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ABSTRACT

Distributed software engineering is widely recognized as a complex task. Among the inherent complexities
is the process of obtaining a system design from its global requirement specification.  This paper deals with
such transformation process and suggests an approach to derive the behavior of a given system
components, in the form of distributed Finite State Machines, from the global system requirements, in the
form of an augmented UML Activity Diagrams notation. The process of the suggested approach is
summarized in three steps: the definition of the appropriate source Meta-Model (requirements Meta-
Model), the definition of the target Design Meta-Model and the definition of the rules to govern the
transformation during the derivation process. The derivation process transforms the global system
requirements described as UML diagram activities (extended with collaborations) to system roles
behaviors represented as UML finite state machines. The approach is implemented using Atlas
Transformation Language (ATL).
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1. INTRODUCTION

Distributed software systems development is an increasingly complex task. Usually the global
behavior of distributed systems is not achieved by a single component but by a set of
collaborative components. Such global behavior can be decomposed into partial behaviors
performed by different system components. Therefore an automatic transformation approach is
needed to derive the behavior of these components from the global system requirements. The
process of deriving the behavior of system components is very important in the development of
distributed systems such as information systems, multi-agent systems and distributed
applications. Such automatic derivation process may lead to valid and robust systems by avoiding
the error prone manual design activities.
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In this work we suggest an approach to derive the partial behaviors of a distributed system from
its global requirements. We consider that the basic building blocks of the software system
behavior are activities that are actually collaborations between several system components or
roles.  The suggested approach aims to derive the behavior of the system roles by transforming
the requirements model, which describes the functional behavior of a system in an abstract way,
to the conceptual model, where the various components are represented by their local behavior.
The transformation process, governed by a set of rules, will allow the derivation of the local
behavior of a component, in the form of a finite state-machine, from the global system
requirements described by an extended UML activity diagram. Such process derives also the
appropriate coordinating messages between the derived FSMs. The UML activity diagram is
extended with the use of collaborations between the roles of the designed software system.

The suggested approach is inspired from the existing techniques related to communications
protocols synthesis from the services specifications [1, 7]. It is mainly based on the technique of
meta-model transformations. Such approach consists in defining the source and target meta-
models, specifying the transformation rules governing the derivation process and the constraints
to be preserved between the different levels of the used models. The development process of the
proposed approach is based on the following steps:

1. Defining the requirements meta-model to specify the global system requirements of a given
system.

2. Deciding of the meta-model to describe the system at the design level that reflects the local
behavior of each system role.

3. Defining the rules to govern the models transformations during the derivation process.

The system requirements are described using UML activity diagrams where the core activities are
UML collaborations. At the design level the derived roles behaviors are produced as finite state
machines.

This paper is organized as follows. Section 2 presents the related works. Section 3 presents the
basic meta-models used as source and target meta-models of the transformation process. Section
4 presents the proposed derivation process. Section 5 presents an illustrative case study. Section 6
presents the implementation of the system design derivation process. Section 7 concludes this
paper.

2. RELATED WORKS

Many research works have been done on models transformation. In this direction, we could
mention the works presented in [2], [3] and [4]. In [2] the suggested approach considers system
requirements represented by business processes using BPMN notation. Various UML Use Cases
which present some aspects of an information system requirements specification are obtained
from business processes by using QVT [5] rules. Also an analytic method of transformation from
CIM to PIM level of MDA is described in [3].This approach is based on the transformation of
business requirements represented by DFD (Data Flow Diagrams) to UML models. The Work
addressed in [4] is concerned with addressing model interoperability between sequence diagrams
and Petri Nets, through a model transformation. It introduces a model transformation framework
which supports transition between these two models. A designer creates a model of a system as
Sequence Diagrams using UML tools, and performs the required analysis using Petri Net tools.
However, these works did not consider the case of distributed applications where specific
properties such as message exchange and collaborations between the distributed components need
to be addressed. Lucena and al. present the STREAM (A Strategy for Transition between
Requirements Models and Architectural Models) in [6]. The goal of STREAM is to generate an
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architectural Model described in Acme architectural description language from i* requirements
model.

