
International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

DOI : 10.5121/ijsea.2012.3304 35

UML2SAN: TOWARD A NEW SOFTWARE

PERFORMANCE ENGINEERING APPROACH

Ihab Sbeity
1
, Mohamed Dbouk

1
 and Ilfat Ghamlouche

2

1
Faculty of Sciences, Lebanese University, Lebanon

2
Faculty of Economical Sciences and Management, Lebanese University, Lebanon

ABSTRACT

 Software Performance Engineering (SPE) has recently considered as an important issue in the software

development process. It consists on evaluate the performance of a system during the design phase. We have

recently proposed a new methodology to generate a Stochastic Automata Network (SAN) model from a

UML model, to consequently obtain performance predications from UML specifications. In this paper, we

expand our idea to cover more complex UML models taking in advantage the modularity of SAN in

modeling large systems. A formal description of the generation process is presented. The new extension

gives rise to a serious approach in SPE that we call UML2SAN.

KEYWORD

Software engineering, Performance software engineering, UML, Stochastic Automata Network.

1. INTRODUCTION

Software engineering has traditionally focused on functional requirements and how to build

software that has few bugs and can be easily maintained. Most design approaches include non-

functional requirements among the elements of the analysis of a system, but little attention has

usually been paid to how these requirements can be dealt with through the development life-cycle

[9].

Over the two last decades, the performance analysis of software systems during the design

process is becoming widely suitable. The benefit comes from getting quantitative predications

about the system before being implemented. That reduces the possibility of unexpected

shortcoming on the system functionality. .Moreover, an important methodology, initially

introduced by Smith [11], starts today to cover a large place in the software engineering area.

This methodology, called Performance Software Engineering (SPE), consists essentially on

introducing some techniques allowing obtaining performance predictions of the system basing on

the design model.

 Several approaches have been introduced to provide SPE techniques. Some of them propose to

derive from a UML (Unified Modeling Language) model a separate performance model [5, 8,

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

36

10]. In addition to the classification of UML as a universal modeling language widely used by

designers, it is apparently possible to attach performance analysis tools to UML notations in a

relatively straightforward manner. Our recent work in [10], initiates a preliminary methodology to

derive from UML a Stochastic Automata Network (SAN) model, a Markov-based model used to

generate performance predictions. The SAN formalism [7] is usually quite attractive when

modeling a system with several parallel cooperative activities. In addition, SAN permits to

represent a system in modular way. A SAN model is a state-transition graph having a strong

likeness with the UML state-chart diagram.

The purpose of this work is to make a step forward toward proposing a general heuristic to derive

a SAN model from complex UML model. In [10], our methodology is based on the UML state-

diagram, with transitions’ edges only labeled by unconditional triggers and actions. In this paper,

we show how to deal with conditional triggers. In addition, we show the impact of the

collaboration diagram in the derivation process. The demarche is also informally presented,

however, this works enlarge the possibility to propose a formal demarche.

The rest of this paper is organized as follows. Section 2 recalls the definition of the SAN as

modular formalism. Section 3 presents a UML producer/consumer example with conditional

triggers in the stat-chat diagram. This section shows the essential UML diagrams need for the

derivation of the SAN model. Section 4 explores how the UML model maps into SAN basing on

our case study. Section 5 concludes our paper and describes our ongoing works.

2. STOCHASTIC AUTOMATA NETWORKS

Stochastic Automata Networks (SAN) is a structured Markovian formalism, i.e., it describes

continuous-time Markovian models not as a flat system, but as a structured (modular and

organized) collection of subsystems. The basic modeling principle of SAN is to describe a whole

system by a collection of subsystems with an independent behavior and occasional

interdependencies. Each subsystem is described as a stochastic automaton, i.e., an automaton in

which the transitions are labeled with probabilistic and timing information. Hence, one can

always build a continuous-time stochastic process related to SAN [2, 12].

The global state of a SAN model is defined by the cartesian product of the local states of all

automata. There are two types of events that change the global state: local and synchronizing

events. Local events change the SAN global state passing from a global state to another that

differs only by one local state. Synchronizing events can change simultaneously more than one

local state, i.e., two or more automata can change their local states simultaneously. In other

words, the occurrence of a synchronizing event forces all concerned automata to fire a transition

corresponding to this event.

Each event is represented by an identifier and a rate of occurrence, which describes how often a

given event will occur. Each transition may be fired as result of the occurrence of any number of

events. In general, non-determinism among possible different events is dealt with according to

Markovian behavior, i.e., any of the events may occur and their occurrence rates define the

relative frequency with which each of them will occur. However, if, from a given local state, the

occurrence of a given event can lead to more than one state, then an additional routing probability

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

37

must be informed to each possible destination state. The absence of routing probability is

tolerated if only one transition can be fired by an event from a given local state.

The other possibility of interaction among automata is the use of functional rates. Any event

occurrence rate may be expressed by a constant value or a function of the state of other automata.

