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ABSTRACT 

 
 Software Performance Engineering (SPE) has recently considered as an important issue in the software 

development process. It consists on evaluate the performance of a system during the design phase. We have 

recently proposed a new methodology to generate a Stochastic Automata Network (SAN) model from a 

UML model, to consequently obtain performance predications from UML specifications. In this paper, we 

expand our idea to cover more complex UML models taking in advantage the modularity of SAN in 

modeling large systems. A formal description of the generation process is presented. The new extension 

gives rise to a serious approach in SPE that we call UML2SAN.      
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1. INTRODUCTION 

 
Software engineering has traditionally focused on functional requirements and how to build 

software that has few bugs and can be easily maintained. Most design approaches include non-

functional requirements among the elements of the analysis of a system, but little attention has 

usually been paid to how these requirements can be dealt with through the development life-cycle 

[9]. 

 

Over the two last decades, the performance analysis of software systems during the design 

process is becoming widely suitable. The benefit comes from getting quantitative predications 

about the system before being implemented. That reduces the possibility of unexpected 

shortcoming on the system functionality. .Moreover, an important methodology, initially 

introduced by Smith [11], starts today to cover a large place in the software engineering area. 

This methodology, called Performance Software Engineering (SPE), consists essentially on 

introducing some techniques allowing obtaining performance predictions of the system basing on 

the design model.  

  

 Several approaches have been introduced to provide SPE techniques. Some of them propose to 

derive from a UML (Unified Modeling Language) model a separate performance model [5, 8, 



International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012 

36 
 

10]. In addition to the classification of UML as a universal modeling language widely used by 

designers, it is apparently possible to attach performance analysis tools to UML notations in a 

relatively straightforward manner. Our recent work in [10], initiates a preliminary methodology to 

derive from UML a Stochastic Automata Network (SAN) model, a Markov-based model used to 

generate performance predictions. The SAN formalism [7] is usually quite attractive when 

modeling a system with several parallel cooperative activities. In addition, SAN permits to 

represent a system in modular way. A SAN model is a state-transition graph having a strong 

likeness with the UML state-chart diagram. 

 

The purpose of this work is to make a step forward toward proposing a general heuristic to derive 

a SAN model from complex UML model. In [10], our methodology is based on the UML state-

diagram, with transitions’ edges only labeled by unconditional triggers and actions. In this paper, 

we show how to deal with conditional triggers. In addition, we show the impact of the 

collaboration diagram in the derivation process. The demarche is also informally presented, 

however, this works enlarge the possibility to propose a formal demarche.   

 

The rest of this paper is organized as follows. Section 2 recalls the definition of the SAN as 

modular formalism. Section 3 presents a UML producer/consumer example with conditional 

triggers in the stat-chat diagram. This section shows the essential UML diagrams need for the 

derivation of the SAN model. Section 4 explores how the UML model maps into SAN basing on 

our case study.  Section 5 concludes our paper and describes our ongoing works. 

 

2.  STOCHASTIC AUTOMATA NETWORKS 

 
Stochastic Automata Networks (SAN) is a structured Markovian formalism, i.e., it describes 

continuous-time Markovian models not as a flat system, but as a structured (modular and 

organized) collection of subsystems. The basic modeling principle of SAN is to describe a whole 

system by a collection of subsystems with an independent behavior and occasional 

interdependencies. Each subsystem is described as a stochastic automaton, i.e., an automaton in 

which the transitions are labeled with probabilistic and timing information. Hence, one can 

always build a continuous-time stochastic process related to SAN [2, 12].  

 

The global state of a SAN model is defined by the cartesian product of the local states of all 

automata. There are two types of events that change the global state: local and synchronizing 

events. Local events change the SAN global state passing from a global state to another that 

differs only by one local state. Synchronizing events can change simultaneously more than one 

local state, i.e., two or more automata can change their local states simultaneously. In other 

words, the occurrence of a synchronizing event forces all concerned automata to fire a transition 

corresponding to this event.  

 

Each event is represented by an identifier and a rate of occurrence, which describes how often a 

given event will occur. Each transition may be fired as result of the occurrence of any number of 

events. In general, non-determinism among possible different events is dealt with according to 

Markovian behavior, i.e., any of the events may occur and their occurrence rates define the 

relative frequency with which each of them will occur. However, if, from a given local state, the 

occurrence of a given event can lead to more than one state, then an additional routing probability 
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must be informed to each possible destination state. The absence of routing probability is 

tolerated if only one transition can be fired by an event from a given local state.  

 

The other possibility of interaction among automata is the use of functional rates. Any event 

occurrence rate may be expressed by a constant value or a function of the state of other automata. 

By contrast with synchronizing events, functional rates are one-way interaction among automata, 

since it affects only the automaton where it appears.  

