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ABSTRACT 

In system development life cycle (SDLC), a system model can be developed using Data Flow Diagram 

(DFD). DFD is graphical diagrams for specifying, constructing and visualizing the model of a system. 

DFD is used in defining the requirements in a graphical view. In this paper, we focus on DFD and its 

rules for drawing and defining the diagrams. We then formalize these rules and develop the tool based on 

the formalized rules. The formalized rules for consistency check between the diagrams are used in 

developing the tool. This is to ensure the syntax for drawing the diagrams is correct and strictly followed. 

The tool automates the process of manual consistency check between data flow diagrams. 
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1. INTRODUCTION 

System development life cycle (SDLC) is an essential process uses during the development of 

any system. SDLC consists of four main phases. They are planning, analysis, design and 

implementation. During analysis phase, context diagram and data flow diagrams are used to 

produce the process model of a system. A consistency of the context diagram to lower-level data 

flow diagrams is very important in smoothing up developing the process model of a system. 

However, manual consistency check from context diagram to lower-level data flow diagrams 

using a checklist is time-consuming process [1]. At the same time, the limitation of human 

ability to validate the errors is one of the factors that influence the correctness and balancing of 

the diagrams [2]. This paper presents a technique for modeling data flow diagram rules and 

proposes a formalization of its rules. The tool is then developed based on the formalized rules. 

The purpose for the development of a tool is to automate the manual consistency check between 

data flow diagrams (DFDs) based on the rules of DFDs. The tool serves two purposes: as an 

editor to draw the diagrams and as a checker to check the correctness of the diagrams drawn as 

well as consistency between diagrams. The consistency check from context diagram to lower-

level data flow diagrams is automated to overcome the manual checking problem. 

 

The motivation of formalizing the rules of data flow diagrams is because DFD has been used in 

a widely basis for modeling any system but still lacking a precise understanding. Therefore, by 

formalizing the DFD rules, we can get a formal model of DFD rules. This formal model can be 

used to ensure that the diagrams drawn are correct and they are consistent with each other. 

 

The rest of this paper is organized as follows. The review of DFD is in Section 2 and the 

discussion on the related works is in Section 3. Section 4 discusses the syntax and semantics 
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rules of DFD and Section 5 formalizes the DFD rules. The development of the tool is discussed 

in Section 6 and finally, Section 7 concludes the paper. 

 

2. OVERVIEW OF DFD 

SDLC is a process uses during the development of software system starting from planning until 

the implementation phase. Data flow diagramming, on the other hand, is used to produce the 

process model during the analysis phase [3]. Process model is very important in defining the 

requirements in a graphical view. Therefore, the reliability of the process model is the key 

element to improve the performance of the following phases in SDLC.  

 

SDLC is also used to understand on how an information system can support business needs, 

designing the system, building the system and delivering the system to users [3]. SDLC consists 

of four fundamental phases, which are analysis, design, implement and testing phases. In the 

analysis phase, requirements of a system are identified and refined into a process model. 

Process model can be used to represent the processes or activities that are performed in a system 

and show the way of data moves among the processes. In order to diagram a process model, 

data flow diagramming is needed. Dixit et al. [4] define data flow diagram as a graphical tool 

that allows system analysts and users to depict the flow of data in an information system. 

 

Normally, the system can be physical or logical, manual or computer based. Data flow diagram 

symbols consist of four symbols which are processes, data flows, data stores and external 

entities. The standard set of symbols that will be used in this paper is devised by Gane and 

Sarson symbols in [3]. Table 1 shows these symbols. 
 

Table 1 : Symbols for DFD elements in [3] 
Symbol Element Name 

 

 

 

 

 

 

 

 

 

Process 

 

 

 

 

Data Flow 

 

 

 

Data Store 

 
 

 

 

External Entity 

 

In data flow diagram, the highest-level view of the system is known as context diagram. The 

next level of data flow diagram is called the level 0 data flow diagram which represents a 