By contrast with synchronizing events, functional rates are one-way interaction among automata,

since it affects only the automaton where it appears.

Figure 1 presents a SAN model with two automata, one synchronizing event (e2) with a constant

rate, and four local events, being three with constant rates (e3, e4 and e5) and one with a

functional rate (e1). In this model the rate of the event e1 is a functional rate f semantically

explained below, and described inside Figure 1 using the SAN notation. The interpretation of

such a function can be viewed as the evaluation of an expression of non-typed programming

languages, e.g., C language, where each comparison is evaluated to value 1 (true) or value 0

(false).

Figure 1 : Example of a SAN model

The firing of the transition from states 0
(1)

 to 1
(1)

 occurs with rate λ if

automaton A
(2)

 is in state 0
(2)

, or γ if automaton A
(2)

 is in state 2
(2)

. If

automaton A
(2)

 is in state 1
(2)

, the transition from states 0
(1)

 to 1
(1)

 does not

occur (rate equal to 0). It is important to observe that the use of functions

allows a compact and flexible way to describe in one single event (local or

synchronized) alternative behaviors [2]. The advantage of using functions will

be obviously clear in our demarche of derivation a SAN model from UML

model.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

38

Figure 2: Equivalent Markov chain

Figure 2 shows the equivalent Markov chain model of the SAN model in Figure 1. Assuming the

state 0
(1)

0
(2)

 is an initial state, only 5 of the 6 states in this Markov chain model are reachable. In

order to express the reachable global states of a SAN model, it is possible to define a

(reachability) function. The reachable states could also be computed by analyzing all possible

firing sequences, starting from a given reachable initial state. For the model in Figure 1, the

reachability function excludes the global state 1
(1)

1
(2)

, thus:

One of greatest advantages of the SAN formalism in comparison with straightforward Markov

chain, and even other structured formalism is to have since its first definition [7] a compact form

to store the infinitesimal generator of the equivalent Markov chain. Instead of storing an (usually)

huge matrix, the SAN formalism defines a storage based on a tensor formula of considerably

smaller matrices. Tensor, or Kronecker, algebra [3,4] is defined as a set of multi-dimensional

structures (tensors) and algebraic operations. It usually allows the very compact description of

quite large and complex matrices. Also, computation can be handled without ever generating

extensively the equivalent Markov chain.

3. A UML PRODUCER/CONSUMER MODEL

The Unified Modeling Language (UML) [6] is a graphically based notation, which is being

developed by the Object Management Group as a standard means of describing software oriented

designs. It contains several different types of diagram, which allow different aspects and

properties of a system design to be expressed. Diagrams must be supplemented by textual and

other descriptions to produce complete models. For example, a use case is really the description

of what lies inside the ovals of a use case diagram, rather than just the diagram itself.

Our concern in the approach we propose is basically UML models where the use of time has

significance. In fact, it is evident to say that the need to predict performance is applied only to

time-driven application, i.e. applications where objects actions are triggered by time progress.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

Thus, here we present an example of such time

producer/consumer model. The model we propose is

in [8]. In our model presentation we only focus o

behavior of the system, i.e. the class diagram (section 3.1),

diagrams (section 3.2).

3.1. The class diagram

A UML class model defines the essential types of object available to build a system; each class is

described by a rectangle with a name. This can be refined by adding compartments below the

name which list the attributes and operations contained in each instanc

this class. Classes are linked by lines known as

knows about the other. The direction of this knowledge is known as the

association. In an implementation an

reference variable of the type of the other class. Sometimes navigability has to be two ways, but it

more often one way. This can be shown by adding arrow head t

Figure 3: Producer/Consumer model

The class model of our producer/consumer application is presented in Figure 3.

system with two kinds of processes, producer and consumer that communicate via a buffer.

A producer spends time producing

Plus().

A consumer picks a message from the buffer, via the method

consuming it.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

an example of such time-driven applications which describes a

producer/consumer model. The model we propose is a more detailed extension of the model seen

]. In our model presentation we only focus of diagrams that describe the structure and the

e class diagram (section 3.1), and collaboration and state

class model defines the essential types of object available to build a system; each class is

described by a rectangle with a name. This can be refined by adding compartments below the

name which list the attributes and operations contained in each instance of (object derived from)

Classes are linked by lines known as associations which indicate that one of the classes

knows about the other. The direction of this knowledge is known as the navigability

association. In an implementation an association typically corresponds to one class having a

reference variable of the type of the other class. Sometimes navigability has to be two ways, but it

more often one way. This can be shown by adding arrow head to the end(s) of the association [

: Producer/Consumer model - the class diagram

producer/consumer application is presented in Figure 3. We assu

system with two kinds of processes, producer and consumer that communicate via a buffer.