In fact, the global behavior of distributed systems is not achieved by a single component but by a
set of collaborative components. Such behavior can be decomposed into a set of partial behaviors
performed by different system components. Therefore a transformation approach is needed to
automatically derive the behavior of these components from the overall specification of the global
system requirements. The process of deriving the behavior of components of the system is very
important in the development of distributed systems. Bochmann [7] suggests an algorithm for the
derivation of behavior based on the behavior expressions of collaborations and sub-collaborations
as basic constructs for the global system requirements.

In this work we adopt Bochmann’s transformation algorithm which transforms collaboration
expressions to obtain roles behavior expressions. In our approach we get inspired from such
transformation algorithm to provide a derivation process based on meta-models transformation.
Our approach starts with defining the source meta-model of UML activity diagrams extended
with collaborations, and the target meta- model of UML state machines. Such extended UML
activity diagrams are used to describe the system requirements, and allow representing concepts
that could not be described using expressions, as done in [7]. This is the case of the conditions
(guards) embedded in the choice structures and the repetition structure. In addition, our
transformation approach considers also all control nodes specified in the UML activity diagram
such as Merge Node and Join Node. In our approach, the derived behaviors of the system roles
are UML state machines which could be used for an automatic generation of code.

3. THE BASIC META-MODELS

3.1. The requirements meta-model

Activity diagram is the only OMG standard notation for modeling Business Process (BPs) and
workflow [8].  AD is intended to describe a sequence of actions that may belong to several
objects. In order to represent the system requirements, we use UML Activity Diagram (AD)
extended with collaborations. The collaborations are used as the main blocks of activities for
building requirements models [9]. They define the partial behavior of the entities, called roles,
and they give a precise definition of the service behavior using interaction diagrams, activity
diagrams or state machines. UML Activity diagrams are suitable to represent choreography of
collaborations and sub-collaborations which are the basic activities in a composite collaboration
describing the global system requirements. They can express sequential behavior, alternative
behavior, competing behavior (parallel composition), repetitive behavior, as well as interruptions.
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Figure 1. The requirements meta-model.

The proposed requirements meta-model (Figure 1) is considered as the source meta-model of the
transformations. It defines the meta-model activity diagram with its main classes and associations
while considering collaborations as the basic activities. An activity diagram consists in several
ActivityNode and ActivityEdge. An ActivityEdge class allows specifying the control flow
(connections) between classes ActivityNode. The class ActivityNode specifies the different
sequencing operators of the activities defined by the class ControlNode. This class also defines
activities and interruptions. The activities at the meta-model level are defined as “Collaborations”
involving multiple roles. A collaboration may consist in one or two collaborations or sub-
collaborations. At the models level, the global system requirements are defined as a composition
of activity diagrams and collaborations; and considered as an instance of the requirements meta-
model.

3.2. The target meta-model

The behavior of the various components or roles of a system could be modeled using UML
activity diagrams or finite state machines. The transformations of these models to code could be
performed and automated. Producing code is out of the scope of this work.

The UML state machine meta-model [10] is used as the target meta-model of the transformation
process. A finite state machine diagram allows describing the behavior of a system role. The main
classes in this meta-model are the State and Transition classes. The State class models a situation
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or a significant step in the life cycle of a system component. The Transition class models a
relationship between a source and a target states, while representing how the component can
respond to the occurrence of a given event when the component is in the source state. At the
models level, the behavior of a system role is described by a state machine resulting from the
derivation process; as an instance of the target meta-model.