Name 

D1 Name 

 Name 

0 

Name 
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system’s major processes, data flows and data stores at a high level of detail. Every process in 

the level n-1 data flow diagram would be decomposed into its lower-level data flow diagram 

which is level n data flow diagram. The key principle in data flow diagram is to ensure 

balancing which means that the data flow diagram at one level is accurately represented in the 

next level data flow diagram when developing a project. The ideal level of decomposition is to 

decompose the system until system analysts and users can provide a detailed description of the 

process whereby the process descriptions is not more than one page. The final set of data flow 

diagrams is validated for ensuring quality. In general, there are two types of problems that can 

occur in data flow diagrams which are syntax errors and semantics errors. Semantics errors are 

more complicated than syntax errors due to a set of rules that need to be followed in order to 

identify them. For example, every process has at least one input data flow and every process has 

at least one output data flow. Therefore, understanding the set of rules for data flow diagrams is 

important. Once the rules are understand, a tool can be developed based on the rules so that the 

tool can perform consistency check between context diagram to level 0 data flow diagram. The 

tool is also able to perform grammatical errors checking within or across data flow diagrams in 

order to achieve consistency. By using this tool, the correctness and reliability of data flow 

diagrams can be increased. 

 

3. RELATED WORK 

According to Lucas et al. [2], consistency problems have existed in Information System 

development since its beginning and are usually linked to the existence of multiple models or 

views which participate in the development process. Tao and Kong [5] state that a data flow 

diagram is visual and informal, hence, it is easy to learn and use. However, its informality 

makes it difficult to conduct formal verification of the consistency and completeness of a data 

flow diagram specification. 

 

Dixit et al. [4], on the other hand, defined data flow diagram consistency is the extent to which 

information contained on one level of a set of nested data flow diagram is also included on other 

levels. According to Tao and Kong [5], the child data flow diagram that results from 

decomposition is consistent with the precedence relation for the parent process and does not 

introduce additional precedence relationships between the input and output flows of the parent 

process. Recently, many systems have been developed to provide automatic support for data 

flow diagrams specifications. However, all of these systems are lack the ability to manipulate 

the semantics of data flow diagram specification [6]. Research done by Lee and Tan [7] cover 

the modelling of DFD using Petri Net model. In their research, they check consistency of the 

DFDs by enforcing constraints on their Petri Net model. Tong and Tang [6], on the other hand, 

model the DFD using temporal logic language. A method for checking consistency for Unified 

Modelling Language (UML) specification, on the other hand, has been done for example in [2], 

[8] and [9]. 

 

Various researches also stated that no formal language has been currently used for semantic 

specification of data flow diagram ([1], [6], and [10]). However, Tao and Kong [6] point out 

that there are few development environments or CASE tools provide automated verification 

facilities that can detect inconsistency and incompleteness in a data flow diagram specification. 

Dixit et al. [4] therefore describe that the concept of data flow diagram consistency is refers to 

whether or not the depiction of the system shown at one level of a nested set of data flow 

diagram is compatible with the depictions of the system shown at other levels. They also state 

that a consistency check facility with a CASE tool will be helpful for the practitioners. 

Consistency in process decomposition, on the other hand, means that the precedence relation is 

faithfully inherited by the child data flow diagram [5]. Ahmed Jilani et al. [1], on the other 
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hand, state that notations used in the data flow diagram are usually graphical and different tools 

and practitioners interpret their notations differently. Therefore, a well-defined semantics or 

data flow diagram formalism could help to reduce inconsistencies and confusion.  

 

This paper formalizes important DFD rules to address the consistency issues in DFD. Our 

research focuses on consistency check between data flow diagrams and develops a tool to 

automate a consistency check between data flow diagrams based on the formal notations used 

for the DFD rules.  

 

4. SYNTAX AND SEMANTIC RULES OF DFD 

Data flow diagrams are illustrated movement of data between external entities and the processes 

and data stores within a system [11]. According to Donald and Le Vie [12], data flow diagrams 

are a tool that can reveal relationships among and between the various components in a program 

or system. Tao and Kong [5], on the other hand, stated that data flow diagram technique is 

effective for expressing functional requirements for large complex systems. Definition 1 gives 

the definition of data flow diagram where there are four symbols in the data flow diagram which 

are processes, data flows, data stores and external entities (source/sink). In general, there are 

two commonly used styles of symbols in data flow diagram as described in [3] and [4]. For our 

research, we will use Gane and Sarson symbols as described in [3] which appear in Table 1. 

 

Definition 1: A Data Flow Diagram consists of: 

• Processes  

• Data Flows 

• Data Stores 

• External Entites 

 

where 

- A process is an activity or a function that is performed for some specific business reason; 

- A data flow is a single piece of data or a logical collection of several pieces of 

information; 

- A data store is a collection of data that is stored in some way; 

- An external entity is a person, organization, or system that is external to the system but 

interact with it. 