A producer spends time producing a message before sending it to the buffer due to the method

consumer picks a message from the buffer, via the method Minus(), and then spends some time

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

39

which describes a

extension of the model seen

f diagrams that describe the structure and the

and state-chart

class model defines the essential types of object available to build a system; each class is

described by a rectangle with a name. This can be refined by adding compartments below the

e of (object derived from)

which indicate that one of the classes

navigability of the

association typically corresponds to one class having a

reference variable of the type of the other class. Sometimes navigability has to be two ways, but it

o the end(s) of the association [8].

We assume a

system with two kinds of processes, producer and consumer that communicate via a buffer.

the buffer due to the method

, and then spends some time

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

The variable t of the super-class

a producer, respectively a consumer. Of course, the value of this variable may be different for

each process (producer and consumer).

The buffer has some capacity, described by its variable

implies that it may to receive new message from the producer. The value of the attribute

is set to true when the buffer is full. On the other hand, the attribute available is set to false when

the buffer is empty, meaning that the consumer cannot pick messages from the buffer.

We also assume the existence of the two methods

the attributes Available and Blocked

demarche intending to derive a SAN model as i

3.2. Collaboration and State

Collaborations describe the way the objects interact

instances of classes behave internally

full description of how the system works.

3.2.1. Collaboration Diagram

Collaborations are collections of objects, linked to show the relevant associations between their

classes. Here “time” is not represented explicitly. Instead the emphasis is on showing which

objects communicate with which others.

Figure 4 represents the collaboration diagram of

communication between a family of

buffer. In the model of Figure 4, we suppose that there are (

consumers.

Figure 4: Producer/Consumer model

As it was mentioned before, the collaboration diagrams show how objects are interacting with

each other. Each produce communicates with the buffer via the

consumer communicates with the same buffer via the

message is the result of the corresponding method previously described in the class diagram.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

class System represents the producing, respectively consuming, time of

a producer, respectively a consumer. Of course, the value of this variable may be different for

s (producer and consumer).

The buffer has some capacity, described by its variable Size; when the buffer is not full, this

receive new message from the producer. The value of the attribute

is set to true when the buffer is full. On the other hand, the attribute available is set to false when

the buffer is empty, meaning that the consumer cannot pick messages from the buffer.

We also assume the existence of the two methods setAvailable and setBlocked that gives values to

Blocked respectively. These two methods are important in our

demarche intending to derive a SAN model as it will be discussed in section 4.

and State-chart diagram

tions describe the way the objects interact externally. Statescharts describe how

internally. In a complete design they should provide between them a

full description of how the system works.

Collaborations are collections of objects, linked to show the relevant associations between their

classes. Here “time” is not represented explicitly. Instead the emphasis is on showing which

objects communicate with which others.

collaboration diagram of producer/consumer model.

a family of M producers and another family of N consumers via one

buffer. In the model of Figure 4, we suppose that there are (M=3) producers and (

: Producer/Consumer model - the collaboration diagram

As it was mentioned before, the collaboration diagrams show how objects are interacting with

each other. Each produce communicates with the buffer via the Plus() messag

consumer communicates with the same buffer via the Minus() message. Each communication

message is the result of the corresponding method previously described in the class diagram.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

40

represents the producing, respectively consuming, time of

a producer, respectively a consumer. Of course, the value of this variable may be different for

; when the buffer is not full, this

receive new message from the producer. The value of the attribute Blocked

is set to true when the buffer is full. On the other hand, the attribute available is set to false when

the buffer is empty, meaning that the consumer cannot pick messages from the buffer.

that gives values to

respectively. These two methods are important in our

. Statescharts describe how

. In a complete design they should provide between them a

Collaborations are collections of objects, linked to show the relevant associations between their

classes. Here “time” is not represented explicitly. Instead the emphasis is on showing which

 It acts of a

consumers via one

) producers and (N=5)

As it was mentioned before, the collaboration diagrams show how objects are interacting with

message, and each

message. Each communication

message is the result of the corresponding method previously described in the class diagram.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

3.2.2. State-chart Diagram

On the other hand, state-charts d

provide a full description of how the system works. We insert the state

its box in the collaboration. At any point in the lifetime of this system, each object must b

and only one, of its internal states. Each time a message (event) is passed, it may

change in the receiving object and this may cause a further message to be passed

object and another with which it has an association.

Figure 5 presents the

Figure 5: Producer/Consumer model

Each chart describes the internal behavior of the concerned object. Briefly, a chart is com

states, transitions, triggers and actions.

States are shown here as rounded rectangles

Transitions are the arrows between states, labeled with a trigger.

Remark that states and transition

transitions.
Triggers represent the reason for an object to leave one state and follow the correspond

transition to another state; typically a trigger is an incoming message shown by one of the two

usual ways for messages:

� A change in a condition; represented by the word

enclosed in brackets.

� An elapsing of time

unconditional trigger.

Triggers may also invoke actions

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

charts describe how objects behave internally. In a complete design they

provide a full description of how the system works. We insert the state-chart for each object into

its box in the collaboration. At any point in the lifetime of this system, each object must b

and only one, of its internal states. Each time a message (event) is passed, it may

change in the receiving object and this may cause a further message to be passed

object and another with which it has an association.

igure 5 presents the state-chart diagram of our producer/consumer model.

