International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

EFFECTIVE IMPLEMENTATION OF AGILE
PRACTICES — OBJECT ORIENTED METRICS TOOL
TO IMPROVE SOFTWARE QUALITY

V eerapaneni Esther Jyothi*, Kaitepalli Srikanth?and K. Nageswara Rao®

'Assistant Professor, Department of Computer Applications,
V.R.Siddhartha Engineering College, Vijayawada— 7, Andhra Pradesh, India
nej yot hi @ot nail . com
Assistant System Engineer, Tata Consultancy Services, Hyderabad, India
sri kant hnta2012@nmai | . com
3Professor & Head, Department of Computer Science and Engineering,
P.V.P.Siddhartha Institute of Technology, Vijayawada— 7, Andhra Pradesh, India
drknrao@ eee. or g

ABSTRACT

Maintaining the quality of the software is the major challenge in the process of software development.
Software inspections which use the methods like structured walkthroughs and formal code reviews involve
careful examination of each and every aspect/stage of software development. In Agile software
development, refactoring helps to improve software quality. This refactoring is a technique to improve
software internal structure without changing its behaviour. After much study regarding the ways to
improve software quality, our research proposes an object oriented software metric tool called
“MetricAnalyzer”. Thistool istested on different codebases and is proven to be much useful.

KEYWORDS

Agile, Refactoring, Metrics, Interpretation, Advice
1. INTRODUCTION

Based on the developments in the business Software frequently undergoes changes. These
changes in the software generaly made under the demand of time and budget. Obviously the
developer have to compromise on quality if he does any changes not taking into account the
impact of the changes on the software. Though a solitary change may not have a negative impact,
multiple changes with their interplay might affect severe troubles in the long run. Lehman’s law
states some important characteristics of software system: Law |: continuous change is necessary
to preserve satisfaction and Law Il: says that the complexity of the system increase with the
number of changesif it is not reduced with additional work [1].

Eventualy we are left with a software design, which is complex and entangled. To improve the
quality of the software the design problems must be identified and eradicated otherwise they may
cause the system to display low maintainability, low reuse, high complexity and flawed
behaviour. Software inspection involves a vigilant assessment of the code, the design, and the
certification of the software and checking for the features that are notorious to be potentialy
chalenging based on the past occurrence. It is normally acknowledged that the cost of fixing a

DOl : 10.5121/ijsea 2012.3402 13

mailto:nejyothi@hotmail.com
mailto:srikanthmca2012@gmail.com
mailto:drknrao@ieee.org

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

bug is much lower when that bug is found earlier in the development cycle. Refactoring is a
technique to improve software internal structure without changing its behaviour [2].

We tried to detect the code smells [3] in the codebase of ajava project by using our tool caled
“MetricAnalyzer”. This tool examined the code and has come up with an advice to refactor in
order code to improve the software quality. This process involves different phases.

This research paper is organised into different phases systematically asfollows:

Section 2; Decide upon Metrics [IDENTIFY ING PHASE]

Section 3: Apply metrics on codebase [EVALUATION PHASE]

Section 4: Result analysis [INTERPRETATION AND ADVISING PHASE]
Section 5: Refactoring the codebase [APPLICATION PHASE]

2. IDENTIFYING PHASE

Object-oriented design and development is becoming very popular in today’s software
development environment. It entails not only a special approach to design and implementation; it
requires different software metrics. Since object oriented technology exploits objects and not
algorithms as its elemental building blocks, the approach to software metrics for object oriented
programs must be different from the standard metrics set. Some metrics, such as lines of code
and cyclomatic complexity, have become accepted as "standard" for traditiona functional/
procedura programs, but for object-oriented, there are many proposed object oriented metrics in
the literature.

Object oriented metrics was to focus on the primary, critical constructs of object orienteddesign
and to select metrics that apply to those areas. The suggested metrics aresupported by most
literature and some object oriented tools. The metrics evaluate theobject oriented concepts:
methods, classes, complexity and inheritance. The metrics focuson internal object structure that
reflects the complexity of each individual entity andon external complexity that measures the
interactions among entities. The metricsmeasure computational complexity that affects the
efficiency of an algorithm andthe use of machine resources, as well as psychological complexity
factors that affect the ability of a programmer to create, comprehend, modify, and maintain
software.