 

Figure 1 presents a SAN model with two automata, one synchronizing event (e2) with a constant 

rate, and four local events, being three with constant rates (e3, e4 and e5) and one with a 

functional rate (e1). In this model the rate of the event e1 is a functional rate f semantically 

explained below, and described inside Figure 1 using the SAN notation. The interpretation of 

such a function can be viewed as the evaluation of an expression of non-typed programming 

languages, e.g., C language, where each comparison is evaluated to value 1 (true) or value 0 

(false). 

 

 

 
Figure 1 : Example of a SAN model 

 

 
 

The firing of the transition from states 0
(1)

 to 1
(1)

 occurs with rate λ if 

automaton A
(2)

 is in state 0
(2)

, or γ if automaton A
(2)

 is in state 2
(2)

. If 

automaton A
(2)

 is in state 1
(2)

, the transition from states 0
(1)

 to 1
(1)

 does not 

occur (rate equal to 0). It is important to observe that the use of functions 

allows a compact and flexible way to describe in one single event (local or 

synchronized) alternative behaviors [2]. The advantage of using functions will 

be obviously clear in our demarche of derivation a SAN model from UML 

model. 
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Figure 2: Equivalent Markov chain 

 

Figure 2 shows the equivalent Markov chain model of the SAN model in Figure 1. Assuming the 

state 0
(1)

0
(2)

 is an initial state, only 5 of the 6 states in this Markov chain model are reachable. In 

order to express the reachable global states of a SAN model, it is possible to define a 

(reachability) function. The reachable states could also be computed by analyzing all possible 

firing sequences, starting from a given reachable initial state. For the model in Figure 1, the 

reachability function excludes the global state 1
(1)

1
(2)

, thus: 

 

 
 

One of greatest advantages of the SAN formalism in comparison with straightforward Markov 

chain, and even other structured formalism is to have since its first definition [7] a compact form 

to store the infinitesimal generator of the equivalent Markov chain. Instead of storing an (usually) 

huge matrix, the SAN formalism defines a storage based on a tensor formula of considerably 

smaller matrices. Tensor, or Kronecker, algebra [3,4] is defined as a set of multi-dimensional 

structures (tensors) and algebraic operations. It usually allows the very compact description of 

quite large and complex matrices. Also, computation can be handled without ever generating 

extensively the equivalent Markov chain. 

 

3.  A UML PRODUCER/CONSUMER MODEL 

 
The Unified Modeling Language (UML) [6] is a graphically based notation, which is being 

developed by the Object Management Group as a standard means of describing software oriented 

designs. It contains several different types of diagram, which allow different aspects and 

properties of a system design to be expressed. Diagrams must be supplemented by textual and 

other descriptions to produce complete models. For example, a use case is really the description 

of what lies inside the ovals of a use case diagram, rather than just the diagram itself. 

 

Our concern in the approach we propose is basically UML models where the use of time has 

significance. In fact, it is evident to say that the need to predict performance is applied only to 

time-driven application, i.e. applications where objects actions are triggered by time progress. 
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Thus, here we present an example of such time

producer/consumer model. The model we propose is 

in [8]. In our model presentation we only focus o

behavior of the system, i.e. the class diagram (section 3.1), 

diagrams (section 3.2). 

 

3.1. The class diagram 

 
A UML class model defines the essential types of object available to build a system; each class is 

described by a rectangle with a name. This can be refined by adding compartments below the 

name which list the attributes and operations contained in each instanc

this class. Classes are linked by lines known as 

knows about the other. The direction of this knowledge is known as the 

association. In an implementation an 

reference variable of the type of the other class. Sometimes navigability has to be two ways, but it 

more often one way. This can be shown by adding arrow head t

 

Figure 3: Producer/Consumer model 

 
The class model of our producer/consumer application is presented in Figure 3. 

system with two kinds of processes, producer and consumer that communicate via a buffer. 

A producer spends time producing

Plus(). 

 

A consumer picks a message from the buffer, via the method 

consuming it.  
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an example of such time-driven applications which describes a 

producer/consumer model. The model we propose is a more detailed extension of the model seen 

]. In our model presentation we only focus of diagrams that describe the structure and the 

e class diagram (section 3.1), and collaboration and state

class model defines the essential types of object available to build a system; each class is 

described by a rectangle with a name. This can be refined by adding compartments below the 

name which list the attributes and operations contained in each instance of (object derived from) 

Classes are linked by lines known as associations which indicate that one of the classes 

knows about the other. The direction of this knowledge is known as the navigability

association. In an implementation an association typically corresponds to one class having a 

reference variable of the type of the other class. Sometimes navigability has to be two ways, but it 

more often one way. This can be shown by adding arrow head to the end(s) of the association [

 

: Producer/Consumer model - the class diagram 

producer/consumer application is presented in Figure 3. We assu

system with two kinds of processes, producer and consumer that communicate via a buffer. 