: Producer/Consumer model - the state-chart diagram

Each chart describes the internal behavior of the concerned object. Briefly, a chart is com

states, transitions, triggers and actions.

here as rounded rectangles; the initial state as a black filled circle.

are the arrows between states, labeled with a trigger.

that states and transitions of UML state-chart are similar to the SAN’s states and

represent the reason for an object to leave one state and follow the correspond

transition to another state; typically a trigger is an incoming message shown by one of the two

A change in a condition; represented by the word when followed by the condition

enclosed in brackets. This kind of triggers is called conditional triggers.

An elapsing of time – shown by the word after enclosing the duration.

unconditional trigger.

ctions.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

41

behave internally. In a complete design they

chart for each object into

its box in the collaboration. At any point in the lifetime of this system, each object must be in one,

and only one, of its internal states. Each time a message (event) is passed, it may cause a state

change in the receiving object and this may cause a further message to be passed between that

Each chart describes the internal behavior of the concerned object. Briefly, a chart is composed of

; the initial state as a black filled circle.

chart are similar to the SAN’s states and

represent the reason for an object to leave one state and follow the corresponding

transition to another state; typically a trigger is an incoming message shown by one of the two

followed by the condition

This kind of triggers is called conditional triggers.

enclosing the duration. This is an

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

42

Actions are prefixed with a forward slash and carried out before entering the new state. These

actions may be local method of the object where the trigger is fired, or a method of another

object. In the second case, the invoked action represents then a trigger in the chart corresponding

to the concerned object.

In order to simplify the process of derivation in section 5, we propose some definitions.

Definition 1

 A trigger is called of type T1, if it does not fire an action.

Definition 2

A trigger is called of type T2, if it fires one or more actions.

Back to Figure 5, the behavior of each object type is described by a chart. For example, a

producer alternates between two states: the state where it is producing a message and the state

where it is storing the message in the buffer. The transition from the Producing state to the

Storing state is labeled by the trigger after(t), e.g. t is the class variable. This trigger does not fire

any action, it is of type T1. The trigger when[b.Blocked = false], labeling the reverse transition,

invoke the action b.Plus() in the chart corresponding to buffer. This trigger is of type T2.

It is important to notice that triggers of type T1 look like local events in a SAN model. A trigger

of type T2 seems resembling SAN synchronizing event.

Definition 3

Let t be a trigger of type T2, we call Seq(t) the set of different action sequences that may be fired

by t.

Card(Seq(t)) is the cardinality of Seq(t) and it is equal to the number of sequences in Seq(t).

According to definition 3, consider the type T2 trigger t = when[b.Blocked = false], the set

Seq(t), is identified by taking into consideration the different sequence of actions that the trigger

may fire. In our example, Seq(t) is composed of three sequences S1, S2 amd S3 such that:

Seq(t) = { S1: when[b.Blocked = false] � b.Plus() � setAvailable(True)

 S2: when[b.Blocked = false] � b.Plus()

 S3: when[b.Blocked = false] � b.Plus()� setBlocked(True) }

In fact, when the event when[b.Blocked = false] is invoked, it fires the action b.Plus(). However

the firing of this action may also fires another action depending on the state of the the state-chart

Buffer. If the local state is Has0, setAvailable(True) is fired, if the local state is Has1 no other

action is fired, and if the local state is Has2, the setBlocked(True) is fired. Card(Seq(t)) is equal to

3.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

43

Moreover, states of the buffer represent the number of messages available in the buffer. The

number of these states is equal to the buffer size (here, size = 3). Triggers labeling transitions of

the chart buffer, i.e. Plus() and Minus(), are actions invoked by a producer or a consumer. We

underline that the action setAvailable(), respectively setBlocked(), change the value of the

Boolean variable Available, respectively Blocked, that affects the firing of the trigger

when[b.Available= true] in the chart consumer, respectively the trigger when[b.Blocked = false]

in the char producer. This means that at any time, we need to know the value of the variable in

order to enable or disable the firing of the trigger. Recalling a SAN model, this phenomenon

gives the impression to be similar to a functional rate that depends on the variable’s value. We

call such variables, i.e. which affect the firing of a trigger, affecting variables.

The overall state of a system will be the combination of all the current internal state of its objects,

plus the current values of any relevant attributes, i.e. Blocked and Available. As we mentioned

before, intuitively, readers may sense a strong similarity to the stochastic automata networks

behavior. A SAN automaton is a set of states, transitions and events. The global state of a SAN is

a combination of the local states of its automata. The powerful point of mapping the state-chart

diagram into a SAN model is that the mapping process will not produce fundamental changes in

the graph structure, only some information needed to represent relevant attributes and the time

spent in a state is required. That may help designers to better understand the SAN performance

model which is an emphasized advantage of our approach.