Table 1 presents an overview of the metrics applied he “MetricAnalyzer” tool for object oriented
systems.
Table 1. Metrics applies on code base

Metric Object Oriented M easurement M ethod
Concept
TNOA Class Both Static and Instance Variables
Number of Attributes
WMPC Class Both Static and Instance Methods
Weighted Methods per Class
NOCP Package All the classes in a Package
Number of Classes
MIT Class Maximum length from class to Root
Maximum Inheritance Tree node
CCIM Method Number of linearly independent paths
Cyclomatic Complexity in the Method
SIZE Class Non Comment and Non Blank Lines
Lines of Code

14

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

T\
Project Folder \/ , Incorrect Information
1|

information Verfication

USER

: Supplyin - i ——
> PRIYING 3 \ Issuing Reports 4
Apply) 6nterpret Refactoring
Metrics Request the Metrics , Requestihe Advice

metric values >\,__./ “Interpret Reports /_

=
=
2l w

Queries 5 =
=
ol s
] fad
a
j
a7}
S Queries

Generated Metric
values USER Reciept

Figure 1. DFD of the MetricsAnalyzer tool
3.EVALUATION PHASE

The Metrics part of the MetricAnalyzer tool applies and extracts information from the
development environment. As Figure 2 illustrates, this information may deal with artifacts in the
repository (R) or with the Projects themselves (P1, P2, P3).

< <
P P > metrics . Interpretation—— Advice
Repository

Figure 2. Processinvolved in MetricsAnalyzer tool

The following are the code snippets for four metrics TNOA (Total Number of Attributes), WMPC
(Weighted Methods per Class), MIT (Max Inheritance Tree), NOCP (Number of classes Per
Package) written as a part of “MetricAnalyzer” tool development which are provided for
examination.

15

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

TNOA (Total Number of Attributes)

public int nobOfhAttr (String cname, 3tring path)

File file=new File(path]:

URLClassLoader classLoader=null;
Class cl=null;
Field[] £f=null:

Lryy
classloader=URLClassLoader . newlInstance(new URL[]{£file.toURI().toURL(]}]

cl=Class.forName(cname, true, classLoader):
f=cl.getDeclaredFields ()
'

Figure 3. Code snippet for the metric TNOA

WM PC (Weighted Methods per Class)

public int nodfMethods (String chnawe, String path)
{

File file=null;

URLClassLoader classLoader=null;

Class cl=null;

Method[] m=null;

Lry{

file=new File(path):
clagsLloader=TURLClassLoader . newins tanceiney TEL[]{file.toURI{).toURL(})})
cl=Class.forName (cname, true, classLoader):
m=cl.getDeclaredMethods () ;
i

Figure 4. Code snippet for the metric WMPC

MIT (Max Inheritance Tree)

public int inheritanceDepth (3tring cnsme,3tring path)
{
int o=-1;
tEY!
File file=new File(path]:
URLClassloader classLoader=URLClassLoader.newlnstance(new URL[]{file.toURI{).toURL{)}):
Class cl=Class.forName(cname, true, classLoader):
while(cl.get3uperclass () '=null)
{
o+
cl=cl.get3uperclass();

Figure 5. Code snippet for the metric MIT

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

NOCP (Number of classes Per Package)

pulblic List<3tring> nol0fClasses (File directory, 3tring packagelsine)
i
List<8tring> classes = new ArrayList<3trings>():
int cnt=0;
File[] files = directory.listFiles|):
for (File file : files)
i
if (file.isDirectory(]]
{
azgert 'file.getMame () .contains(™.");
classes.addlll (noCfClasses (file, packageName + 7.7 + file.getName())):
i
zlzse if (file.getMName) .endsWith(".class"))
i
cnt++;
i
i
classes.add (packagellame) ;
classes.add(Integer. toStringicnt)) ;
return classes;

Figure 6. Code snippet for the metric NOCP

4. INTERPRETATION AND ADVISING PHASE

As we can see in Figure 1 and Figure 2, the interpretation part of the MetricAnalyzer takes the
extracted metric values in Metric Evaluation Phase from the source code and compare these
values with the threshold values of the corresponding metric values. If the extracted metric values
lies below the corresponding metric threshold value means that no occurrence of the issue that is
being observed and extracted metric values lies above the corresponding metric threshold value
means maximum occurrence of the observed issue.