4. THE DERIVATION PROCESS

4.1. The models transformation based derivation process

The derivation process of our approach consists in establishing the transformations from the
requirements model into the finite state machine model. The definition of the transformation
rules, to govern the derivation process, requires the identification of various relationships between
the source and the target meta-models. A transformation rule consists in transforming a concept
outlined in the source meta-model to a corresponding one in the target meta-model. For this
purpose we define the function named Transform (Requirement_Concept, FSM_Concept,
Messages). This function performs two types of the requirement concepts transformation: the first
type consists in a direct mapping from a requirement concept to an FSM concept (as in the case of
control flows and control nodes). The second type consists in transforming the collaboration
concept to a composite state. If the collaboration type is a sub-collaboration, This composite state
will hold the actions of the concerned role after transformation otherwise the function Transform
will trigger the transformation of the collaboration. The Messages parameter in this function
represents the coordination messages that will be included in the generated composite State. The
corresponding rules will be described in section 4.2.

The Derivation Process performs, for a given role, the conformity of the source model (Ms) with
the requirements meta-model (MMs).  Note that the source model represents the global
requirements specification of a given system.  The process will then determines the appropriate
rule to be applied for each concept or construct represented in Ms and it generates a composite
state in the target model. This composite state may hide an FSM which is the specification of the
actions of such given role. In addition to the actions role, such composite state may also contain
the corresponding coordination messages. The derivation process will generate the needed
transitions to connect the generated composite state to its predecessor and successor states.

4.2. Transformation rules

To perform the derivation, we identify several cases of choreography expressed in the
requirements meta-model (as in [7]): sequential behavior, alternative (choice composition),
competition (parallel composition), repetition as well as interruptions.

At the level of collaboration, we distinguish the starting roles and terminating roles [7]. A starting
role is a role that accomplishes an initial action in a collaboration or in one of its sub-
collaborations. A terminating role is a role that accomplishes a final action in a collaboration or in
one of its sub-collaborations (see Figure 2). We consider that the decision is made locally in a
given role. Such a role is the starting role in the collaboration choice structure (it should be the
starting role in both collaborations of the choice composition). The transformation of the
collaboration concept triggers the transformation of its sub-collaborations in the case where it is
composed. This property requires the definition of recursive transformation rules.
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Figure 2. Structure of a collaboration.

Table 1 from [7] shows how to calculate the sets of starting, terminating and participating roles.
These sets are calculated for a collaboration depending on the sequencing operators used in the
diagram activity.

Two types of sequencing are distinguished [9]: Strong and Weak sequencing. Weak sequencing
(Figure 3) specifies that an activity A2 will be executed after another activity A1. While Strong
sequencing (Figure 3) implies that all sub-activities of A1 are finished before an activity A2 can
begin. Weak sequencing provides only a local order of activities for each system component and
does not imply a global order.

Table 1. Rules for calculating the starting, terminating and participating roles [7].

Choreography Case Starting roles (SR) Terminating Roles
(TR)

Participating roles
(PR)

Sub-collaboration <C> SR(C) TR(C) PR(C)=R
Weak Sequencing
<C1, C2>

SR(C1)U(SR(C2)-
PR(C1))

TR(C2) U(TR(C1)-
PR(C2))

PR(C1) U PR(C2)

Strong Sequencing
<C1, C2>

SR(C1) TR(C2) PR(C1) U PR(C2)

Choice composition
<C1, C2>

SR(C1) U SR(C2)
= {r}

TR(C1) U TR(C2) PR(C1) U PR(C2)

Strong While loop
<C1, C2>

SR(C1) U SR(C2)
= {r}

TR(C2) ; SR(C1) if
C1=ε PR(C1) U PR(C2)

Weak While loop
<C1, C2>

SR(C1) U SR(C2)
= {r}

TR(C2) U (TR(C1)-
PR(C2)

PR(C1) U PR(C2)

Parallel behavior
<C1, C2>

SR(C1) U SR(C2) TR(C1) U TR(C2) PR(C1) U PR(C2)

In addition, two coordination messages between different system roles are introduced in the
derivation process. We use also the same kind of coordination messages as introduced in
Bochmann [7].  Each coordinating message contains the following parameters: a) Source role
(Sr), b) Destination role (Dr), c) name of state it-belong to (St). The coordination messages are:

• Flow message for coordinating strong sequencing, named Flowm(Sr, Dr, St).
• Choice indication message for propagating the choice to a role that doesn’t participate in the

selected alternative in the choice composition structure, named Choicem(Sr, Dr, St).