4. Generating the SAN model

In the previous section, we highlighted the basic elements on which our generation process is

principally based. In this section, we present how a SAN model is directly generated for the UML

producer/consumer, giving a sense for a systematical generation process. The SAN automata are

these corresponding to UML state-charts and these necessary to represent the affecting variables

value. The generation process is composed of multiple steps. As it is shown in [10], it is

important to see that there is an intuitive mapping of the UML state-chat into SAN. A state-chart

automaton is mapped into SAN automaton (states and transitions). The state-chart events are

translated as SAN events. However, there is still some work to achieve in order to take into

consideration the affecting variables. In the following, we formally describe the procedure of the

generation of the SAN model and we illustrate each step of the procedure basing on our

producer/consumer model. In the following, each subsection represents a step in our generation

process. Some of these steps are formally described; however others are presented basing on

intuitive observations.

4.1. Step 1: States/transitions mapping

The first step is to create SAN automata that correspond to state-charts. Only states and

transitions are created in this step. The labels of SAN transitions, i.e. events, are created in step 3.

Step 1: Statechart -- States/Transitions Mapping

For each automaton X of the UML state-chart, create a SAN automata Y as following:

 Omit the initial state.

 For each state IX in X, create the state IY in Y.

 For each transition in X from state IX to state JX, create a transition from IY to JY in Y.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

Applying the first step to our producer/consumer model gives raise to the

incomplete SAN graph. The table enclosed at right shows the correspondence between states of

UML model and the new states of the

Figure 6: Generation Process

4.2. Step 2: Affecting variables mapping

The second step of the generation process is related to

of such variables are used as conditions for the firing of triggers

it is important to represent the modification of these values in order to enable/disable th

SAN events, as it will be shown in step 3.

Step 2

For each affecting variable v in the UML model

 For each potential value kv of v, create the state k

 For each potential value’s modification from v= k to v =

 from kY tp lY in Y.

Indeed, building a SAN automaton that corresponds to

some criteria. In fact, the number of states of the SAN automaton

the variable may have. This implies

with affecting variables with infinite value range is a serious challenge. An intuitive idea

approach this problem is to decompose the values

the variable’s value enables the firing of the trigger, and the sub

trigger’s firing.

Here, we restrict our study to variables with finite potential va

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

Applying the first step to our producer/consumer model gives raise to the following

The table enclosed at right shows the correspondence between states of

UML model and the new states of the intermediate incomplete SAN model.

State-chart

Producer

Producing

Storing

Consumer

Consuming

Acquiring

Buffer

Has0

Has1

Has2

Has3

: Generation Process - Step 1 – state-chart automata

Step 2: Affecting variables mapping

The second step of the generation process is related to affecting variables. Recall that the values

of such variables are used as conditions for the firing of triggers in the state-chart diagram

he modification of these values in order to enable/disable th

shown in step 3.

Step 2: Affecting variables Mapping

For each affecting variable v in the UML model, create a SAN automaton Y as following:

of v, create the state kY in Y.

value’s modification from v= k to v =l (k # l), create a transition

, building a SAN automaton that corresponds to an affecting variable is possible under

he number of states of the SAN automaton is equal to the potential values

the variable may have. This implies that the number of potential values should be finite. Dealing

with affecting variables with infinite value range is a serious challenge. An intuitive idea

ecompose the values range into two sub-ranges: the sub

the variable’s value enables the firing of the trigger, and the sub-range where it disables the

to variables with finite potential values, i.e. Boolean variables.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

44

following intermediate

The table enclosed at right shows the correspondence between states of

 SAN

Producer

0

1

Consumer

 0

1

Buffer

0

1

2

3

. Recall that the values

chart diagram. Thus

he modification of these values in order to enable/disable the firing of

Y as following:

transition

affecting variable is possible under

is equal to the potential values

that the number of potential values should be finite. Dealing

with affecting variables with infinite value range is a serious challenge. An intuitive idea to

ranges: the sub-range where

range where it disables the

e. Boolean variables.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

The second step consists to map the potential values that an affecting variable may have into

states. In our producer/consumer model, there is two

and Blocked. Applying Step 2, generat

events are not represented here as they will be generated in step 3.

Figure 7: Generation

For each of the two Boolean affecting variables, an automaton is associated. The states of each

automaton represent the different values the variable may have, i.e. either true or false. There is a

transition from each state to the other state. In case of no Boolean affecting variable, from each

state, we have to draw a transition to all other states, taking into consideration that the value of

the variable may change without being aware of the new value. In additio

the UML method that produces the change.

there is two affecting methods:

affecting variable Blocked and Available

Affecting method should be predictable in the UML model because they will drive the transitions

in the SAN automata related to affecting variables, a

4.3. Step 3: Events Generation

The purpose of this step is to generate the list of events that drive the trans

automata. As it is previously presented, there are two types of events in the SAN model: local

event that affects only the state of one automaton and synchronizing event that can change

simultaneously the state of more than one automaton.

chart will give raise to a SAN local event (Step 3.a). One Trigger

will give raise to several SAN synchronizing events according to th

Definition 3).