A producer spends time producing a message before sending it to the buffer due to the method 

consumer picks a message from the buffer, via the method Minus(), and then spends some time 
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which describes a 

extension of the model seen 

f diagrams that describe the structure and the 

and state-chart 

class model defines the essential types of object available to build a system; each class is 

described by a rectangle with a name. This can be refined by adding compartments below the 

e of (object derived from) 

which indicate that one of the classes 

navigability of the 

association typically corresponds to one class having a 

reference variable of the type of the other class. Sometimes navigability has to be two ways, but it 

o the end(s) of the association [8]. 

 

We assume a 

system with two kinds of processes, producer and consumer that communicate via a buffer.  

the buffer due to the method 

, and then spends some time 
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The variable t of the super-class 

a producer, respectively a consumer. Of course, the value of this variable may be different for 

each process (producer and consumer).

 

The buffer has some capacity, described by its variable 

implies that it may to receive new message from the producer. The value of the attribute 

is set to true when the buffer is full. On the other hand, the attribute available is set to false when 

the buffer is empty, meaning that the consumer cannot pick messages from the buffer. 

 

We also assume the existence of the two methods 

the attributes Available and Blocked

demarche intending to derive a SAN model as i

 

3.2. Collaboration and State

 
Collaborations describe the way the objects interact 

instances of classes behave internally

full description of how the system works.

 
3.2.1. Collaboration Diagram  

 
Collaborations are collections of objects, linked to show the relevant associations between their 

classes. Here “time” is not represented explicitly. Instead the emphasis is on showing which 

objects communicate with which others. 

 

Figure 4 represents the collaboration diagram of 

communication between a family of 

buffer. In the model of Figure 4, we suppose that there are (

consumers. 

 

Figure 4: Producer/Consumer model 

 
As it was mentioned before, the collaboration diagrams show how objects are interacting with 

each other. Each produce communicates with the buffer via the 

consumer communicates with the same buffer via the 

message is the result of the corresponding method previously described in the class diagram. 
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class System represents the producing, respectively consuming, time of 

a producer, respectively a consumer. Of course, the value of this variable may be different for 

s (producer and consumer). 

The buffer has some capacity, described by its variable Size; when the buffer is not full, this 

receive new message from the producer. The value of the attribute 

is set to true when the buffer is full. On the other hand, the attribute available is set to false when 

the buffer is empty, meaning that the consumer cannot pick messages from the buffer. 

We also assume the existence of the two methods setAvailable and setBlocked that gives values to 

Blocked respectively. These two methods are important in our 

demarche intending to derive a SAN model as it will be discussed in section 4. 

and State-chart diagram 

tions describe the way the objects interact externally. Statescharts describe how 

internally. In a complete design they should provide between them a 

full description of how the system works. 

 

Collaborations are collections of objects, linked to show the relevant associations between their 

classes. Here “time” is not represented explicitly. Instead the emphasis is on showing which 

objects communicate with which others.  

collaboration diagram of producer/consumer model. 

a family of M producers and another family of N consumers via one 

buffer. In the model of Figure 4, we suppose that there are (M=3) producers and (

 
: Producer/Consumer model - the collaboration diagram 

As it was mentioned before, the collaboration diagrams show how objects are interacting with 

each other. Each produce communicates with the buffer via the Plus() messag

consumer communicates with the same buffer via the Minus() message. Each communication 

message is the result of the corresponding method previously described in the class diagram. 
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represents the producing, respectively consuming, time of 

a producer, respectively a consumer. Of course, the value of this variable may be different for 

; when the buffer is not full, this 

receive new message from the producer. The value of the attribute Blocked 

is set to true when the buffer is full. On the other hand, the attribute available is set to false when 

the buffer is empty, meaning that the consumer cannot pick messages from the buffer.  

that gives values to 

respectively. These two methods are important in our 

. Statescharts describe how 

. In a complete design they should provide between them a 

Collaborations are collections of objects, linked to show the relevant associations between their 

classes. Here “time” is not represented explicitly. Instead the emphasis is on showing which 

 It acts of a 

consumers via one 

) producers and (N=5) 

 

As it was mentioned before, the collaboration diagrams show how objects are interacting with 

message, and each 

message. Each communication 

message is the result of the corresponding method previously described in the class diagram.  
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3.2.2. State-chart Diagram  

 

On the other hand, state-charts d

provide a full description of how the system works. We insert the state

its box in the collaboration. At any point in the lifetime of this system, each object must b

and only one, of its internal states. Each time a message (event) is passed, it may 

change in the receiving object and this may cause a further message to be passed 

object and another with which it has an association. 

 
Figure 5 presents the

 

Figure 5: Producer/Consumer model 

 
Each chart describes the internal behavior of the concerned object. Briefly, a chart is com

states, transitions, triggers and actions. 

 
States are shown here as rounded rectangles

Transitions are the arrows between states, labeled with a trigger. 