In the following, we define the transformation rules for the sequential behavior (Strong and weak
sequencing) and the choice composition. These rules allow to derive the behavior of different
roles involved in a global system requirements specification. Each rule performs the appropriate
transformation for a role r participating in a collaboration Ci.
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4.2.1. Strong sequencing between two collaborations

Rule 1: If r∈TR(C1) then Transform(C1, S1, Send(Flowm(r, r’, S2) ∀ r’∈(SR(C2) - r);
The function transforms the collaboration C1 to the composite state S1. This state will hold the
actions performed by the role r after transformation and includes the action of sending the
coordination messages flowm. The coordination message Flowm is sent by the role r to the
starting roles of the target collaboration C2 (except to itself if it is a member of this set of roles).

Figure 3. Strong / Weak sequencing.

Rule 2: If r∈SR(C2) then Transform(C2, S2, Receive(Flowm(r’, r, S2) ∀r’∈(TR(C1) - r);
The collaboration C2 is transformed to the composite state S2. This state consists in actions of
receiving coordination messages Flowm from the terminating  roles of the source collaboration C1

(except from itself) and include the actions performed by r after transformation.

Rule 3: If r∈((PR(C1) - TR(C1)) or (PR(C2) - SR(C2)) then Transform(Ci, Si) ∀ i=1, 2;

Rule 4: If r∈(PR(C1) and PR(C2)) then Transform(Controlflow, Transition);
This transition connects the states S1 and S2 obtained from the transformation of C1 and C2.

4.2.2. Weak sequencing between two collaborations

The Rule 4 is applied to transform the concept Controlflow.

Rule 5: If r∈PR(Ci) then Transform(Ci, Si) ∀ i=1, 2 ;

4.2.2. Choice between two collaborations (local choice)

Figure 4. Structure of choice.

Rule 6: If r∈SR(Ci) then Transform(Ci, Si,Send(Choicem(r, r’, Si)
∀ r’∈(PR(Ci’) - PR(Ci)) ∀ i, i’=1,2 and i≠i’;

Rule 7: If r∈PR(Ci) and r∉SR(Ci) then Transform(Ci, Si) ∀ i=1, 2;

Rule 8: If r∈(PR(Ci) - PR(Ci’)) ∀ i, i’=1,2 and i≠i’ then
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Transform(Ci’, Si’, Receive(Choicem(r’, r, Si’) ∀ r’∈SR(Ci’) ;

Rule 9: If r∈PR(Ci) then Transform (Controlflow, Transition) ∀ i=1, 2;
This transition connects the states S1 and S2 obtained from the transformation of C1 and C2 to the
control nodes.

Rule 10: If r∈PR(Ci) then Transform(DecisionNode, ChoiceState) ∀ i=1, 2;
This state is connected to the composite states S1 and S2 obtained from the transformation of C1

and C2, by the transitions obtained by application of Rule 9.

Rule 11: If r∈PR(Ci) then Transform(MergeNode, JunctionState) ∀ i=1, 2;
This state is connected to the composite states S1 and S2 obtained from the transformation of C1

and C2, by the transitions obtained by application of Rule 9.