Step 3

For each trigger t of the UML state

 For each automaton X of the UML state

 For each transition in X from state I

 Add e to the transition from state I

 Add e to the transition from state I

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

The second step consists to map the potential values that an affecting variable may have into

cer/consumer model, there is two affecting Boolean variables, i.e.

. Applying Step 2, generate the following incomplete SAN automaton.

events are not represented here as they will be generated in step 3.

Affecting Event SAN

Available

False 0

True 1

Blocked

False 0

True 1

: Generation Process - Step 2 - affecting variables

For each of the two Boolean affecting variables, an automaton is associated. The states of each

automaton represent the different values the variable may have, i.e. either true or false. There is a

each state to the other state. In case of no Boolean affecting variable, from each

state, we have to draw a transition to all other states, taking into consideration that the value of

the variable may change without being aware of the new value. In addition, we need to identify

the UML method that produces the change. We call this method affecting method.

there is two affecting methods: SetBlocked() and setAvailable(), related respectively to the

Available.

Affecting method should be predictable in the UML model because they will drive the transitions

in the SAN automata related to affecting variables, as it will be described in step 3.

Step 3: Events Generation

generate the list of events that drive the transitions of the SAN

t is previously presented, there are two types of events in the SAN model: local

event that affects only the state of one automaton and synchronizing event that can change

te of more than one automaton. Each trigger of type T1 of the UML state

chart will give raise to a SAN local event (Step 3.a). One Trigger t of type T2 of the state

will give raise to several SAN synchronizing events according to the cardinality of Seq(t)

Step 3.a : Local events Generation

state-chart, create a SAN event e as following:

For each automaton X of the UML state-chart (Y is SAN automaton created in step 1)

each transition in X from state IX to state JX, labeled by t

Add e to the transition from state IY to state JY

Add e to the transition from state IY to state JY

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

45

The second step consists to map the potential values that an affecting variable may have into SAN

s, i.e. Available

SAN automaton. Again, SAN

For each of the two Boolean affecting variables, an automaton is associated. The states of each

automaton represent the different values the variable may have, i.e. either true or false. There is a

each state to the other state. In case of no Boolean affecting variable, from each

state, we have to draw a transition to all other states, taking into consideration that the value of

n, we need to identify

 In our model

, related respectively to the

Affecting method should be predictable in the UML model because they will drive the transitions

itions of the SAN

t is previously presented, there are two types of events in the SAN model: local

event that affects only the state of one automaton and synchronizing event that can change

of the UML state-

of the state-chart

Seq(t) (refer to

chart (Y is SAN automaton created in step 1)

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

Step 3.b

For each trigger t of the UML state

 For each sequence of actions

 create a SAN event eS as following:

 For each automaton X of the UML state

 automaton created in step 1)

 For each transition in X

 Add eS to the transition from state I

 For each action a in S

 If a is an affecting method then

 Add eS to the corresponding automata (of the affecting variable)

 Else

 For each automaton X of the UML state

 SAN automaton created in step 1)

 For each transition in X from state I

 Add eS to the transition from state I

Applying the third step to our producer/consumer example gives raise to the graph

The automata presented in this figure are the set of aut

Figure 8: Generation Process

For example, the local event e1

trigger after(t) of the Producer state

trigger is of type T1. The trigger

SAN events, i.e. e31, e32 and e3

actions (see section 3.2.2). Each

corresponds to the sequence S1:

sequence involves methods in the state

state-chart Buffer, i.e. b.Plus() , and a method that invoques a change in the value of the affecting

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

Step 3.b : Synchronizing events Generation

For each trigger t of the UML state-chart

For each sequence of actions S in Seq (t)

as following:

For each automaton X of the UML state-chart and Y its corresponding SAN

automaton created in step 1)

For each transition in X from state IX to state JX, labeled by t

to the transition from state IY to state JY

If a is an affecting method then

to the corresponding automata (of the affecting variable)

For each automaton X of the UML state-chart and Y its corresponding

SAN automaton created in step 1)

For each transition in X from state IX to state JX, labeled by a

to the transition from state IY to state JY

Applying the third step to our producer/consumer example gives raise to the graph

The automata presented in this figure are the set of automata created in step 1 and 2.

: Generation Process - Step 3 - events generation

e1 of the SAN automaton Producer is the corresponding of the

of the Producer state-chart. This event is generated according to Step 3.a, as the

The trigger t = when[b.Blocked = false], of type T2, gives raise for three

e33. Recall that the set Seq(t) contains three different sequences of

Each event corresponds to a sequence. For example, The event

corresponds to the sequence S1: when[b.Blocked = false] � b.Plus() � setAvailable(True

sequence involves methods in the state-chart Producer, i.e. when[b.Blocked = false]

, and a method that invoques a change in the value of the affecting

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

46

SAN

chart and Y its corresponding

Applying the third step to our producer/consumer example gives raise to the graph of figure 8.

omata created in step 1 and 2.

is the corresponding of the

chart. This event is generated according to Step 3.a, as the

, gives raise for three

contains three different sequences of

event corresponds to a sequence. For example, The event e31

setAvailable(True). This

when[b.Blocked = false], and the

, and a method that invoques a change in the value of the affecting

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

variable Available. Thus, the event e3

and Available, and it labels the corresponding transitions.