 

Remark that states and transition

transitions. 
Triggers represent the reason for an object to leave one state and follow the correspond

transition to another state; typically a trigger is an incoming message shown by one of the two

usual ways for messages: 

 

� A change in a condition; represented by the word 

enclosed in brackets.

� An elapsing of time 

unconditional trigger.

 

Triggers may also invoke actions
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charts describe how objects behave internally. In a complete design they 

provide a full description of how the system works. We insert the state-chart for each object into 

its box in the collaboration. At any point in the lifetime of this system, each object must b

and only one, of its internal states. Each time a message (event) is passed, it may 

change in the receiving object and this may cause a further message to be passed 

object and another with which it has an association.  

igure 5 presents the state-chart diagram of our producer/consumer model. 

 

: Producer/Consumer model - the state-chart diagram 

Each chart describes the internal behavior of the concerned object. Briefly, a chart is com

states, transitions, triggers and actions.  

here as rounded rectangles; the initial state as a black filled circle.

are the arrows between states, labeled with a trigger.  

that states and transitions of UML state-chart are similar to the SAN’s states and 

represent the reason for an object to leave one state and follow the correspond

transition to another state; typically a trigger is an incoming message shown by one of the two

A change in a condition; represented by the word when followed by the condition 

enclosed in brackets. This kind of triggers is called conditional triggers.

An elapsing of time – shown by the word after enclosing the duration.

unconditional trigger.  

ctions. 
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behave internally. In a complete design they 

chart for each object into 

its box in the collaboration. At any point in the lifetime of this system, each object must be in one, 

and only one, of its internal states. Each time a message (event) is passed, it may cause a state 

change in the receiving object and this may cause a further message to be passed between that 

 

Each chart describes the internal behavior of the concerned object. Briefly, a chart is composed of 

; the initial state as a black filled circle. 

chart are similar to the SAN’s states and 

represent the reason for an object to leave one state and follow the corresponding 

transition to another state; typically a trigger is an incoming message shown by one of the two 

followed by the condition 

This kind of triggers is called conditional triggers. 

enclosing the duration. This is an 
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Actions are prefixed with a forward slash and carried out before entering the new state. These 

actions may be local method of the object where the trigger is fired, or a method of another 

object. In the second case, the invoked action represents then a trigger in the chart corresponding 

to the concerned object.  

 

In order to simplify the process of derivation in section 5, we propose some definitions. 

 

Definition 1 

 

 A trigger is called of type T1, if it does not fire an action. 

 

Definition 2 

 

A trigger is called of type T2, if it fires one or more actions. 

 
Back to Figure 5, the behavior of each object type is described by a chart. For example, a 

producer alternates between two states:  the state where it is producing a message and the state 

where it is storing the message in the buffer. The transition from the Producing state to the 

Storing state is labeled by the trigger after(t), e.g. t is the class variable. This trigger does not fire 

any action, it is of type T1. The trigger when[b.Blocked = false], labeling the reverse transition, 

invoke the action b.Plus() in the chart corresponding to buffer. This trigger is of type T2.  

 

It is important to notice that triggers of type T1 look like local events in a SAN model. A trigger 

of type T2 seems resembling SAN synchronizing event. 

 

Definition 3 

 
Let t be a trigger of type T2, we call Seq(t) the set of different action sequences that may be fired 

by t. 

 

Card(Seq(t)) is the cardinality of Seq(t) and it is equal to the number of sequences in Seq(t). 

 
According to definition 3, consider the type T2 trigger t = when[b.Blocked = false], the set 

Seq(t), is identified by taking into consideration the different sequence of actions that the trigger 

may fire. In our example, Seq(t) is composed of three sequences S1, S2 amd S3 such that: 

  

Seq(t) = {  S1:  when[b.Blocked = false] � b.Plus() � setAvailable(True) 

  S2:  when[b.Blocked = false] � b.Plus() 

  S3:  when[b.Blocked = false] � b.Plus()� setBlocked(True) } 

 

In fact, when the event when[b.Blocked = false] is invoked, it fires the action b.Plus(). However 

the firing of this action may also fires another action depending on the state of the the state-chart 

Buffer. If the local state is Has0, setAvailable(True) is fired, if  the local state is Has1 no other 

action is fired, and if the local state is Has2, the setBlocked(True) is fired. Card(Seq(t)) is equal to 

3. 
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Moreover, states of the buffer represent the number of messages available in the buffer. The 

number of these states is equal to the buffer size (here, size = 3). Triggers labeling transitions of 

the chart buffer, i.e. Plus() and Minus(), are actions invoked by a producer or a consumer. We 

underline that the action setAvailable(), respectively setBlocked(), change the value of the 

Boolean variable Available, respectively Blocked,  that affects the firing of the trigger 

when[b.Available= true] in the chart consumer, respectively the trigger when[b.Blocked = false] 

in the char producer. This means that at any time, we need to know the value of the variable in 

order to enable or disable the firing of the trigger. Recalling a SAN model, this phenomenon 

gives the impression to be similar to a functional rate that depends on the variable’s value. We 

call such variables, i.e. which affect the firing of a trigger, affecting variables. 