 

The highest-level of data flow diagram is known as the context diagram. According to Jeffrey et 

al. [8], a context diagram is a data flow diagram of the 10 scope of an organizational system that 

shows the system boundaries, external entities that interact with the system and the major 

information flows between the entities and the system. Dennis et al. [3] state that the context 

diagram shows the overall business process as just one process and shows the data flows to and 

from external entities. Data stores are not usually included on the context diagram. The context 

diagram therefore is decomposed into the lower-level diagram which is level 0 data flow 

diagram. In fact, each process on the level 0 data flow diagram can be decomposed into more 

explicit data flow diagram, called level 1 diagram and can be further decomposed into next 

lower-level diagram when it is needed. In general, there are two fundamentally different types 

of problems that can occur in data flow diagrams which are syntax errors and semantics errors. 

Tao and Kong [5] defined the syntax of the data flow diagram is how components are 

interconnected through data flows and what components constitute the subsystem being 

modeled. The semantics of the data flow diagram, on the other hand, is how data flows are 

interrelated in terms of data transformations. Dennis et al. [3] claimed that syntax errors are 

easier to find and fix than are semantics errors because there are clear rules that can be used to 

identify them. There is a set of rules that must be followed by analysts when drawing data flow 
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diagrams in order to evaluate data flow diagrams for correctness [12]. Definition 2 until 

Definition 8 stated these rules. 

 

 

Definition 2: Rules of data flow diagrams: 

• At least one input or output data flow for external entity 

• At least one input data flow and/or at least one output data flow for a process 

• Output data flows usually have different names than input data flows for a process 

• Data flows only in one direction 

• Every data flow connects to at least one process 

 

Definition 3: Unique name in data flow diagrams: 

• A unique name (verb phase), a number and a description for a process 

• A unique name that is a noun and a description for a data flow 

• A unique name that is a noun and a description for data store 

• A unique name that is a noun and a description for external entity  

 

Definition 4: Consistency: 

• Every set of data flow diagrams must have one context diagram. 

 

Definition 5:  Consistency Viewpoint: 

• There is a consistency viewpoint for the entire set of DFDs. 

 

Definition 6: Decomposition: 

• Every process is wholly and completely described by the processes on its children DFDs. 

 

Definition 7: Balancing: 

• Every data flow, data store and external entity on a higher level DFD is shown on the 

lower-level DFD that decomposes it. 

 

Definition 8: Data Store: 

• For every data store, data cannot move directly from one data store to another data store. 

• Data must be moved by a process. 

 

Definitions 2 until 8 explain the fundamental rules of data flow diagrams. The consistency 

between context diagram and data flow diagram is very important and the rules for these 

consistency is captured in Definitions 4 and 5. Following on the consistency issue, Definition 6 

addresses aspect on decomposition of the processes to its lower level of DFD and Definition 7 

addresses aspect of balancing of DFD elements to its lower level of DFD. Syntax rules are used 

to verify syntax errors within the DFD. The syntax rules are defined in Definition 9. 

 

Definition 9: Syntax rules of data flow diagram: 

• At least one input data flow for a process 

• At least one output data flow for a process 

• Process from external entity cannot move directly to another external entity 

• At least one input data flow for a data store 

• At least one output data flow for a data store 

• Data from one data store cannot move directly to another data store 
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Based on Definition 9, six syntax rules are used in order to verify the correctness of the context 

diagram and level 0 data flow diagram. However, the syntax rules of data store only applied in 

level 0 data flow diagram. Semantics rules are used to verify semantics errors from context 

diagram to level 0 data flow diagram. The semantics rules are defined in Definition 10. 

 

 

Definition 10: Semantic rules of data flow diagram: 

• The total number and name of external entities in context diagram are the same as in level 

0 DFD 

• The total number and name of data flows between process and external entity in context 

diagram are same as level 0 DFD 

• The total number and name of external entities in level 0 DFD are same as context diagram 

• The total number and name of data flows between process and external entity in level 0 

DFD are the same as in context diagram 

 

The semantics rules defined in Definition 10 are used to perform consistency check from 

context diagram to level 0 data flow diagram. We then formalize the DFD rules and represented 

them using mathematical notations in order to better understand the rules. Similar approach for 

formalization of DFDs is in [6] and [7], where Tong and Tang [6] use temporal logic language 

and Lee and Tan [7] use Petri Net model. Gao and Huaikou [13], on the other hand, integrate 

structured approach with object-oriented approach and suggest a formal language using Z 

notations for predicate data flow diagram (PDFD). The formalization of DFD rules is discussed 

in next section. 