The crucial step in defining the interpretation for the extracted metrics lies in defining the
thresholds for metrics. This should preferably be done based on historical data and experience
from earlier projects [4]. Industry bench- marks can also be used for this purpose. The
thresholds should be monitored and updated as the team learns and its process evolves. The
Metrics and the threshold values of these metrics are shown in Table 2.

Table 2. Metric values of Versionl

TNOA WMPC NOCP
Avg | Max Avg M ax Avg M ax
Versionl 35 95 11.56 15 3 3
MIT CCIM TLOC

Avg | Max Avg | Max | Total | Avg [Max

Versionl | 257 6 3.36 56 2500 | 500 | 1800

17

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

The following are the screenshots of the “MetricAnalyzer” tool for all the six metrics TNOA
(Total Number of Attributes), WMPC (Weighted Methods per Class), MIT (Max Inheritance
Tree), NOCP (Number of classes Per Package), CCIM (Cyclomatic Complexity), SIZE (Tota
Lines of Code). The red highlighter shows that the value exceeded the metric threshold value.

& - & x|

Helect the lava Project Location | | trows.

Fobler pame: 1302 220 nerts ©1d SCTirs skrobhly Docurr =ikl v 372 1 |

Wiz ol upes (Al s [+

Opan cancal

Figure 7. Screen shot for selection of project in the “MetricAnalyzer” tool

4.1. TNOA (Total Number of Attributes)

* |t Count the total number of attributes for aclass.

» Theattributes of aclassinclude the number of static variables and number of instance
variables.

Threshold value: A high number of attributes (> 10) probably indicate poor design.
Problem: A classwithtoo many attributes may indicate the presence of coincidenta
cohesion.

Solution: The class requires ecomposition, in order to better manage the complexity of the
model.

18

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

B2 bt ric Analyzar

Suleel the Tava Project Tocation |C e c.rans 214 Safing =5 sk Do = 1t lis y 5 | [—

|| Brevjes | Wisner winbyee Melrics | TrilerPred Melrics [D=l

Clss bl ot Ve Thres120d R ange I =FavLaring A uive

Figure 8. Screen shot for TNOA metric in the “MetricAnalyzer” tool

4.2. WMPC (Weighted M ethods Per Class):-

» It countsall class operations (methods) per class.

» The methods of aclassinclude the number of static methods and number of instance
methods.

Threshold value: Between 3 and 7. Thisindicate that a class has operations, but not too many.
Problem: Lack of primitivenessin class operations (inhibiting re-use).
Solution: Decompose the class having more methods.

B Mstric Analyzer

Heleet the Java Project Location | v ewnls w1 Selline =tz sl Ducun = lailibrs S | D v

Progect Wicws Anakyze Wctrics | LterPret Metrics | Ewit

Wre1s Al TE sl i, +ar e Frkactonr i mAe

RS QLS4 S T
X e Therme

Figure 9. Screen shot for WMPC metric in the “MetricAnalyzer” tool

19

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

4.3. NOCP (Number of classes Per Package):-

* It Count the Number of classesin a package p. More classes means more complex,
because the number of potential interactions between objects is higher.

Threshold value: Maximum 12.

Problem: Reduces the comprehensibility of the system, which in turn makesit harder to te<t,
debug and maintain.

Solution: Extract the classes that are co-related and create the new package.