 

The overall state of a system will be the combination of all the current internal state of its objects, 

plus the current values of any relevant attributes, i.e. Blocked and Available. As we mentioned 

before, intuitively, readers may sense a strong similarity to the stochastic automata networks 

behavior. A SAN automaton is a set of states, transitions and events. The global state of a SAN is 

a combination of the local states of its automata. The powerful point of mapping the state-chart 

diagram into a SAN model is that the mapping process will not produce fundamental changes in 

the graph structure, only some information needed to represent relevant attributes and the time 

spent in a state is required. That may help designers to better understand the SAN performance 

model which is an emphasized advantage of our approach. 

 

4. Generating the SAN model 
 
In the previous section, we highlighted the basic elements on which our generation process is 

principally based. In this section, we present how a SAN model is directly generated for the UML 

producer/consumer, giving a sense for a systematical generation process. The SAN automata are 

these corresponding to UML state-charts and these necessary to represent the affecting variables 

value. The generation process is composed of multiple steps. As it is shown in [10], it is 

important to see that there is an intuitive mapping of the UML state-chat into SAN. A state-chart 

automaton is mapped into SAN automaton (states and transitions). The state-chart events are 

translated as SAN events. However, there is still some work to achieve in order to take into 

consideration the affecting variables. In the following, we formally describe the procedure of the 

generation of the SAN model and we illustrate each step of the procedure basing on our 

producer/consumer model. In the following, each subsection represents a step in our generation 

process. Some of these steps are formally described; however others are presented basing on 

intuitive observations. 

 

4.1. Step 1: States/transitions mapping 

 
The first step is to create SAN automata that correspond to state-charts. Only states and 

transitions are created in this step.  The labels of SAN transitions, i.e. events, are created in step 3.  

 
Step 1:   Statechart -- States/Transitions Mapping 

For each automaton X of  the UML state-chart, create a SAN automata Y as following: 

     Omit the initial state. 

     For each state IX in X, create the state IY in Y. 

     For each transition in X from state IX to state JX, create a transition from IY to JY in Y. 
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Applying the first step to our producer/consumer model gives raise to the 

incomplete SAN graph. The table enclosed at right shows the correspondence between states of 

UML model and the new states of the 

 

 

Figure 6: Generation Process 

 

4.2. Step 2: Affecting variables mapping

 
The second step of the generation process is related to 

of such variables are used as conditions for the firing of triggers

it is important to represent the modification of these values in order to enable/disable th

SAN events, as it will be shown in step 3.

 

Step 2

For each affecting variable v in the UML model

     For each potential value kv of v, create the state k

     For each potential value’s modification from v= k to v =

     from kY tp lY in Y.  

 

Indeed, building a SAN automaton that corresponds to 

some criteria. In fact, the number of states of the SAN automaton 

the variable may have. This implies

with affecting variables with infinite value range is a serious challenge. An intuitive idea 

approach this problem is to decompose the values

the variable’s value enables the firing of the trigger, and the sub

trigger’s firing.  

 

Here, we restrict our study to variables with finite potential va
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Applying the first step to our producer/consumer model gives raise to the following

The table enclosed at right shows the correspondence between states of 

UML model and the new states of the intermediate incomplete SAN model. 

 

 

State-chart 

Producer

Producing 

Storing 

Consumer

Consuming 

Acquiring 

Buffer

Has0 

Has1 

Has2 

Has3 

 

: Generation Process - Step 1 – state-chart automata 

Step 2: Affecting variables mapping 

The second step of the generation process is related to affecting variables. Recall that the values 

of such variables are used as conditions for the firing of triggers in the state-chart diagram

he modification of these values in order to enable/disable th

shown in step 3. 

Step 2:   Affecting variables Mapping 

For each affecting variable v in the UML model, create a SAN automaton Y as following:

of v, create the state kY in Y. 

value’s modification from v= k to v =l (k # l), create a transition

, building a SAN automaton that corresponds to an affecting variable is possible under 

he number of states of the SAN automaton is equal to the potential values 

the variable may have. This implies that the number of potential values should be finite. Dealing 

with affecting variables with infinite value range is a serious challenge. An intuitive idea 

ecompose the values range into two sub-ranges: the sub

the variable’s value enables the firing of the trigger, and the sub-range where it disables the 

to variables with finite potential values, i.e. Boolean variables.  
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following intermediate 

The table enclosed at right shows the correspondence between states of 

 SAN 

Producer 

0 

1 

Consumer 

 0 

1 

Buffer 

0 

1 

2 

3 

. Recall that the values 

chart diagram. Thus 

he modification of these values in order to enable/disable the firing of 

Y as following: 

transition 

affecting variable is possible under 

is equal to the potential values 

that the number of potential values should be finite. Dealing 

with affecting variables with infinite value range is a serious challenge. An intuitive idea to 

ranges: the sub-range where 

range where it disables the 

e. Boolean variables.   
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The second step consists to map the potential values that an affecting variable may have into 

states. In our producer/consumer model, there is two

and Blocked. Applying Step 2, generat

events are not represented here as they will be generated in step 3. 