 

5. FORMALIZATION OF DFD RULES 

This section formalizes the important DFD rules based on the syntax and semantics rules of 

DFD given in Section 4. The mathematical notations are used, for better understanding of the 

DFD rules. 

 

Rule 1. Let D be a data flow diagram, then  

 D = {P, F, S, E}                      (1) 

      where 

 P = {p1, p2, p3…, pm} is a finite set of processes; 

F = {f1, f2, f3…, fm} is a finite set of data flows; 

S = {s1, s2, s3…, sm } is a finite set of data stores; 

E = {e1, e2, e3…, em } is a finite set of external entities; 

 

Rule 1 defines the data flow diagram. Data flow diagram consists of a set of processes, data 

flows, data stores and external entities. 

 

Rule 2. Let C be a context diagram then  

 mkjikjefppfeC ikji ≤≤≠><><= ,,1,},,,,,,{ 11                            (2) 

       

Rule 2 defines the context diagram. Context diagram consists of one process only and a set of 

external entities and data flows. Data flow can be connected from external entity to a process 

and vice versa but the data flow must be a different data flow. Note that, data store can only 

exist in data flow diagram but not context diagram. 

 

Rule 3.  
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mji, 1 ,,, ≤≤≠∈∀ jiji ppPpp                         (3) 

 

From Rule 3, the name of the process is unique. For any process, no duplication is allowed. The 

same rules apply for data flows (Rule 4), data stores (Rule 5) and external entities (Rule 6). The 

name is unique and duplication of name is not allowed. 

 

 

Rule 4. 

  mjifFff jji ≤≤≠∈∀ ,1,f ,, i                         (4) 

 

Rule 5. 

  mjissSss jiji ≤≤≠∈∀ ,1,,,                         (5) 

 

Rule 6. 

  m  j i,  1 ,e,, j ≤≤≠∈∀ iji eEee                         (6) 

 

Rule 7. 

  mjifDfCf jji ≤≤=∈∃∈∀ ,1,f , , i                  (7) 

 

Rule 7 indicates that for any data flow that belongs to context diagram, that data flow must exist 

in data flow diagram. The same rule applies to external entity. That is, for any external entity 

that belongs to context diagram, that external entity must exist in data flow diagram (Rule 8).  

 

Rule 8. 

  mjieDeCe jji ≤≤=∈∃∈∀ ,1,e , , i                  (8) 

 

Rule 9. 

Dfssee kjiji ∈∀ ,,,,  , then                                                                       (9) 

     },,{ ><≠ jki efeD and },,{ ><≠ jki sfsD , mkji ≤≤ ,,1            

 

Rule 9 indicates that for any data flow diagram, a data flow cannot connect from one external 

entity to another external entity and a data flow cannot also connect from one data store to 

another data store. 

 

Rule 10. 

Dfse kji ∈∀ ,,  , then                                                                               (10) 

     },,{ ><≠ jki sfeD and },,{ ><≠ ikj efsD , mkji ≤≤ ,,1            

 

Rule 10 indicates that for any data flow diagram, a data flow cannot connect from one external 

entity to data store and a data flow cannot also connect from one data store to external entity. 

 

Rule 11. 

  Dffsp kjii ∈∀ ,,, , then                       (11) 

                   },,{ ><= iji sfpD and },,{ ><= iki pfsD , mkjiff kj ≤≤≠ ,,1,,  
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Rule 11 indicates that for any data flow that connect from process to data store, another data 

flow can connect from data store to process but must be different from the previous used data 

flow. 

 

Rule 12. 

  Dffpe kjii ∈∀ ,,, , then                       (12) 

                   },,{ ><= iji pfeD and },,{ ><= iki efpD , mkjiff kj ≤≤≠ ,,1,,  

 

Rule 12 indicates that for any data flow that connect from external entity to process, another 

data flow can connect from process to external entity but must be different from the previous 

used data flow. 

 

Rule 13. 

