
International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

DOI : 10.5121/ijsea.2010.1406 95

FORMALIZATION OF THE DATA FLOW DIAGRAM

RULES FOR CONSISTENCY CHECK

Rosziati Ibrahim and Siow Yen Yen

Department of Software Engineering, Faculty of Computer Science and Information

Technology, Universiti Tun Hussein Onn Malaysia (UTHM),

Parit Raja, 86400, Batu Pahat, Johor Malaysia
rosziati@uthm.edu.my

yenyen0831@hotmail.com

ABSTRACT

In system development life cycle (SDLC), a system model can be developed using Data Flow Diagram

(DFD). DFD is graphical diagrams for specifying, constructing and visualizing the model of a system.

DFD is used in defining the requirements in a graphical view. In this paper, we focus on DFD and its

rules for drawing and defining the diagrams. We then formalize these rules and develop the tool based on

the formalized rules. The formalized rules for consistency check between the diagrams are used in

developing the tool. This is to ensure the syntax for drawing the diagrams is correct and strictly followed.

The tool automates the process of manual consistency check between data flow diagrams.

KEYWORDS

Consistency Check, Context Diagram, Data Flow Diagram, Formal Method

1. INTRODUCTION

System development life cycle (SDLC) is an essential process uses during the development of

any system. SDLC consists of four main phases. They are planning, analysis, design and

implementation. During analysis phase, context diagram and data flow diagrams are used to

produce the process model of a system. A consistency of the context diagram to lower-level data

flow diagrams is very important in smoothing up developing the process model of a system.

However, manual consistency check from context diagram to lower-level data flow diagrams

using a checklist is time-consuming process [1]. At the same time, the limitation of human

ability to validate the errors is one of the factors that influence the correctness and balancing of

the diagrams [2]. This paper presents a technique for modeling data flow diagram rules and

proposes a formalization of its rules. The tool is then developed based on the formalized rules.

The purpose for the development of a tool is to automate the manual consistency check between

data flow diagrams (DFDs) based on the rules of DFDs. The tool serves two purposes: as an

editor to draw the diagrams and as a checker to check the correctness of the diagrams drawn as

well as consistency between diagrams. The consistency check from context diagram to lower-

level data flow diagrams is automated to overcome the manual checking problem.

The motivation of formalizing the rules of data flow diagrams is because DFD has been used in

a widely basis for modeling any system but still lacking a precise understanding. Therefore, by

formalizing the DFD rules, we can get a formal model of DFD rules. This formal model can be

used to ensure that the diagrams drawn are correct and they are consistent with each other.

The rest of this paper is organized as follows. The review of DFD is in Section 2 and the

discussion on the related works is in Section 3. Section 4 discusses the syntax and semantics

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

96

rules of DFD and Section 5 formalizes the DFD rules. The development of the tool is discussed

in Section 6 and finally, Section 7 concludes the paper.

2. OVERVIEW OF DFD

SDLC is a process uses during the development of software system starting from planning until

the implementation phase. Data flow diagramming, on the other hand, is used to produce the

process model during the analysis phase [3]. Process model is very important in defining the

requirements in a graphical view. Therefore, the reliability of the process model is the key

element to improve the performance of the following phases in SDLC.

SDLC is also used to understand on how an information system can support business needs,

designing the system, building the system and delivering the system to users [3]. SDLC consists

of four fundamental phases, which are analysis, design, implement and testing phases. In the

analysis phase, requirements of a system are identified and refined into a process model.

Process model can be used to represent the processes or activities that are performed in a system

and show the way of data moves among the processes. In order to diagram a process model,

data flow diagramming is needed. Dixit et al. [4] define data flow diagram as a graphical tool

that allows system analysts and users to depict the flow of data in an information system.

Normally, the system can be physical or logical, manual or computer based. Data flow diagram

symbols consist of four symbols which are processes, data flows, data stores and external

entities. The standard set of symbols that will be used in this paper is devised by Gane and

Sarson symbols in [3]. Table 1 shows these symbols.