4. CASE STUDY

In this section we present a telemedicine case study. Conventionally, when a patient with a stroke
is admitted into a hospital (HA), he will be examined by an emergency doctor. The emergency
doctor contacts the SAMU (Service for Emergency Medical Assistance) via a regulating doctor to
inform him of the emergency admission of a patient who presents symptoms to suspect a stroke
(speech disorders, vision disorders, sensor-motor deficits, coordination disorders, etc.). Within the
SAMU information system, the regulating doctor creates a medical record based on an initial
evaluation using the GCS (Glasgow Coma Score), the hemodynamic status, time of occurrence of
signs, time of admission to emergencies, background, anamnesis data and clinical examination,
etc…

While remaining in contact with the emergency doctor, the regulating doctor of the SAMU calls
the neurologist on duty at CHU (University Hospital Center) and initiates a conference call in
order to establish the diagnosis. If appropriate, the patient is urgently transferred to the CHU
within an equipped (SMUR) or not-equipped ambulance (VLS) depending on the patient health
situation.

In the following we will show the derivation process of the behavior of each role within the
global requirements specification of the mentioned case study.

Step 01: Specification of the requirements model describing the global system requirements. This
model is an instance of the requirements meta-model. The global system requirements is modeled
by an activity diagram whose core activities are collaborations and sub-collaborations (Figure 5).
The model of the global system requirements is described by a collaboration consisting of two
collaborations or sub-collaborations according to the requirements meta-model. This
collaboration is a sequence between the Clinical sub-collaboration and a composite collaboration
named P-Decision. The second collaboration P-Decision is also a sequence of the Para-clinical
sub-collaboration and the Decision collaboration. The Decision collaboration is itself composed
of the sub-collaboration Decision-Making and the collaboration During-Transfers. The last one
consists of the choice composition between the collaborations: Supported by HA and Transfer
which is also a choice composition. The collaboration Transfer defines a choice between the two
sub-collaborations Sending VLS and Sending SMUR. In the two sub-collaborations, the
neurologist (CHU) is a starting and terminating role. The roles patient, emergency doctor (HA)
and VLS participate in the two sub-collaborations. While the SMUR participates in the sub-
collaboration Sending SMUR and does not participate in Sending VLS.
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Figure 5. The global system requirements model.

Step 02: Applying the model transformation rules that accomplish the derivation of the global
system requirements described by the model (Figure 5). These rules are applied to the source
model in order to generate a state machine describing each role behavior. We consider in this case
the transformation rules that allow deriving the behavior of the neurologist (CHU), the emergency
doctor (HA) and the SMUR at the collaboration "Transfer".

The Transfer collaboration is a choice composition between the sub-collaborations Sending VLS
and Sending SMUR and the neurologist is responsible for the choice (it is a starting role in the two
sub-collaborations). Therefore the derivation process triggers rules 6, 9, 10 and 11. The rule 6
performs the transformation of the actions that it performs at each sub-collaboration (we assume
that a sub-collaboration consists in a single action). On the other hand, it must inform the roles
not participating in the current collaboration by sending a coordination message Choicem for
indicating his choice. For example, at the collaboration "Sending VLS", the neurologist sends a
coordination message Choicem to the role SMUR in order to indicate it that "Sending VLS" was
selected. Rules 9, 10 and 11 perform the transformation of Control flow and Control nodes. The
derivation process generates a state machine which describes the behavior of the neurologist
(CHU) (see Figure 6).
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Figure 6. The derived finite state machines describing the CHU behavior.

The emergency doctor (HA) participates in both sub-collaborations Sending VLS and Sending
SMUR. Therefore the derivation process triggers the rules 7, 9, 10 and 11. The rule 7 transforms
the actions performed at each sub-collaboration. Rules 9, 10 and 11 accomplish the
transformation of Control flow and Control nodes. The emergency doctor (HA) derived behavior
is described by the state machine (Figure 7).

Figure 7. The derived finite state machines describing the HA and SMUR behaviors.