4.4. Step 4: Events’ rates

Basing on Step 3, it may be noticed that two categories of events may be underlined: events

corresponding to the “when” methods, e.g. the event e3

“when” method, e.g. the event e1

occurrence of a sequence of methods.

For each event e that does not correspond to the

an event corresponding to the when

event e31 that corresponds to the sequence

setAvailable(True). The event e3

local state 0, i.e. the state that corresponds to the value False of the affecting variable Blocked.

Thus the rate assigned to the event

fe3= � ���

It is obvious to see that the concept of functional rate is a powerful point of using stochastic

automata network.

Finally, recall that events e31, e3

assigned the same rate, i.e. fe3.

Producer/Consumer model is given by figure 9.

Figure 9

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

. Thus, the event e31 synchronizes the three SAN automata Producer, Buffer

and Available, and it labels the corresponding transitions.

Basing on Step 3, it may be noticed that two categories of events may be underlined: events

methods, e.g. the event e31, and events that do not correspond to the

e1. Recall that the method when has a condition and it controls the

occurrence of a sequence of methods.

that does not correspond to the when method, the rate λe is assigned. However,

when method is assigned a functional rate. Let us reconsider the

that corresponds to the sequence when[b.Blocked = false] �

e31 should be eligible to fire only if the automaton Blocked is in its

local state 0, i.e. the state that corresponds to the value False of the affecting variable Blocked.

Thus the rate assigned to the event e31 is the function rate fe3 described as following:

� ��� �� �	
���
� ������� �� � �
�
� 0� �
�������
�

It is obvious to see that the concept of functional rate is a powerful point of using stochastic

e32 and e33 are basically related to the same trigger, they should be

fe3. Thus, the typical SAN model corresponding to the UML

Producer/Consumer model is given by figure 9.

9: Generation Process - Step 4 - events rates

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

47

the three SAN automata Producer, Buffer

Basing on Step 3, it may be noticed that two categories of events may be underlined: events

and events that do not correspond to the

has a condition and it controls the

e is assigned. However,

functional rate. Let us reconsider the

 b.Plus() �

should be eligible to fire only if the automaton Blocked is in its

local state 0, i.e. the state that corresponds to the value False of the affecting variable Blocked.

described as following:

It is obvious to see that the concept of functional rate is a powerful point of using stochastic

are basically related to the same trigger, they should be

SAN model corresponding to the UML

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

4.5. Step 5: Effect of collaboration diagram

The SAN model presented in figure 9

definition of a SAN model. However, this SAN model does not yet correspond to the UML model

as it does not take into consideration the presence of differe

For example, the automaton Producer of figure 9 describes the state of only one producer;

however, it is possible to have more than producer in the system.

As it has been shown, the collaboration diagram presents the interaction between all objects of a

system; thus, it reflects the number of each instances of each class type acting in the system.

The last step of the generation process is to take into consideration the number of objects acting

in the system basing on the UML collaboration diagram. For each object, a separate SAN

automaton is created and which is a duplicate of the original automaton giving in step 4. For

example, the producer/consumer, there are three Producer objects, and then three automata should

be created as a duplicate of the automaton Producer of figure 9,

Figure 10: Generation Process

In each of duplicate automaton, events type (local or synchronizing) is the same as original events

type. For example, the event e1(1)

synchronizing event synchronizes the same automata as the original event. For example, events

e31(1), e31(2) and e31(3) should also synchronize automata Buffer and Available, as the original

automata e31, i.e. they replace e3

Moreover, each duplicate event has its own rate. Furthermore, if the original event has a

functional rate, then the duplicate event should also have the same functional rate. For example

the rate of the duplicate event e3

fe3(1)= � ���

As a conclusion of our generation process, by combining the five steps, the SAN model

corresponding to a UML model may now be systematically generated, and performan

predictions may easily be analyzed using the PEPS software tool [

5. Conclusion

This paper is the continuity of

software engineering. We have presented a

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

Step 5: Effect of collaboration diagram

SAN model presented in figure 9 is a complete SAN model in the sense it respects the formal

definition of a SAN model. However, this SAN model does not yet correspond to the UML model

t does not take into consideration the presence of different instances of each UML class type.

roducer of figure 9 describes the state of only one producer;

however, it is possible to have more than producer in the system.

As it has been shown, the collaboration diagram presents the interaction between all objects of a

e number of each instances of each class type acting in the system.

The last step of the generation process is to take into consideration the number of objects acting

in the system basing on the UML collaboration diagram. For each object, a separate SAN

automaton is created and which is a duplicate of the original automaton giving in step 4. For

example, the producer/consumer, there are three Producer objects, and then three automata should

be created as a duplicate of the automaton Producer of figure 9, as it is shown in figure 10.