 

Figure 7: Generation 

   
For each of the two Boolean affecting variables, an automaton is associated. The states of each 

automaton represent the different values the variable may have, i.e. either true or false. There is a 

transition from each state to the other state. In case of no Boolean affecting variable, from each 

state, we have to draw a transition to all other states, taking into consideration that the value of 

the variable may change without being aware of the new value. In additio

the UML method that produces the change.

there is two affecting methods: 

affecting variable Blocked and  Available

 

Affecting method should be predictable in the UML model because they will drive the transitions 

in the SAN automata related to affecting variables, a

 

4.3.  Step 3: Events Generation

 
The purpose of this step is to generate the list of events that drive the trans

automata. As it is previously presented, there are two types of events in the SAN model: local 

event that affects only the state of one automaton and synchronizing event that can change 

simultaneously the state of more than one automaton. 

chart will give raise to a SAN local event (Step 3.a). One Trigger 

will give raise to several SAN synchronizing events according to th

Definition 3). 
 

 

Step 3

For each  trigger t of the UML state

     For each automaton X of  the UML state

          For each transition in X from state I

                Add e to the transition from state I

                              Add e to the transition from state I
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The second step consists to map the potential values that an affecting variable may have into 

cer/consumer model, there is two affecting Boolean variables, i.e. 

. Applying Step 2, generate the following incomplete SAN automaton.

events are not represented here as they will be generated in step 3.  

 

 

Affecting Event SAN 

Available 

False 0 

True 1 

Blocked 

False 0 

True 1 

 

: Generation Process - Step 2 - affecting variables 

For each of the two Boolean affecting variables, an automaton is associated. The states of each 

automaton represent the different values the variable may have, i.e. either true or false. There is a 

each state to the other state. In case of no Boolean affecting variable, from each 

state, we have to draw a transition to all other states, taking into consideration that the value of 

the variable may change without being aware of the new value. In addition, we need to identify 

the UML method that produces the change. We call this method affecting method. 

there is two affecting methods: SetBlocked() and setAvailable(), related respectively to the 

Available. 

Affecting method should be predictable in the UML model because they will drive the transitions 

in the SAN automata related to affecting variables, as it will be described in step 3.   

Step 3: Events Generation 

generate the list of events that drive the transitions of the SAN 

t is previously presented, there are two types of events in the SAN model: local 

event that affects only the state of one automaton and synchronizing event that can change 

te of more than one automaton. Each trigger of type T1 of the UML state

chart will give raise to a SAN local event (Step 3.a). One Trigger t of type T2 of the state

will give raise to several SAN synchronizing events according to the cardinality of Seq(t) 

Step 3.a :   Local events Generation 

state-chart,  create a SAN event e  as following: 

For each automaton X of  the UML state-chart (Y is SAN automaton created in step 1)

each transition in X from state IX to state JX, labeled by t 

Add e to the transition from state IY to state JY 

Add e to the transition from state IY to state JY      
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The second step consists to map the potential values that an affecting variable may have into SAN 

s, i.e. Available 

SAN automaton. Again, SAN 

For each of the two Boolean affecting variables, an automaton is associated. The states of each 

automaton represent the different values the variable may have, i.e. either true or false. There is a 

each state to the other state. In case of no Boolean affecting variable, from each 

state, we have to draw a transition to all other states, taking into consideration that the value of 

n, we need to identify 

 In our model 

, related respectively to the 

Affecting method should be predictable in the UML model because they will drive the transitions 

 

itions of the SAN 

t is previously presented, there are two types of events in the SAN model: local 

event that affects only the state of one automaton and synchronizing event that can change 

of the UML state-

of the state-chart 

Seq(t) (refer to 

chart (Y is SAN automaton created in step 1) 
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Step 3.b 

For each  trigger t of the UML state

      For each sequence of actions 

            create a SAN event eS as following:

                 For each automaton X of  the UML state

                 automaton created in step 1)

                            For each transition in X

                            Add eS to the transition from state I

                    

                     For each action a in S 

                     If a is an affecting method then

                           Add eS to the corresponding automata (of the affecting variable)

                    Else 

                          For each automaton X of  the UML state

                          SAN  automaton created in step 1)

                                  For each transition in X from state I

                                  Add eS to the transition from state I

 

Applying the third step to our producer/consumer example gives raise to the graph 

The automata presented in this figure are the set of aut

 

