
International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

DOI : 10.5121/ijsea.2012.3201 1

A PATH-ORIENTED AUTOMATIC RANDOM

TESTING BASED ON DOUBLE

CONSTRAINT PROPAGATION

Ruilian Zhao
1
 Yuandong Huang

2

1
Dept. of Computer Science, Beijing University of Chemical Technology, China

rlzhao@mail.buct.edu.cn

2 Beijing Zhongke Fulong Computer Technology Co.,Ltd

yuandong.h@gmail.com

ABSTRACT

A key issue in software testing is the actual generation of test data from program input domain. Obviously,

more accurate input domain is, more efficient test generation is. This paper presents a path-oriented

automatic random testing method based on double constraint propagation. For a given path, its domain

can be reduced by splitting an input variable domain and executing a double constraint propagation

algorithm. Moreover, a random test data generator is developed according to the reduced path domain and

the test experiments are conducted on a number of programs. Experimental results show that the method

gets more accurate path domain than PRT (path-oriented random testing) approach, and random testing

efficiency can thus be enhanced by using the proposed method.

KEYWORDS

Random testing; Path condition; Double constraint propagation; Automatic testing generation

1. INTRODUCTION

Software testing is one of the most important and practical techniques to ensure software quality.

One challenging task of software testing is to selecting test cases that effectively detect faults at a

minimum cost. Many testing approaches have been developed to guide the test data generation

[1-5]. One simple and common method is Random Testing (RT), in which test data are selected

in a random manner from the program’s input domain. Although some researchers criticized RT

for no information about the software under test (SUT) to guide its test case selection, many

studies show that RT is effective in detecting faults not found by other methods [6-9]. For

example, in a recent study researchers at NASA applied a RT tool to a file system used aboard the

Mars rover. The random testing tool created hundreds of failing tests that revealed previously

unknown errors, despite the fact that many other manual and automated testing techniques had

already been applied to the system [8]. As a result, RT has been shown to be a very useful tool in

the hands of software tester as it is simple, unbiased and the cost is lower than others [9]. Among

these advantages, one key advantage of RT over other techniques is that it selects objectively the

test data by ignoring the specification or the structure of SUT. Therefore, RT has been widely

used in much industrial software testing [10-19].

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

2

Path testing is a well-known software testing technique. The basic idea in path testing is to find at

least one test data to activate each selected path. In [10], A. Gotlieb et al. introduced an approach,

called path-oriented random testing (PRT), to perform RT at the path level. This approach used

backward symbolic execution to derive path conditions corresponding to a selected path, and

computed an approximation of the input subdomain by using constraint propagation and

constraint refutation over finite domains. Then, a uniform random generator was applied to the

approximated subdomain to generate test data. However, it can be observed that some invalid

inputs still exist after applying the PRT approach.

So, in this paper, we present a path-oriented automatic random testing method based on Double

Constraint Propagation. The approach gets the constraint set of the input variables by source

code analysis techniques, and a double constraint propagation algorithm is used to compute the

domain of input variables along a chosen path. Then, a random test generator is invoked to

generate test data for the selected path. The experiment results show that the domain gotten by

our method is more accurate than the PRT, and random testing efficiency can thus be enhanced by

using the proposed method.

The remainder of this paper is organized as follows. Section 2 introduces some basic

terminologies and random testing technology. Section 3 describes path-oriented random testing

strategy. Section 4 present our random test data generation method based on double constraint

propagation. Section 5 reports experimental results to show that the method is effective and

practicable. Section 6 overviews related work. Finally, the conclusions are presented in Section

7.

2. BASIC TERMINOLOGY AND RANDOM TESTING

2.1 Basic Terminology

A program structure can be represented by a control flow graph (CFG). A path is a sequence of

nodes from entry to exit node. An edge (vi,vj) is called a branch if node vi corresponds to a

decision statement at which the control flow has two or more alternative execution routes, such as

if–then–else, switch, for or while statements in C programs. Each branch in a control flow graph

can be labeled with a predicate that describes the conditions under which the branch will be

traversed. A predicate is usually connected with a predicate interpretation that is obtained by

replacing each variable appearing in the predicate with its symbolic value in terms of input

variables. Each path is associated with a path condition that is the conjunction of all the predicate

interpretations that are taken along the path. The path condition represents the constraints that

have to be satisfied for inputs in order to execute the path. If path condition corresponding to a

path has no solution, meaning the path is non-feasible. So, solving the path conditions yield either

to find a test datum on which the path is traversed or to show that the corresponding path is non-

feasible.