Table 1 : Symbols for DFD elements in [3]
Symbol Element Name

Process

Data Flow

Data Store

External Entity

In data flow diagram, the highest-level view of the system is known as context diagram. The

next level of data flow diagram is called the level 0 data flow diagram which represents a

Name

D1 Name

 Name

0

Name

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

97

system’s major processes, data flows and data stores at a high level of detail. Every process in

the level n-1 data flow diagram would be decomposed into its lower-level data flow diagram

which is level n data flow diagram. The key principle in data flow diagram is to ensure

balancing which means that the data flow diagram at one level is accurately represented in the

next level data flow diagram when developing a project. The ideal level of decomposition is to

decompose the system until system analysts and users can provide a detailed description of the

process whereby the process descriptions is not more than one page. The final set of data flow

diagrams is validated for ensuring quality. In general, there are two types of problems that can

occur in data flow diagrams which are syntax errors and semantics errors. Semantics errors are

more complicated than syntax errors due to a set of rules that need to be followed in order to

identify them. For example, every process has at least one input data flow and every process has

at least one output data flow. Therefore, understanding the set of rules for data flow diagrams is

important. Once the rules are understand, a tool can be developed based on the rules so that the

tool can perform consistency check between context diagram to level 0 data flow diagram. The

tool is also able to perform grammatical errors checking within or across data flow diagrams in

order to achieve consistency. By using this tool, the correctness and reliability of data flow

diagrams can be increased.

3. RELATED WORK

According to Lucas et al. [2], consistency problems have existed in Information System

development since its beginning and are usually linked to the existence of multiple models or

views which participate in the development process. Tao and Kong [5] state that a data flow

diagram is visual and informal, hence, it is easy to learn and use. However, its informality

makes it difficult to conduct formal verification of the consistency and completeness of a data

flow diagram specification.

Dixit et al. [4], on the other hand, defined data flow diagram consistency is the extent to which

information contained on one level of a set of nested data flow diagram is also included on other

levels. According to Tao and Kong [5], the child data flow diagram that results from

decomposition is consistent with the precedence relation for the parent process and does not

introduce additional precedence relationships between the input and output flows of the parent

process. Recently, many systems have been developed to provide automatic support for data

flow diagrams specifications. However, all of these systems are lack the ability to manipulate

the semantics of data flow diagram specification [6]. Research done by Lee and Tan [7] cover

the modelling of DFD using Petri Net model. In their research, they check consistency of the

DFDs by enforcing constraints on their Petri Net model. Tong and Tang [6], on the other hand,

model the DFD using temporal logic language. A method for checking consistency for Unified

Modelling Language (UML) specification, on the other hand, has been done for example in [2],

[8] and [9].

Various researches also stated that no formal language has been currently used for semantic

specification of data flow diagram ([1], [6], and [10]). However, Tao and Kong [6] point out

that there are few development environments or CASE tools provide automated verification

facilities that can detect inconsistency and incompleteness in a data flow diagram specification.

Dixit et al. [4] therefore describe that the concept of data flow diagram consistency is refers to

whether or not the depiction of the system shown at one level of a nested set of data flow

diagram is compatible with the depictions of the system shown at other levels. They also state

that a consistency check facility with a CASE tool will be helpful for the practitioners.

Consistency in process decomposition, on the other hand, means that the precedence relation is

faithfully inherited by the child data flow diagram [5]. Ahmed Jilani et al. [1], on the other

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

98

hand, state that notations used in the data flow diagram are usually graphical and different tools

and practitioners interpret their notations differently. Therefore, a well-defined semantics or

data flow diagram formalism could help to reduce inconsistencies and confusion.

This paper formalizes important DFD rules to address the consistency issues in DFD. Our

research focuses on consistency check between data flow diagrams and develops a tool to

automate a consistency check between data flow diagrams based on the formal notations used

for the DFD rules.

4. SYNTAX AND SEMANTIC RULES OF DFD

Data flow diagrams are illustrated movement of data between external entities and the processes

and data stores within a system [11]. According to Donald and Le Vie [12], data flow diagrams

are a tool that can reveal relationships among and between the various components in a program

or system. Tao and Kong [5], on the other hand, stated that data flow diagram technique is

effective for expressing functional requirements for large complex systems. Definition 1 gives

the definition of data flow diagram where there are four symbols in the data flow diagram which

are processes, data flows, data stores and external entities (source/sink). In general, there are

two commonly used styles of symbols in data flow diagram as described in [3] and [4]. For our

research, we will use Gane and Sarson symbols as described in [3] which appear in Table 1.

Definition 1: A Data Flow Diagram consists of:

• Processes

• Data Flows

• Data Stores

• External Entites

where

- A process is an activity or a function that is performed for some specific business reason;

- A data flow is a single piece of data or a logical collection of several pieces of

information;

- A data store is a collection of data that is stored in some way;

- An external entity is a person, organization, or system that is external to the system but

interact with it.