P McLric Analycer

Heleet the Java Project Location | Duvemnls w1 Sulling s sl Dusun = lslibrs -y S e D v,

Profect Wicws | Anabyze Mcotrics | LnterPick Yetrics | Exit

TweE
THE A Farlange Mars ek b 11153 Tarak= 157w Fraactar r Sl e

wrc
| mIT
| Moo

Figure 10. Screen shot for NOCP metric in the “MetricAnalyzer” tool

4.4 MIT (Max Inheritance Tree)

« |t caculatesthe longest path from the class to the root of the inheritance tree.

Threshold value: The value of DIT must be between 0 and 4
Problem: Classeswith high DIT indicate that It Compromise encapsulation and increase
complexity

Solution: Decompose the class that having the high depth of inheritance tree.

Select the Tavn Project T.ocabian | s momni:an | il =, 4500 L -2 by e e [Pep—

Prodert Wicws Anakgze scirics | TaberRrek Setrics | Exib

TLaE
. & et ann - W R IR Uitz b 1 e
a WA
WAFT

Figure 11. Screen shot for MIT metric in the “MetricAnalyzer” tool

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

4.5. CCIM (Cyclomatic Complexity):-

e It measures the number of linearly independent paths through a program module.

i.e, the amount of decision logic in a single software module. It is calculated per class.

» Counts the number of flows through a piece of code. Each time a branch occurs (if, for,
while, do, case, catch and the ?: ternary operator, aswell asthe && and || conditional
logic operatorsin expressions) this metric isincremented by one

Threshold value: The acceptable range must be between 1and10
Problem: A method with a CC value greater than 10 indicates the high code complexity.
Solution: Extract the Class or Extract Method

[Project views * Anabyze Metrlcs | InterPret vietrlcs | CHit

TLOC
C THOA
WHPC

Kethcd % s me Hetrie valug Iares=aldl-ange etz zier g Az
I nmhooses 110
reseTiekd 110
upetaed ledd 1-10
resetield 1-10
upetcited 1edd 110
reset ekl 1-10
w40 eracthe Class or bt
res athekl 110
gl at o 1 110
res athekl 110
il it o e d 110
1o alFiokl 110
uplal oFiuld 110
1eseiFickl 1-10
upmlial cFicld 1-10
ressrd Pl 1-10

i FRTY

urT
" Moo

T [+

=& e =W

DLIBERIEEEEE

Figure 12. Screen shot for CCIM metric in the “MetricAnalyzer” tool

4.6. SIZE (Total Linesof Code):-

There are two variants of size metric they are function points (fp) and Tota Lines of code
(TLOC) metric. TLOC is considered in our paper.

e TLOC metric will count the non-blank and non-comment linesin aclass.
* Thisisthe smplest way to measure the size of the system.

Threshold value: The acceptable range is between Max 750

Problem: A classwith TLOC value greater than 750 increases overall size of the system and
reduces the comprehensibility.

Solution: Split up the class and delegate its responsibilities.

21

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

Ml ric A ralyemr

Buloet e Tava Project Localion 2 Dcorerds 1rd Setine 2z shoey Docurr 2 skl sy S0 Brovese..

[Prodect Wiews Anakyze “ctrks [InterPret detrles | Eslt

CTLoe
Troa © ams lars Hedtle s la THoashe & 57 1a Rataton 1 b e
R hmbuckicoks 2 Py =
rr— k3 <m0

MIT
HE
" ecTm

Frinkicys 71 =750
Frnkoqin o3 =750
11 =750

FrnReurn 1R =750
FrnECur RS R =750
frnsaach el <750
1M = 750
& <740
m = 7a0

FrotiRars (= = 7a0
o ¥ RL] = A0 3

Figure 13. Screen shot for SIZE metric in the “MetricAnalyzer” tool

5.APPLICATION PHASE

Software Refactoring is the process of changing a software system in such a way that it does
not ater the external behavior of the code yet improves the internal structure [6]. It
improves the design of the software by eliminating redundancy and reducing complexity. The
resulting software is easier to understand and maintain.