2.2 Random Testing

Random testing is a basic and simple software testing technique, which selects test cases at

random from the set of all possible program inputs. When used to detect software failures, RT

often selects test cases according to a uniform distribution strategy, that is, all program inputs

have the same probability to be chosen as test cases. For example, for a program with 2 input

variable x and y, its input domain D can be represented as D=Dx∪Dy, where Dx/Dy, called

variable domain, is a set of all values that input variable x/y can hold. RT can be implemented

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

3

just by selecting x and y from its domain at random, respectively, meaning when selecting y

without paying attention on the value obtained for x. In other word, the two variable values are

independently determined. Obviously, if the domain of x or that of y can be reduced, the test

generation on the invalid domain can be avoided. Therefore, a key question of RT is how to get a

precise input domain. If it is difficult to obtain a precise input domain, we hope to get the most

approximate solution to the one.

3. PATH-ORIENTED RANDOM TESTING

PRT was first proposed by Gotlieb et al [5] in 2006. PRT works like random testing with the

different that selected test data at random to cover a given subset of paths according to a uniform

probability distribution over the program’s input domain. More specifically, PRT applied

constraint propagation to get input domain along a given path, and then a path-oriented random

test data generation was performed. The goal of constraint propagation was to shrink the finite

variation domain of each variable in order to get an approximation of the solutions with respect to

a set of constraints. The PRT algorithm took as inputs a set of variables, a constraint set

corresponding to the path conditions of the selected path, and a division parameter k (a given

parameter). The algorithm separated each variable domain into k equal sub-domains. If the size

of a variable domain could not be divided by k, the domain was enlarged until its size could be

divided by k. By iterating this process over all the n input variables, the input domain would be

partitioned into k
n
 sub-domains. The sub-domains that could not satisfy the path constraints

would be omitted. As a result, some invalid inputs were removed, so the test generation

efficiency could be increased. For instance, showed by figure 1, the obtained input domain along

a path was d2∪d3∪d4, and the sub-domain d1 was removed by PRT approach.

4. PATH-ORIENTED RANDOM TESTING BASED ON DOUBLE

CONSTRAINT PROPAGATION

It can be found from Figure 1 that some invalid inputs still exist after applying the PRT approach.

The main reason is the PRT approach enlarges the domain until it can be divided by k if it cannot.

In this way, some invalid inputs may be introduced. In order to reduce the input domain further,

we propose a path-oriented automatic random testing method based on double constraint

propagation technique, called DCPRT.

In what follows we will describe in detail how to apply the DCPRT algorithm to automatically

generate random test data with respect to each path of the program under test.

y

d2

x

d3 d4

Figure1 The input domain by PRT

d1

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

4

4.1 Overview of DCPRT

Firstly, the DCPRT method analyzes the program under test, and gets a path constraints set with

respect to each path of tested program by using program analysis technology. Secondly, a path

domain is computed and reduced with the help of the double constraint propagation strategy. In

particular, a constraint propagation algorithm is applied to obtain the input domain D1 along a

selected path. Then, a variable domain, for example D1x, is divided into two parts, and the

constraint propagation algorithm is employed again to each of the sub-domains. As a result, a

more accurate input domain D2 is obtained, which contains less invalid domain. Finally, the

random test data are generated according to a uniform probability distribution over the domain D2.

For example, for the input domain D1 by PRT, as shown in Figure 1, the result of domain D2 by

using DCPRT method is displayed in Figure 2. After the constraint propagation algorithm is

applied firstly, we get the input domain D1=D1x∪D1y=d2∪d3∪d4 ={(x,y)|x∈(0,x2), y∈(0,y3)}.

