Available node. No propagation is required
as all Unavailable nodes before the updating node are subscribed to its topic. This is represented
algorithmically:

CancelSuscription(TRe)
TRe ← Msg
If TRe ≠ Null Then

Subscribe (TRe)

4.3. Quality of Service Configuration

The construction and maintenance of the RF structure require 5 communication topics:

1. Arrivals: used by arriving nodes to determine their ORe
2. ORe: used by arriving nodes to notify a change in the OSt
3. OSe: used by a notified node to rearrange the OSt
4. MyBox: used by nodes to publish the TRe
5. OneBack: used by a node becoming Available when no one is known to be Available

The main DDS QoS configuration parameters used for these services are summarized in Table 2.
All these services will be combined with the application dependent services.

Table 2. Mapping of DDS Quality of Service Policies on the RF services

Topics
Arrivals ORe & OSe MyBox OneBack

Distribution One to many One to one One to many One to many
Destination order Source Source Source Source

Durability Persistent Volatile Volatile Volatile
History Keep N Keep last Keep last Keep last
Latency Budget Life proof Life proof Life proof Life proof
Lifespan Long Short Short Short

Liveliness Automatic Automatic Automatic Automatic
Reliability Reliable Reliable Reliable Reliable
Transport Priority Highest Highest Highest Highest

5. FRAMEWORK EVALUATION

For the evaluation of the framework construction method presented in previous section several
simulations were implemented with some variants [19]. The test scenario consisted of four real

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

35

nodes running the simulation program developed using OpenSplice [20] but could be used with
an arbitrary number of nodes.

The Basic Reliable Friend (RF) Official Structure (OSt) was constructed according to the
proposed mechanisms and some tests were carried out to verify that the circular ring was
correctly obtained. It is noted that this construction schema only works in absence of failures.
This assumption is considered acceptable for the sake of testing the basic construction method
and the dynamics behaviour of the temporal structure. An improved design should be
complemented with failure detection and reconfiguration mechanisms.

The Basic RF Temporal Structure (TSt) construction test implies the simulation of task
activations. Following the fundamentals of the Basic RF TSt construction two states are
considered, (1) Available, or able to assume more workload than the one already assigned; and
(2) Unavailable, or unable to assume more workload.

Poisson distribution (1) task activation was simulated where k is the number of occurrences of the
phenomenon in a given interval and λ is a positive parameter that represents the number of times
the event occurs in that interval.

(1)

This probabilistic variable was utilised with a threshold determining the availability for each node
on next interval. Nodes simulated these random state changes and their corresponding
information updates.

The proposed mechanisms worked correctly on the different evaluation tests carried out on the
final design.

6. CONCLUSIONS AND FUTURE WORK

This work has presented a scalable and reconfigurable framework on top of DDS for CPSs. DDS
has been selected since it is unique and high performance middleware specification that provides
fine grained mechanisms to manage the QoS properties of communications. Also, it solves the
problem of heterogeneity since it can coexist with different programming languages, hardware
platforms and operating systems. The proposed framework, which is relatively simple, is capable
of adapting in a timeliness and efficient way to dynamic environments. Also, it supports fault-
tolerance and avoids single points of failure. Finally, it eases the management of the resources of
the CPSs and allows the reconfiguration of the system at run-time in response to node failures,
changes in the environment, modifications in the functionality of the system or software updates.

The proposed framework was evaluated using the commercial OpenSplice DDS product showing
an adequate behaviour in the initial construction of the RF official structure and the dynamic
maintenance of the RF temporal structure.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

36

The envisioned future work includes measuring the utilized bandwidth and incurred delays on
distributed applications executed on embedded platforms. Also, the benefits of migrating code
among computers and using redundant services will be analyzed. Finally, the capacity of
detecting failures and reconfiguring the official and temporal structures are also point of future
interest in this research, together with the application task data.

ACKNOWLEDGEMENTS

This work was supported in part by the Basque Government (Saiotek) under project S-
PE11UN061 and the University of the Basque Country through the grant EHU11/35.

REFERENCES

[1] Lee, E. A., (2008) “Cyber Physical Systems: Design Challenges”, 11th IEEE Symposium Object
Oriented Real-Time Distributed Computing (ISORC), pp. 363-369.

[2] Shi, J., Wan, J. and Hui Suo, (2011) “A Survey of Cyber-Physical Systems”, Intl. Conf. on Wireless
Communications and Signal Processing (WCSP), pp. 1-6.