Software refactoring is a technique to enhance the maintainability of software, improve
reusability and understandability of the software. Our tool “MetricAnlyzer” applies the Object
Oriented metrics on the code base and these metric values are then interpreted. Then various
refactoring techniques were used to improve the code design and aong with that we aso studied
the impact of refactoring on the software quality through various metrics [5]. The red highlighter
showed the values which exceeded the metric threshold value and this made us to refactor those
parts of the code base and improve the quality of software.

In the refactoring process the metric values are improved by moving close to the threshold values.
Versionl values are the metric values before refactoring and Version2 and Version3 values are
the metric values after refactoring which are given in the following tables for the six metrics
taken.

Table 3. Comparison of Metric values of Versionl, Version2 and Version3 for the first three metrics

TNOA WMPC NOCP

Avg | Max | Avg | Max | Avg | Max
Versionl | 35 9 | 1156 | 15 3 3
Version2 | 16.1 | 39 5.89 15 9 9
Verson3 | 11.3 | 41 55 15 12 12

22

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

Table 4. Comparison of Metric values of Versionl, Version2 and Version3

MIT CCIM TLOC

Avg | Max | Avg | Max | Total | Avg M ax

Versionl | 2.57 6 3.36 56 2500 | 500 1800

Version2 | 411 6 2.53 26 2300 | 290 900

Version3 | 45 6 243 13 1524 | 127 508

Comparison of Metric values of
Versionl, Version2 and Version3

o 100 -

Y 80

- Versionl

< 60 Dv o
ersion

O 40 |

o g Version3

I_

L

=

METRICS

Figure 13. Graph depicting the Metric values of Versionl, Version2 and Version3

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.4, July 2012

6. CONCLUSIONS

In Agile software development, refactoring hel ps to improve software quality. Our object oriented
software metric tool “MetricAnalyzer” proposed in this paper showed us great results after
refactoring the code compared to the original code base of different projects. As we have shown
the graphical result, this tool was very much useful in eliminating code smells from the code and
mai ntains threshold values of the considered object oriented metrics.

REFERENCES

[1] M.M Lehman, D.e Perry, J.F.Ramil, W.M Turksi, and P.Wernick, “ Metrics and Laws of Software
Evolutionthe nineties view.” In Proceedings of the 4th International Symposium on Software Metrics,
Metrics, Albuquerque, New Mexico,2000. |IEEE

[2] Markuz Pizka, ”Straightening Spaghetti-Code with Refactoring”

[3] Evavan Emden, Leon Moonden, “Java Quality Assurance by Detecting Code Smell”

[4] R.S. Arnold, “An Introduction to Software Restructuring,” Tutorial on Software Restructuring, R.S.
Arnold, ed., 1986.

[5] D.M. Coleman, D. Ash, B. Lowther, and P.W. Oman, “Using Metrics to Evaluate Software System
Maintainability,” Computer, vol. 27, no. 8, pp. 44-49, Aug. 1994.

[6] N. Van Eetvelde and D. Janssens, “A Hierarchical Program Representation for Refactoring,” Proc.
UniGra’03 Workshop, 2003.

Authors

Mrs. Veerapaneni Esther Jyothi is a Microsoft certified professional, currently pursuing
Ph.D. Sheisworking as an Asst. Professor in the department of Computer Applications,
Velagapudi Siddhartha Engineering College since 2008 and also has Industrial
experience. She has published papers in reputed international conferences recently. Her
areas of interest include Software Engineering, Object Oriented Analysis and Design and
DOT NET.

Dr. K. Nageswara Rao is currently working as Professor and Head in the department of
Computer Science Engineering, Prasad V. Potluri Siddhartha Institute of Technology,
Kanuru, Vijayawada-7. He has an excellent academic and research experience. He has
contributed various research papersin the journals, conferences of | nternational/national.

Mr. Kaitepalli Srikanth is Asst. System Engineer in TCS (Tata Consultancy Services).
He was recruited as a part of campus placements from Velagapudi Ramakrishna
Siddhartha Engineering College, Vijayawada and is going to complete his master’s
degree from the department of Computer Applications.

24