Then x variable domain D1x is portioned into two part, and the constraint propagation algorithm is

used secondly. As a result, the input domain D2=d2∪d32∪d41={(x,y)|x∈(0,x1),

y∈(0,y2)}∪{(x,y)|x∈(x1,x2), y∈(y1,y3)} is obtained. It can be seen that D2 is more accurate than

D1, and the DCPRT method not only remove d1, but also eliminate the invalid domains d31 and d42.

4.2 Constraint Set Collection

As mentioned above, a path has a path condition which represents the constraints that have to be

satisfied for inputs in order to execute the path. This is to say, an input variable is associated with

a set of possible values. A constraint is a relation defined on subsets of these variables and

denoted valid combination of their values. Constraints restrict possible values that the variables

can take. In fact, constraints refer to logistic or arithmetical expressions with respect to input

variables along a chosen path, which imply that input variables satisfy some special conditions,

namely some restrictions about input variables. A constraint set is the set of the restrictions along

the selected path. For example, the path 1-2-3-4-5 of program foo, showed in table 1,

corresponding constraint set is R={x<=100 && y<=100; y > x + 50; x * y < 60}. In this

program code segment, the symbol ush is short for unsigned short int.

Table1 Example Program foo

ush foo(ush x, ush y){

1. if (x<=100 && y<=100){

2. if (y > x + 50)

3. ...

4. if (x * y < 60)

5. ...

y

x1 x

d2

d41

d32

Figure2 The input domain by DCPRT

x2

y3

y2

y1

d1

d31

d42

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

5

In the research reported in the paper, we construct a mapping relation between special functions

as well as special expressions (EF/EO) and constraint formulas, shown in table 2, on the basis of

analysis on many C-language codes. A special function (expression) refers to the function that

has some special requirements to input variables. Table 2 lists some special functions (expression)

and their corresponding constraint formulas. If some functions or expressions in the left list are

encountered along a path, then the corresponding constraint formulas are added into its constraint

set.

Table 2 The relation between EF/EO and constraint formula

EF/EO Constraint Formula

log(x) x﹥0

sqrt(x) x≥0

x+=C xmin≤x+ C≤xmax

C/x x≠0

… …

The constraint set collection is completed by using program analysis technology. In detail, firstly,

the program is analyzed, its control flow graph is gained, and paths are produced by Breadth-First

search strategy. Secondly, for each path, corresponding branch conditions, special functions,

special expressions and so on, are collected with the help of GCC [20]. As a result, we get the

constraint set for each path.

4.3 Double Constraint Propagation

In order to obtain over-approximated input domain, we use a double constraint propagation

algorithm on the constraint set to compute its input domains along a selected path. The double

constraint propagation algorithm does not simply employ the constraint propagation two times,

but is a process of approaching to the real input domain by reducing input variable domains step

by step according to the appearance order of input variables. For example, for the program

showed in Table 1, the constraint set along the path 1-2-3-4-5 is as follows:

<

+>

<=<=

=

)3(60*

)2(50

)1(100&&100

LLLLLLL

LLLLLLL

LL

yx

xy

yx

R

The variable x and y are all unsigned short int type. The initial input domain is D0={x∈(0,+∞),

y∈(0,+∞)}, The approximate solution gotten from constraint (1) is D1={x∈(0,100), y∈(0,100)},

the solution gotten from constraint (1) and (2) is D2={x∈(0,49), y∈(51,100)}, and the solution

gotten from constraint (1) to (3) is D3={x∈(0,1), y∈(51,100)}. D3 is the result of using the

constraint propagation firstly, we can see that when x=1 and y>60, it can not satisfy the constraint.

So we apply the constraint propagation again, the result is D4={x=0, y∈(51,100)}∪{x=1,

y∈(52,60)}.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

6

The algorithm of the double constraint propagation is as follows:

Algorithm: Double constraint propagation

Input: R — Constraint set along a given path（the number of the constraint is n）

I — The set of input variables

Output: D — The input domain along the given path
S1. Initial the input domain, get the domain D1

S2. Apply the constraint propagation to R

S2.1. Let i=1
S2.2. Compute the ith constraint, get the new domain Di

S2.3. i = i + 1

S2.4. If i <= n, repeat to S2.2, Else S3.