  Dffpp kjji ∈∀ ,,, , then                       (13) 

                 },,{ ><= jji pfpD and },,{ ><= ikj pfpD , mkjiff kj ≤≤≠ ,,1,,  

 

Rule 13 indicates that for any data flow that connect from one process to another process, 

another data flow can connect from another process to previous process but must be different 

from the previous used data flow. 

 

6. THE TOOL 

The tool is developed based on the set of rules imposed by data flow diagrams as described in 

Section 5. A graphical layout is used in order to use the tool as an editor for drawing the 

diagrams and as a checker as well to check the correctness of the diagrams. Figure 1 shows the 

main interface of the tool. 

 

 
Figure 1. Interface of the Tool 
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From Figure 1, the main interface provides a platform that allows the user to input both 

diagrams by using the data flow diagram elements provided. The main interface includes four 

main parts where the top of the interface is the menu bar consists of five menu functions, the 

toolbar of the data flow diagram elements is in the left-side of the interface, the bottom-right is 

an error list text box and a “Consistency Check” button. The rest of interface is the drawing 

panel for user to draw the particular diagram. The five functions in menu bar are open a new 

file, open a saved file, save the data flow diagrams, print the data flow diagrams and open a help 

menu. In the toolbar, there are four data flow diagram elements which are process, external 

entity, data flow and data store. User is allowed to drag and drop the data flow diagram 

elements on the drawing panel. “Consistency Check” button, on the other hand, is used to 

perform the consistency check after both diagrams are created. Therefore, the tool serves two 

purposes. The first purpose is as an editor for drawing the context diagram and level 0 data flow 

diagram and the second purpose is as a checker for checking the consistency between context 

diagram and level 0 data flow diagram. 

 

In this paper, we give one simple example of an academic information system and use the tool 

to represent the context diagram and its level 0 of data flow diagram. Figure 2 shows the 

example of the context diagram for a lecturer who is going to use the Academic Information 

System (AIS). A lecturer can send his or her academic information to the system and can get a 

list of academicians from the system.  

 

 

 
Figure 2. Example of Context Diagram 

 
In reference to Figure 2, using Rule 2, the AIS consists of 1 entity, 1 process and 2 data flows. 

That is, },,,,,{ 121111 ><><= efppfeC . The context diagram also follows Rule 4 for the 

uniqueness of data flow name. From context diagram, a level 0 data flow diagram can be drawn 

as shown in Figure 3. 
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Figure 3. Example of Level 0 Data Flow Diagram 

 

Based on Figure 3, level 0 data flow diagram for AIS consists of 2 processes, 1 external entity, 1 

data store and 5 data flows. That is, 

 },,,,,,,,,,,,,,{ 351143332223212 ><><><><><= pfssfppfpefppfeD  

 

Data flow diagram follows Rules 3 until 6 for uniqueness name used. For data flow, Rule 7 is 

also followed. However, for external entity, Rule 8 is not followed. That is, if there exist 

external entity in context diagram, that external entity must exist in data flow diagram. 

Therefore, the data flow diagram consists of syntax errors. 

 

The tool verifies the syntax errors for all the data flow diagram elements used. When there is 

any syntax errors exist in the data flow diagram elements, the tool displays an error message to 

user. Figure 3 shows an existence of syntax error from the data flow diagram. Since the entity 

from context diagram is Lecturer, the tool informs the inconsistency between context diagram 

and data flow diagram. The user can then use the editor of the tool to correct the syntax error. If 

the entity is correct, the tool validates the consistency check as shown in Figure 4. 
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Figure 4. Consistency Check 

 

Based on Figure 4, level 0 data flow diagram consists of the correct external entity. That is, 

},,,,,,,,,,,,,,{ 351143332123211 ><><><><><= pfssfppfpefppfeD  

 

Data flow diagram described in Figure 4 follows Rule 8. That is the external entity exists in 

context diagram as well as in data flow diagram. The tool verifies that both diagrams are 

consistent. 

  

Once the diagrams are drawn, they can be saved to a new or existing folder. The tool allows the 

user to save and print the diagrams. The user can open the folder again for viewing or editing of 

the diagrams. The user can also print the diagrams. The Help menu can be used for getting more 

information regarding the tool.  

 

The development of the tool also incorporated the rules for syntax errors. Rules 9 until 12 are 

also implemented inside the tool. For example, if a user wants to draw a data flow from one 

external entity to another external entity, the tool prompts a syntax error indicating that such 

connection cannot be done. Figure 5 shows the example of it. 
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Figure 5. Example of Syntax Error for Rule 9. 