The SMUR participates in the sub-collaboration Sending SMUR and not in the Sending VLS. The
derivation process triggers the rules 7, 8, 9, 10 and 11. The rule 7 accomplish the transformation
of the actions performed by the role as a participant at the sub-collaboration Sending SMUR.  The
rule 8 allows the reception of the coordination message Choicem sent by the neurologist in case
of the selection of the sub-collaboration Sending VLS. Rules 9, 10 and 11 perform the
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transformation of Control flow and Control nodes respectively. The SMUR derived behavior is
described by the state machine (Figure 7).

6. IMPLEMENTATION

Several researches have suggested approaches and languages for models transformation. Among
these languages, we find the ATL language (ATLAS Transformation Language) [11] [12] and the
QVT language (Query View Transformation) of the OMG [13] [5]. Both languages exhibit a
layered architecture and share common characteristics [12]. We have chosen to express the
transformation rules of the derivation process in ATL [11].

According to the adopted derivation process, the implementation of this process requires the
following steps:

1. The representation of the requirements meta-model described in UML activity diagram
extended with collaborations in Ecore Diagram Tool which generate an Ecore file named
S_MM.ecore described in XMI language.

2. The representation of the target meta-model described in UML state machine diagram in
Ecore Diagram Tool which generate an Ecore file named R_MM.ecore described in XMI
language..

3. The representation of the global system requirements model instance of the requirements
meta-model in an Ecore file.

4. Applying the rules of models transformation specified in ATL language to the source model.
This process generates an XMI file containing a finite state machine describing the behavior
of each system's role. The role model is consistent with the target meta-model.

In the following, we present the code of the rule 6 and 8 at a sub-collaboration. The sets of
starting, terminating and participating roles are calculated using ATL helpers invoked in the ATL
transformation rules.

Rule CollaborationS2StateSPR {
from s: MMs!Sub_Collaboration( s.Choice_C12() )
to r: MMt!CompositeState (Name<- s.Name,

outgoing<-s.outgoing,incoming<-s.incoming,states<-Si,
transition<-ti,states <-sc,transition<-t,states<-st,
transition <-tf, states <-Sf ),

Si: MMt!InitialState(outgoing <- ti),
ti: MMt!Transition ( source <-Si , target <- sc),
sc: MMt!State(action<-act, incoming<-ti,outgoing <-t),
act: MMt!DomainAction (Name<-s.Name),
t : MMt!Transition ( source <-sc , target <- st),
st: MMt!State ( incoming <-t ,outgoing<-tf),
tf : MMt!Transition ( source <-st , target <- Sf),
Sf:MMt!FinalState (incoming <-tf)

do { thisModule.i<-thisModule.i+1;
sc.Name<-'S'+thisModule.i.toString(); thisModule.i<-thisModule.i+1;
st.Name<-'S'+thisModule.i.toString(); thisModule.NameCol<-s.Name;
st.action <-s.GetRolesC2()->collect(x|thisModule.SendChoicem(x));
thisModule.j<-thisModule.j+1; ti.Name<-'T'+thisModule.j.toString();
thisModule.j<-thisModule.j+1; t.Name<-'T'+thisModule.j.toString();
thisModule.j<-thisModule.j+1; tf.Name<-'T'+thisModule.j.toString();}}
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The rule 6 (CollaborationS2StateSPR) is applied only if the helper Choice_C12() is evaluated to
true. This helper determines whether a role is a starting role in the sub-collaboration C1.

helper context MMs!Action def : Choice_C12() : Boolean =

if self.SourceIsDN1() then if self.IsinPR()then if self.IsinInitial() then true else false endif
else false
endif

else false
endif;

The core of this rule consists in:

• Generate a composite State (S) in RolderivBeh(r) conform to the target meta-model MMt;
• Name= C.Name;
• Generate (Initial State) in S;
• Achieve the transformation of the sub-collaboration actions;
• Generate the actions of sending the coordination messages in S to the roles not participating

in the sub-collaboration C1 but participating in C2. This set of roles is calculated using the
helper GetRolesC2();

helper context MMs!Action def: GetRolesC2() : OrderedSet (MMs!Role) =
self.GetSecond().GetPRCol()->asSet()->

select (r | not(self.GetFirst().GetPRCol()->includes(r)));

• Generate (Final State) in S;
• Generate the transitions to connect the different states in the composite State S;
• Connect S to its successor and predecessor states.