S3. Find a variable from set I whose value is more than 1 until there is no variable

can be selected, then S5.

Divide the variable domain into two parts, get the domain Dn+1 and Dn+2.

S4. Apply the constraint propagation to the two sub-domain.

Goto S2.1

S5. Output the final domain D

Moreover, we develop a prototype based on the double constraint propagation algorithm for

random testing. It uses above algorithm to get reduced input domain, then generates random test
data automatically according to a uniform probability distribution, and tests the program under

test.

5. EXPERIMENTAL AND EVALUATION

To evaluate the double constraint propagation based path-oriented random testing (DCPRT), we

compare it with path-oriented Random Testing (PRT) by computing the reduced input domain on

program foo and wage.

5.1 Experiments on Program foo

For program foo in table 1, we compute the input domain with respect to the path 1-2-3-4-5 by

using RT, PRT and our DCPRT method, respectively. The results of input domain as well as
corresponding test points are showed in Table 3. The input domain by RT contains 10201

possible test points, whereas the input domain by PRT consists of 68 which much are fewer than

RT. It can be further observed that there are still some invalid points, such as (x,y)=(0,100) in the

domain of PRT. The invalid points can be omitted since no enlargement is introduced when a

variable domain is divided by using the DCPRT. So, there is no invalid domain and points added.

The input domain by DCPRT is made of 59 possible points in foo program, less than PRT. Hence,

obtained input domain along a given path is more accurate by using the DCPRT method.

Table 3 The input domain of the foo program

Approach Input domain Test points

RT {x∈(0,100),y∈(0, 100)} 10201

PRT(k=2) {x=0,y∈(51,100)}∪{x=1,y∈(51,67)} 68

DCPRT {x=0,y∈(51,100)}∪{x=1,y∈(52,60)} 59

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

7

In addition, the DCPRT method considers the special functions and special expressions, while is

not involved in PRT. For example, if there is a special function log(x) before the first if statement
of the program showed in Table 1, x=0 must be removed from its input domain. As a result, the

final input domain should be D={x=1, y∈(52,60)}.

5.2 Experiments on Program wage

Table 4 gives a program of computing real wage of the retired officials, shorted for wage. For
this program, we compute the input domain with respect to the path 1-2-3-4-5-6-7-8-9 by using

RT, PRT and DCPRT, respectively. The input domain as well as corresponding test points are

given in Table 5. It is clear that the DCPRT method can get more reduced input domain than PRT.

Table 4 The wage program

// compute real wage of the retired officials (tax rate is below 20%)

//x: the proportion according to the number of the retired years, multiply 100

//y: the wage of one month just before retiring
ush calc_wage(ush x, ush y){

1. int r = 0; //test variable, is used to record the executed path.

2. int wage = 0; //the retired wage after tax
//judge the proportion (50%-90%) is correct or not

3. if(x>=50 && x<=90){

4. r += 0x1;

//judge the wage scope is valid or not

5. if(y>=500 && y<=20000){

6. r += 0x2;

//suppose when income is less than 5000, the tax rate is 15%, more is 20%

7. if(x*y<=500000){

8. r += 0x4;
9. wage = x * y * (100 - 15) / 100; //compute the wage

//print the wage list

… } } }
return r;

}

Table 5 The input domain of the wage program

Approach Input domain
Test

points

RT x∈(50,90),y∈(500,10000) 380000

PRT(k=2)

{x∈(50,70),y∈(5251,10001)}∪{x∈(71,91),y∈(5251,10001)} ∪{x∈(50,70),y∈(500,5250)}∪{x∈(71,91),y∈(500,5250)} ∪{x=91,y∈(5251,10001)}∪{x∈(50,90),y=100001}

389543

DCPRT
{x∈(50,70),y∈(500,10000)}∪{x∈(71,90),y∈(500,7402)}

-{x∈(71,91), y∈(7403,10000)}
262338

More detailed, the original result of input domain is D1=(x∈(50,90),y∈(500,10000)), by using

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

8

program analysis technology, showed in Figure 3 with shadow. In order words, the test data are

generated randomly from D1, i.e. RT.