: Generation Process - Step 5 - effect of collaboration diagram

In each of duplicate automaton, events type (local or synchronizing) is the same as original events

(1) is a local event of the automaton Producer(1). In addition, a

synchronizing event synchronizes the same automata as the original event. For example, events

should also synchronize automata Buffer and Available, as the original

e31 on the corresponding transitions label.

Moreover, each duplicate event has its own rate. Furthermore, if the original event has a

functional rate, then the duplicate event should also have the same functional rate. For example

e31(1) is given by:

� ������ �� �	
���
� ������� �� � �
�
� 0� �
�������
�

As a conclusion of our generation process, by combining the five steps, the SAN model

corresponding to a UML model may now be systematically generated, and performan

predictions may easily be analyzed using the PEPS software tool [1].

 our work that proposes a new methodology in the performance

software engineering. We have presented a formal process that allows generating a stochastic

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

48

in the sense it respects the formal

definition of a SAN model. However, this SAN model does not yet correspond to the UML model

nt instances of each UML class type.

roducer of figure 9 describes the state of only one producer;

As it has been shown, the collaboration diagram presents the interaction between all objects of a

e number of each instances of each class type acting in the system.

The last step of the generation process is to take into consideration the number of objects acting

in the system basing on the UML collaboration diagram. For each object, a separate SAN

automaton is created and which is a duplicate of the original automaton giving in step 4. For

example, the producer/consumer, there are three Producer objects, and then three automata should

as it is shown in figure 10.

In each of duplicate automaton, events type (local or synchronizing) is the same as original events

is a local event of the automaton Producer(1). In addition, a

synchronizing event synchronizes the same automata as the original event. For example, events

should also synchronize automata Buffer and Available, as the original

Moreover, each duplicate event has its own rate. Furthermore, if the original event has a

functional rate, then the duplicate event should also have the same functional rate. For example

As a conclusion of our generation process, by combining the five steps, the SAN model

corresponding to a UML model may now be systematically generated, and performance

a new methodology in the performance

that allows generating a stochastic

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.3, May 2012

49

automata network model from a UML model. The generation process is systematic and can be

easily implemented.

This work has double interests. The direct interest is that it proposes a new methodology that

allows designers to predicate the performance of their applications before proceeding to the

implementation phase. The indirect interest is that it offers a visual interface in order to construct

SAN models by benefiting from UML tools facilities. In fact, SAN model can be constructed as a

UML state-chart and the SAN model is then generated using our generation process.

It remains for us to implement the UML2SAN generation process in a tool. This is a perspective of

our work. Exploring and testing more case studies is also an ongoing work.

REFERENCES

[1] L. Brenner, P. Fernandes, B. Plateau, and I. Sbeity. PEPS2007 - Stochastic Automata Networks

Software Tool. QEST 2007: 163-164

[2] L. Brenner, P. Fernandes and A. Sales. The Need for and the Advantages of Generalized Tensor

Algebra for Kronecker Structured Representations, in: 20th Annual UK Performance Engineering

Workshop, Bradford, UK, 2004, pp. 48–60.

[3] M. Davio. Kronecker Products and Shuffle Algebra, IEEE Transactions on Computers C-30 (1981),

pp. 116–125.

[4] P. Fernandes, B. Plateau and W. J. Stewart. Efficient descriptor - Vector multiplication in Stochastic

Automata Networks, Journal of the ACM 45 (1998), pp. 381–414.

[5] P. King and R. Pooley. Using UML to Derive Stochastic Petri Net Models, UKPEW’ 99, Proceedings

of the Fifteeth UK Performance Engineering Workshop, 1999

[6] Object Management Group, Response to the OMG RFP for Schedulability, Performance, and Time,

OMG Document ad/2001-06-14, June 2001, http://www.omg.org.

[7] B. Plateau. On the stochastic structure of parallelism and synchronization models for distributed

algorithms, in: Proceedings of the 1985 ACM SIGMETRICS conference on Measurements and

Modeling of Computer Systems (1985), pp. 147–154.

[8] R. Pooly and P. King. Using UML to derive stochastic process algebra models, Proceedings of the

Fifteeth UK Performance Engineering Workshop, 1999

[9] R. Pooley. Software Engineering and Performance - a roadmap, in Finkelstein Ed The Future of

Software Engineering, IEEE International Conference on Software Engineering, Limerick, July 2000,

pp189-200.

[10] I. Sbeity, L. Brenner and M. Dbouk. Generating a Performance Stochastic Model from UML

Specifications, International Journal of Computer Science Issues (January 2011), v. 8, issue. 1, pp. 13-

21.

[11] C. U. Smith. Performance Engineering of Software Systems. Addition-Wesley, Reading,

Massachusetts, 1990.

[12] W. J. Stewart. “Introduction to the numerical solution of Markov chains,” Princeton University Press,

1994.