Figure 8: Generation Process 

 
For example, the local event e1

trigger after(t) of the Producer state

trigger is of type T1. The trigger 

SAN events, i.e. e31, e32 and e3

actions (see section 3.2.2). Each

corresponds to the sequence S1:  

sequence involves methods in the state

state-chart Buffer, i.e. b.Plus() , and a method that invoques a change in the value of the affecting 
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Step 3.b : Synchronizing events Generation 

For each  trigger t of the UML state-chart 

For each sequence of actions S in Seq (t) 

as following: 

For each automaton X of  the UML state-chart and Y its corresponding SAN 

automaton created in step 1) 

For each transition in X  from state IX to state JX, labeled by t 

to the transition from state IY to state JY 

If a is an affecting method then 

to the corresponding automata (of the affecting variable) 

For each automaton X of  the UML state-chart and Y its corresponding

SAN  automaton created in step 1) 

For each transition in X from state IX to state JX, labeled by a 

to the transition from state IY to state JY      

Applying the third step to our producer/consumer example gives raise to the graph 

The automata presented in this figure are the set of automata created in step 1 and 2. 

 

: Generation Process - Step 3 - events generation 

e1 of the SAN automaton Producer is the corresponding of the 

of the Producer state-chart. This event is generated according to Step 3.a, as the 

The trigger t = when[b.Blocked = false], of type T2, gives raise for three 

e33. Recall that the set Seq(t) contains three different sequences of 

Each event corresponds to a sequence. For example, The event 

corresponds to the sequence S1:  when[b.Blocked = false] � b.Plus() � setAvailable(True

sequence involves methods in the state-chart Producer, i.e. when[b.Blocked = false]

, and a method that invoques a change in the value of the affecting 
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SAN  

chart and Y its corresponding 

Applying the third step to our producer/consumer example gives raise to the graph of figure 8. 

omata created in step 1 and 2.  

 

is the corresponding of the 

chart. This event is generated according to Step 3.a, as the 

, gives raise for three 

contains three different sequences of 

event corresponds to a sequence. For example, The event e31 

setAvailable(True). This 

when[b.Blocked = false], and the 

, and a method that invoques a change in the value of the affecting 
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variable Available. Thus, the event e3

and Available, and it labels the corresponding transitions.

 

4.4. Step 4: Events’ rates 

 
Basing on Step 3, it may be noticed that two categories of events may be underlined: events 

corresponding to the “when” methods, e.g. the event e3

“when” method, e.g. the event e1

occurrence of a sequence of methods. 

 

For each event e that does not correspond to the 

an event corresponding to the when

event e31 that corresponds to the sequence 

setAvailable(True). The event e3

local state 0, i.e. the state that corresponds to the value False of the affecting variable Blocked. 

Thus the rate assigned to the event 

 

fe3=  � ���

 

 

It is obvious to see that the concept of functional rate is a powerful point of using stochastic 

automata network. 

 

Finally, recall that events e31, e3

assigned the same rate, i.e. fe3.

Producer/Consumer model is given by figure 9.

 

Figure 9
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. Thus, the event e31 synchronizes the three SAN automata Producer, Buffer 

and Available, and it labels the corresponding transitions. 

Basing on Step 3, it may be noticed that two categories of events may be underlined: events 

methods, e.g. the event e31, and events that do not correspond to the 

e1. Recall that the method when has a condition and it controls the 

occurrence of a sequence of methods.  

that does not correspond to the when method, the rate λe is assigned. However, 

when method is assigned a functional rate. Let us reconsider the 

that corresponds to the sequence when[b.Blocked = false] � 

e31 should be eligible to fire only if the automaton Blocked is in its 

local state 0, i.e. the state that corresponds to the value False of the affecting variable Blocked. 

Thus the rate assigned to the event e31 is the function rate fe3 described as following:

� ���   �� �	
���
� ������� �� � �
�
� 0� �
�������
� 

It is obvious to see that the concept of functional rate is a powerful point of using stochastic 

e32 and e33 are basically related to the same trigger, they should be 

fe3. Thus, the typical SAN model corresponding to the UML 

Producer/Consumer model is given by figure 9.  

 

9:  Generation Process - Step 4 - events rates 
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the three SAN automata Producer, Buffer 

Basing on Step 3, it may be noticed that two categories of events may be underlined: events 

and events that do not correspond to the 

has a condition and it controls the 

e is assigned. However, 

functional rate. Let us reconsider the 

 b.Plus() � 

should be eligible to fire only if the automaton Blocked is in its 

local state 0, i.e. the state that corresponds to the value False of the affecting variable Blocked. 

described as following: 

It is obvious to see that the concept of functional rate is a powerful point of using stochastic 

are basically related to the same trigger, they should be 

SAN model corresponding to the UML 
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4.5. Step 5: Effect of collaboration diagram

 

The SAN model presented in figure 9

definition of a SAN model. However, this SAN model does not yet correspond to the UML model 

as it does not take into consideration the presence of differe

For example, the automaton Producer of figure 9 describes the state of only one producer; 

however, it is possible to have more than producer in the system. 