And then, the PRT approach divides the domain of all input variables into 2 same parts. As a
result, the domain D1 is divided into four equal sub-domains, i.e., d1~d4 showed in Figure 4. More

detail, d1={x∈(50,70),y∈(5251,10001)}, d2={x∈(71,91),y∈(5251,10001)},

d3={x∈(50,70),y∈(500,5250)} and d4={x∈(71,91),y∈(500,5250)}.

In addition, d5={x=91,y∈(5251,10001)}∪{x∈(50,90),y=100001} is the enlarged part by using

PRT. The final reduced result is DPRT={x∈(50,91),y∈(500,10001)}. For the program wage,

PRT fails to reduce the input domain; on the contrary, it introduced (10001-500+1)+(90-50+1)

=9543 invalid points.

The input domain gotten by using DCPRAT is DDCPRT= {x∈(50,70),y∈(500,10000)} ∪

{x∈(71,90),y∈(500,7402)}, and it removed d2={x∈(71,91), y∈(7403,10000)}. Hence, (10000-

7402)*(90-70)=51960 invalid points are eliminated, showed in Figure 5.

y

x 50 90

Figure 4 The input domain of wage by PRT(k=2)

10000

500

5555

5250

70 91

10001

d1

d3 d4

d5

d2

Figure 3 The input domain of wage by first step

y

x 50 90

10000

500

5555

x * y = 380000

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

9

So, we can see that PRT introduce some invalid points, but the DCPRT method never introduces

new invalid points. And at the same time, it eliminates some invalid points. As a result, the input

domain can be reduced effectively.

6. RELATED WORK

Random testing is a widely used software testing technology. The fundamental idea behind

random testing is that it generates test inputs at random from the input domain of SUT.

Researchers and practitioners have implemented random test tools for various areas, including
Unix utilities, Windows GUI applications, Haskell programs, and object-oriented programs [15].

But the key of the random test tools is the same, this is to say, when a choice is to be made in

constructing a test input, a random generator makes the choice randomly, not deterministically

[16-18].

PRT is a path-oriented random testing technique that aims at generating randomly test data that

execute a path within a program. A. Groce et al employed constraint propagation and constraint
refutation to get a uniform sequence of test data that triggers a selected path [5, 10]. Godefroid et

al proposed a randomized algorithm that generates test suites to activate a path by using symbolic

execution and constraint propagation over finite domains in the tools DART (Directed Automated
Random Testing) [19]. They got very good experimental results on C programs extracted from

real-world applications.

In contrast to PRT, our DCPRT method employs a double constraint propagation strategy to

obtain a more accurate path domain.

7. CONCLUSION

In this paper, we propose a path-oriented automatic random testing method based on double

constraint propagation strategy. The constraint set is obtained along the selected path by program

analysis techniques, the reduced input domain is computed by using double constraint
propagation strategy, and random test data are generated on the reduced input domain. Moreover,

our DCPRT is compared with the PRT method. It can be showed that our method can get more

precise input domain than PRT. As a result, the random testing effectiveness can thus be
remarkably enhanced by using the proposed method.

The input domain acquired by using double constraint propagation can be not only used in test

data generation, but also can be applied in many other areas for software testing automation. The

further work is to extend the DCPRT method to deal with more types of test data, achieve the test

y

x 50 90

Figure 5 The input domain of wage by DCPRT

10000

500

5555

7042

70

d3 d4

d2 d1

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

10

data generation for the boundary of the input domain, and enlarge the scope of application.

ACKNOWLEDGEMENT

This work was supported in part by National Natural Science Fund of China under Grant

No.61073035 and No.60903002.

REFERENCES

[1] R. Zhao, Lyu, Michael R. and Y. Min. Automatic string test data generation for detecting domain

errors, Software. Testing, Verification and Reliability, 20(3):209-236, 2010.

[2] B. Korel. Automated Software Test Data Generation, IEEE Transactions on Software Engineering,

16(8): 870-879, 1990.

[3] Ali, Shaukat and Briand, Lionel C. and Hemmati, Hadi and Panesar-Walawege, Rajwinder Kaur, A

Systematic Review of the Application and Empirical Investigation of Search-Based Test Case

Generation, IEEE Transactions on Software Engineering, 36(6):742-762, 2010.