 

Figure 5 shows that if a user wants to connect a data flow from one external entity to another 

external entity, the tool prompts a syntax error indicating that the drawing cannot be done. The 

same goes to other rules such as Rule 10. The tool prompts a syntax error if a user tries to 

connect a data flow from external entity to data store. 

 

We demonstrate another example of using our tool to represent the context diagram and its level 

0 of data flow diagram. Figure 6 shows the example of the context diagram for a student who 

wants to borrow book using the Library System (LS). A Student can send his or her list of book 

to borrow to the system and can get a list of book that is available for him or her to borrow from 

the system.  

 

 
Figure 6. Context Diagram for Library System (LS) 
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In reference to Figure 6, using Rule 2, the LS consists of 1 process, 3 entities and 6 data flows. 

The context diagram also follows Rule 4 for the uniqueness of data flow name. From context 

diagram, a level 0 data flow diagram can be drawn as shown in Figure 7. 

 

 
 

 
Figure 7. Example of Level 0 Data Flow Diagram 

 

Based on Figure 7, level 0 data flow diagram for LS consists of 3 processes, 3 entities, 1 data 

store and 10 data flows. Data flow diagram follows Rules 3 until 6 for uniqueness name used. 

For external entity, Rule 8 is followed. However, for data flow, Rule 7 is not followed. That is, 

if there exist data flow in context diagram, that data flow must exist in data flow diagram. 

Therefore, the data flow diagram consists of syntax errors. 

 

The tool validates the syntax errors for all the data flow diagram elements used. When there is 

any syntax errors exist in the data flow diagram elements, the tool displays an error message to 

user. Figure 7 shows an existence of syntax error from the data flow diagram. Since the data 

flow from context diagram is <check list>, the tool informs the inconsistency between context 

diagram and data flow diagram. The user can then use the editor of the tool to correct the syntax 

error. If the data flow is correct, the tool can also be used for the consistency check. Figure 8 

shows that the diagrams (context diagram and level 0 data flow diagrams) are consistent. 
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Figure 8. Consistency Check 

 

Based on Figure 8, level 0 data flow diagram consists of the correct data flow. Data flow 

diagram follows Rule 7. That is the data flow exists in context diagram as well as in data flow 

diagram. The tool will verify that both diagrams are consistent. 

  

Once the diagrams are drawn, they can be saved to a new or existing folder. The tool allows the 

user to save and print the diagrams. The user can open the folder again for viewing or editing of 

the diagrams. The user can also print the diagrams. The Help menu can be used for getting more 

information regarding the tool.  

 

The development of the tool also incorporated the rules for syntax errors. Rules 9 until 12 are 

also implemented inside the tool. For example, if a user wants to draw a data flow from one 

external entity to data store, the tool prompts a syntax error indicating that such connection 

cannot be done. Figure 9 shows the example of it. 
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Figure 9. Example of Syntax Error for Rule 10. 

 

Figure 9 shows that if a user wants to connect a data flow from one external entity to data store, 

the tool prompts a syntax error indicating that the drawing cannot be done. The same goes to 

other rules such as Definition 9. The tool prompts a syntax error if a user tries to connect a data 

flow from external entity to data store. The tool ensures the correctness of the diagrams drawn 

and the balancing of every data flow and external entity between context diagram with level 0 

data flow diagram. 

 

7. CONCLUSIONS 

This paper has discussed how to model a business process flow using data flow diagrams and 

presented a set of syntax and semantics rules of data flow diagrams. The rules are then being 

formalized and used to automate the process of checking the consistency between the context 

diagram and level 0 data flow diagrams. The automatic checking of consistency overcomes the 

time-consuming process of manually checking the correctness of the diagrams. The developers 

can use the tool for drawing and designing their process model of the system that they want to 

develop. 

 

The tool serves two purposes. The first purpose is as an editor to draw the diagrams and the 

second purpose is as a checker to check the correctness of the diagrams drawn as well as 

consistency between the diagrams. Our tool has several advantages. First, we can minimize the 

syntax errors when drawing the diagrams since the tool prevents the user from making such 

errors. Second, the correctness of diagrams is guaranteed since the consistency check between 

diagrams are also done via the tool. 
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