The rule 8 (CollaborationS2StateNPR) is applied only if the helpers ChoiceN_C12() or
ChoiceN_C21() are evaluated to true. These helpers determine whether a role is not participating
in the sub-collaboration C1 or C2.

Rule CollaborationS2StateNPR {

from s: MMs!Sub_Collaboration (s.ChoiceN_C12() or s.ChoiceN_C21() )

to r: MMt!CompositeState (Name<- s.Name, outgoing<-s.outgoing,
incoming<-s.incoming,states<-Si, transition<-ti,states <-sc,
transition<-t,states<-st, transition <-tf, states <-Sf ),

Si: MMt!InitialState(outgoing <- ti),
ti: MMt!Transition ( source <-Si , target <- sc),
sc: MMt!State(incoming<-ti,outgoing <-tf),
tf : MMt!Transition ( source <-sc , target <- Sf),
Sf:MMt!FinalState (incoming <-tf)

do { thisModule.i<-thisModule.i+1;
sc.Name<-'S'+thisModule.i.toString();thisModule.NameCol<-s.Name;
sc.action <-s.GetSRCol->collect(x|thisModule.ReceiveChoicem(x));
thisModule.j<-thisModule.j+1; ti.Name<-'T'+thisModule.j.toString();
thisModule.j<-thisModule.j+1; tf.Name<-'T'+thisModule.j.toString();}}

The core of this rule consists in:

• Generate a composite State (S) in RolderivBeh(r) conform to the target meta-model MMt;
• Name= C.Name;
• Generate (Initial State) in S;
• Generate the action of receiving the coordination message in S from the starting role of the

sub-collaboration. The starting role is calculated using the recursive helper GetSRCol();

helper context MMs!Action def : GetSRCol():OrderedSet (MMs!Role) =
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if self.oclIsTypeOf(CIM!Sub_Collaboration) then self. GetSRColX()
else self.GetSRColY()
endif;

• Generate (Final State) in S;
• Generate the transitions to connect the different states in the composite state S;
• Connect S to its successor and predecessor states.

Similar rules are used at the collaboration, but in this case the rules call other rules in order to
achieve the collaboration transformation. This is due to the composition of collaboration
according to the requirements meta-model. This derivation process generates the finite state
machine describing the behavior of each system's role as shown in the telemedicine case study
(Figure 6 and Figure7).

5. CONCLUSION AND PERSPECTIVES

In this paper, we have presented an approach based on models transformation to derive a
distributed system components or roles behavior. This approach consists of a derivation process
to derive the behavior of individual components from a given global system requirements. The
global system requirements is defined by the requirements model which is an instance of the
requirements meta-model based on UML activity diagrams extended with collaborations. A set of
rules was defined to govern the transformation process. The target system is derived as state
machines that represent the individual behavior of each system’s role including the messages
required for realizing the collaborations and for ensuring the global coordination of all activities
among the different system roles. Our approach was implemented using the ATL language "Atlas
Transformation Language". A telemedicine case study was used to illustrate the derivation
mechanism. We plan to extend the derivation process by defining the transformation rules to
govern the derivation process in the cases of competition (parallel composition) and repetition
(While loop with strong and weak sequencing), and including the processing of conditions at the
structures of choice between two collaborations and the structure of repetition. Another extension
of this approach consists in the derivation of the detailed behavior of a sub-collaboration. The
detailed behavior of a sub-collaboration will be described as a sequence diagram. The derivation
of a sub-collaboration behavior will be achieved by transforming the sequence diagram into a
state machine using a similar models transformation mechanism. We also plan to prove the
correctness of the derivation process by validating the transformation rules using a formal proof.
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