[4] H.Tahbildar and B.Kalita. Heuristic Approach of Automated Test Data Generation for Programs

Having Array of Different Dimensions and Loops with Variable Number of Iteration. International

Journal of Software Engineering & Applications, 1(4):75-93, October 2010.

[5] A. Gotlieb and M. Petit. Path-oriented random testing. In 1st ACM Int. Workshop on Random Testing

(RT’06), Portland, Maine, July 2006.

[6] J. Duran and S. Ntafos. An Evaluation of Random Testing. IEEE Transactions on Software

Engineering, 10(4):438–444, Jul. 1984.

[7] D. Hamlet and R. Taylor. Partition Testing Does Not Inspire Confidence. IEEE Transactions on

Software Engineering, 16(12):1402–1411, Dec. 1990.

[8] A. D. Groce, G. Holzmann, and R. Joshi. Randomized differential testing as a prelude to formal

verification. In ICSE ’07: Proceedings of the 29th International Conference on Software Engineering,

Minneapolis, MN, USA, 2007.

[9] A. Arcuri, M. Z. Iqbal, and L. Briand. Formal analysis of the effectiveness and predictability of

random testing. In ACM International Symposium on Software Testing and Analysis (ISSTA), 219–

229, 2010.

[10] A. Gotlieb and M. Petit. A Uniform Random Test Data Generator for Path Testing, Journal of Systems

and Software, 83, 12: 2618-2626,2010.

[11] A. Arcuri and L. Briand. Adaptive Random Testing: An Illusion of Effectiveness? In ACM

International Symposium on Software Testing and Analysis (ISSTA), 265-275, 2011.

[12] T. Y. Chen, F. Kuo, and Z. Zhou. On favourable conditions for adaptive random testing. International

Journal of Software Engineering and Knowledge Engineering, 17(6):805–825, 2007.

[13] T. Y. Chen, F. C. Kuo, and H. Liu. Distributing test cases more evenly in adaptive random testing.

Journal of Systems and Software (JSS), 81(12):2146–2162, 2008.

[14] T. Y. Chen, F. C. Kuo, and H. Liu. Application of a failure driven test profile in random testing. IEEE

Transactions on Reliability, 58(1):179–192, 2009.

[15] C. Pacheco. Directed Random Testing, Doctor Thesis, Massachusetts Institute of Technology 2009.

[16] T. Y. Chen, F. Kuoa, R. G. Merkela, and T. Tseb. Adaptive random testing: The art of test case

diversity. Journal of Systems and Software (JSS), 83(1): 60-66, 2010.

[17] F. C. Kuo, T. Y. Chen, H. Liu, and W. K. Chan. Enhancing adaptive random testing for programs with

high dimensional input domains or failure-unrelated parameters. Software Quality Journal,

16(3):303–327, 2008.

[18] A. F. Tappenden and J. Miller. A Novel Evolutionary Approach for Adaptive Random Testing. IEEE

Transactions on Reliability, 58(4): 619-633, 2009.

[19] P. Godefroid, N. Klarlund, & K. Sen. Dart: Directed automated random testing. In Proceedings of

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’05) 213–

223, 2005.

[20] M. S. Richard and the GCC Developer community. Using the GNU Compiler Collection (GCC) – For

GCC 4.1.1[Z/OL]. Free Software Foundation, Inc. 9-10, 2005.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

11

Author

Ruilian Zhao received her B.S. and M.S. degree in computer science from North China

Industry University in 1985 and 1990, and Ph.D. degree in computer science from

Institute of Computing Technology, Chinese Academy of Sciences in 2001. She is now a

professor at Department of Computer Science, Beijing University of Chemical

Technology. Her current research interests include software testing and fault-tolerant

computing.

Yuandong Huang received his Computer Science and Technology Bachelor degree

from Beijing University of Chemical Technology, Beijing, China, in 2006. Since 2006,

he has been working towards the Master degree of Computer Applications Technology

at Beijing University of Chemical Technology. His research interests test data

generation for dynamic data structure. Now, he has worked in Beijing Zhongke Fulong

Computer Technology Co.,Ltd.