[3] Wolf, W. (2009), “Cyber-physical Systems”, Computer, Vol. 42, No. 3, pp. 88-89.
[4] Wu, F-J., Kao, Y-F. and Tseng, Y-C. (2011) “From wireless sensor networks towards cyber physical

systems”, Pervasive and Mobile Computing, Vol. 7, No. 4, pp. 397-413.
[5] Koubâa, A. and Andersson, B., (2009) “A Vision of Cyber-Physical Internet”, Proc. of the Workshop

of Real-Time Networks, pp. 1-6.
[6] OMG, “Object Management Group: Common Object Request Broker Architecture: Core

Specification. Version 3.0.3”, March 2004. http://www.omg.org.
[7] OMG, “Object Management Group: Notification Service Specification. Version 1.1”, Oct. 2004.

http://www.omg.org.
[8] OPC foundation, http://www.opcfoundation.org/.
[9] Jammes, F. and Smith, H., (2005) “Service-oriented paradigms in industrial automation”, IEEE Trans.

Industrial Informatics, Vol. 1, No. 1, pp. 62-70.
[10] OASIS (2009), “DPWS v1.1”, http://docs.oasis-open.org/ws-dd/dpws/wsdd-dpws-1.1-spec.html.
[11] OMG, “Object Management Group: Data Distribution Service for Real-time Systems. v1.2”, June

2007. http://www.omg.org.
[12] Lee, SH., Kim, JH., Kim, WT. and Ryou, JC., (2011) “Communication Entities Discovery in

Complex CPS System”, Control and Automation, and Energy System Engineering, Communications
in Computer and Information Science, Vol. 256, pp. 213-219.

[13] Park, M.J., Kim, D.K., Kim, W-T. and Park, S-M., (2010) “Dynamic Software Updates in Cyber-
Physical Systems”, Intl. Conf. on Information and Communication Technology Convergence (ICTC),
pp. 425-426.

[14] Kang, W., Kapitanova, K. and Son, S., (2012) “RDDS: A Real-Time Data Distribution Service for
Cyber Physical Systems”, IEEE Trans. on Industrial Informatics, Vol. 8, No. 2, pp. 393-405.

[15] Calvo, I., de Albeniz, O.G., Noguero, A. and Perez, F. (2009) “Towards a modular and scalable
design for the communications of electrical protection relays”, IEEE 35th Annual Conf. on Industrial
Electronics, IECON, pp. 2511-2516.

[16] Noguero, A. and Calvo, I., (2010) “A Framework with Proactive Nodes for Scheduling and
Optimizing Distributed Embedded Systems”, EUNICE, pp. 236-245.

[17] Etxeberria-Agiriano, I., Calvo, I. and Zulueta, E. (2010) “Simulation of Various Candidate Selection
Strategies for Migration in Distributed Systems”, 16th Intl. Conf. on Soft Computing (Mendel), pp.
338-345.

http://www.omg.org
http://www.omg.org
http://www.opcfoundation.org/
http://docs.oasis-open.org/ws-dd/dpws/wsdd-dpws-1.1-spec.html
http://www.omg.org

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

37

[18] Etxeberria-Agiriano, I., Calvo, I., Noguero A. and Zulueta, E. (2012) “Configurable Cooperative
Middleware for the Next Generation of CPS”, Remote Engineering and Virtual Instrumentation
Conference (REV-2012), pp. 315-319.

[19] Alonso, I. and Montero, L., (2011) “Estudio del Middleware DDS y Aplicación al Balanceo
Dinámico de Carga en Sistemas Distribuidos”, Memoria PFC LSI, EUI Vitoria-Gasteiz, UPV/EHU.

[20] OpenSplice. http://www.opensplice.com/.

AUTHORS

Ismael Etxeberria-Agiriano obtained a degree in Electronic Engineering and a degree in
Computer Science from the Mondragon Unibertsitatea (MU). In 1994 he obtained his PhD
from Staffordshire University (SU). He worked as a consultant for the Crédit Lyonnais in
Paris (France) and continued working on financial applications for another three years
before returning to education. He has been a lecturer at both SU and MU universities.
Since year 2005 he is contracted as lecturer at the Computer Languages and Systems
Department of the University College of Engineering of Vitoria (UPV/EHU). His main
research interests include Distributed Systems, Computer Security and Applied Ethics.

Isidro Calvo obtained a degree in Physic Science in 1993 from the University of the
Bas que Country (UPV/EHU). In 1994 he completed a Master degree in Electronics and
Automatic Control, at the same University. He worked as a software engineer for
several companies in Spain and UK between 1995 and 1999. In 1999 he joined
UPV/EHU as a researcher obtaining his PhD in 2004. Since year 2000 to 2007 he was
contracted as Lecturer at the Automatic Control Department of the Engineering School
of Bilbao. Nowadays, he is with the University College of Engineering of Vitoria
(UPV/EHU) as Senior Lecturer. He has collaborated in several research projects funded
by National & European projects co-authoring several technical papers in international
journals and conference proceedings. His main research interests include Middleware, Embedded systems
and Remote Learning.

Liliana Montero-Fernandez obtained a degree in Computing Engineering in 2011 from the University of
the Basque Country (UPV/EHU).

Ivan Alonso-del-Val obtained a degree in Computing Engineering in 2011 from the University of the
Basque Country (UPV/EHU).

http://www.opensplice.com/