 

As it has been shown, the collaboration diagram presents the interaction between all objects of a 

system; thus, it reflects the number of each instances of each class type acting in the system. 

 

The last step of the generation process is to take into consideration the number of objects acting 

in the system basing on the UML collaboration diagram. For each object, a separate SAN 

automaton is created and which is a duplicate of the original automaton giving in step 4. For 

example, the producer/consumer, there are three Producer objects, and then three automata should 

be created as a duplicate of the automaton Producer of figure 9, 

 

Figure 10: Generation Process 

    
In each of duplicate automaton, events type (local or synchronizing) is the same as original events 

type. For example, the event e1(1)

synchronizing event synchronizes the same automata as the original event. For example, events 

e31(1), e31(2) and e31(3) should also synchronize automata Buffer and Available, as the original 

automata e31, i.e. they replace e3

Moreover, each duplicate event has its own rate. Furthermore, if the original event has a 

functional rate, then the duplicate event should also have the same functional rate. For example 

the rate of the duplicate event e3

 

fe3(1)=  � ���

 

 

As a conclusion of our generation process, by combining the five steps, the SAN model 

corresponding to a UML model may now be systematically generated, and performan

predictions may easily be analyzed using the PEPS software tool [

 

5. Conclusion 
 
This paper is the continuity of 

software engineering. We have presented a 
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Step 5: Effect of collaboration diagram 

SAN model presented in figure 9 is a complete SAN model in the sense it respects the formal 

definition of a SAN model. However, this SAN model does not yet correspond to the UML model 

t does not take into consideration the presence of different instances of each UML class type. 

roducer of figure 9 describes the state of only one producer; 

however, it is possible to have more than producer in the system.  

As it has been shown, the collaboration diagram presents the interaction between all objects of a 

e number of each instances of each class type acting in the system. 

The last step of the generation process is to take into consideration the number of objects acting 

in the system basing on the UML collaboration diagram. For each object, a separate SAN 

automaton is created and which is a duplicate of the original automaton giving in step 4. For 

example, the producer/consumer, there are three Producer objects, and then three automata should 

be created as a duplicate of the automaton Producer of figure 9, as it is shown in figure 10.

 

: Generation Process - Step 5 - effect of collaboration diagram 

In each of duplicate automaton, events type (local or synchronizing) is the same as original events 

(1) is a local event of the automaton Producer(1). In addition, a 

synchronizing event synchronizes the same automata as the original event. For example, events 

should also synchronize automata Buffer and Available, as the original 

e31 on the corresponding transitions label. 

Moreover, each duplicate event has its own rate. Furthermore, if the original event has a 

functional rate, then the duplicate event should also have the same functional rate. For example 

e31(1) is given by: 

� ������   �� �	
���
� ������� �� � �
�
� 0� �
�������
� 

As a conclusion of our generation process, by combining the five steps, the SAN model 

corresponding to a UML model may now be systematically generated, and performan

predictions may easily be analyzed using the PEPS software tool [1].  

 our work that proposes a new methodology in the performance 

software engineering. We have presented a formal process that allows generating a stochastic 
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in the sense it respects the formal 

definition of a SAN model. However, this SAN model does not yet correspond to the UML model 

nt instances of each UML class type. 

roducer of figure 9 describes the state of only one producer; 

As it has been shown, the collaboration diagram presents the interaction between all objects of a 

e number of each instances of each class type acting in the system.  

The last step of the generation process is to take into consideration the number of objects acting 

in the system basing on the UML collaboration diagram. For each object, a separate SAN 

automaton is created and which is a duplicate of the original automaton giving in step 4. For 

example, the producer/consumer, there are three Producer objects, and then three automata should 

as it is shown in figure 10. 

 

In each of duplicate automaton, events type (local or synchronizing) is the same as original events 

is a local event of the automaton Producer(1). In addition, a 

synchronizing event synchronizes the same automata as the original event. For example, events 

should also synchronize automata Buffer and Available, as the original 

Moreover, each duplicate event has its own rate. Furthermore, if the original event has a 

functional rate, then the duplicate event should also have the same functional rate. For example 

As a conclusion of our generation process, by combining the five steps, the SAN model 

corresponding to a UML model may now be systematically generated, and performance 

a new methodology in the performance 

that allows generating a stochastic 
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automata network model from a UML model. The generation process is systematic and can be 

easily implemented.  

 

This work has double interests. The direct interest is that it proposes a new methodology that 

allows designers to predicate the performance of their applications before proceeding to the 

implementation phase. The indirect interest is that it offers a visual interface in order to construct 

SAN models by benefiting from UML tools facilities. In fact, SAN model can be constructed as a 

UML state-chart and the SAN model is then generated using our generation process. 

 

It remains for us to implement the UML2SAN generation process in a tool. This is a perspective of 

our work. Exploring and testing more case studies is also an ongoing work. 
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