The highest-level of data flow diagram is known as the context diagram. According to Jeffrey et

al. [8], a context diagram is a data flow diagram of the 10 scope of an organizational system that

shows the system boundaries, external entities that interact with the system and the major

information flows between the entities and the system. Dennis et al. [3] state that the context

diagram shows the overall business process as just one process and shows the data flows to and

from external entities. Data stores are not usually included on the context diagram. The context

diagram therefore is decomposed into the lower-level diagram which is level 0 data flow

diagram. In fact, each process on the level 0 data flow diagram can be decomposed into more

explicit data flow diagram, called level 1 diagram and can be further decomposed into next

lower-level diagram when it is needed. In general, there are two fundamentally different types

of problems that can occur in data flow diagrams which are syntax errors and semantics errors.

Tao and Kong [5] defined the syntax of the data flow diagram is how components are

interconnected through data flows and what components constitute the subsystem being

modeled. The semantics of the data flow diagram, on the other hand, is how data flows are

interrelated in terms of data transformations. Dennis et al. [3] claimed that syntax errors are

easier to find and fix than are semantics errors because there are clear rules that can be used to

identify them. There is a set of rules that must be followed by analysts when drawing data flow

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

99

diagrams in order to evaluate data flow diagrams for correctness [12]. Definition 2 until

Definition 8 stated these rules.

Definition 2: Rules of data flow diagrams:

• At least one input or output data flow for external entity

• At least one input data flow and/or at least one output data flow for a process

• Output data flows usually have different names than input data flows for a process

• Data flows only in one direction

• Every data flow connects to at least one process

Definition 3: Unique name in data flow diagrams:

• A unique name (verb phase), a number and a description for a process

• A unique name that is a noun and a description for a data flow

• A unique name that is a noun and a description for data store

• A unique name that is a noun and a description for external entity

Definition 4: Consistency:

• Every set of data flow diagrams must have one context diagram.

Definition 5: Consistency Viewpoint:

• There is a consistency viewpoint for the entire set of DFDs.

Definition 6: Decomposition:

• Every process is wholly and completely described by the processes on its children DFDs.

Definition 7: Balancing:

• Every data flow, data store and external entity on a higher level DFD is shown on the

lower-level DFD that decomposes it.

Definition 8: Data Store:

• For every data store, data cannot move directly from one data store to another data store.

• Data must be moved by a process.

Definitions 2 until 8 explain the fundamental rules of data flow diagrams. The consistency

between context diagram and data flow diagram is very important and the rules for these

consistency is captured in Definitions 4 and 5. Following on the consistency issue, Definition 6

addresses aspect on decomposition of the processes to its lower level of DFD and Definition 7

addresses aspect of balancing of DFD elements to its lower level of DFD. Syntax rules are used

to verify syntax errors within the DFD. The syntax rules are defined in Definition 9.

Definition 9: Syntax rules of data flow diagram:

• At least one input data flow for a process

• At least one output data flow for a process

• Process from external entity cannot move directly to another external entity

• At least one input data flow for a data store

• At least one output data flow for a data store

• Data from one data store cannot move directly to another data store

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

100

Based on Definition 9, six syntax rules are used in order to verify the correctness of the context

diagram and level 0 data flow diagram. However, the syntax rules of data store only applied in

level 0 data flow diagram. Semantics rules are used to verify semantics errors from context

diagram to level 0 data flow diagram. The semantics rules are defined in Definition 10.

Definition 10: Semantic rules of data flow diagram:

• The total number and name of external entities in context diagram are the same as in level

0 DFD

• The total number and name of data flows between process and external entity in context

diagram are same as level 0 DFD

• The total number and name of external entities in level 0 DFD are same as context diagram

• The total number and name of data flows between process and external entity in level 0

DFD are the same as in context diagram

The semantics rules defined in Definition 10 are used to perform consistency check from

context diagram to level 0 data flow diagram. We then formalize the DFD rules and represented

them using mathematical notations in order to better understand the rules. Similar approach for

formalization of DFDs is in [6] and [7], where Tong and Tang [6] use temporal logic language

and Lee and Tan [7] use Petri Net model. Gao and Huaikou [13], on the other hand, integrate

structured approach with object-oriented approach and suggest a formal language using Z

notations for predicate data flow diagram (PDFD). The formalization of DFD rules is discussed

in next section.

5. FORMALIZATION OF DFD RULES

This section formalizes the important DFD rules based on the syntax and semantics rules of

DFD given in Section 4. The mathematical notations are used, for better understanding of the

DFD rules.

Rule 1. Let D be a data flow diagram, then

 D = {P, F, S, E} (1)

 where

 P = {p1, p2, p3…, pm} is a finite set of processes;

F = {f1, f2, f3…, fm} is a finite set of data flows;

S = {s1, s2, s3…, sm } is a finite set of data stores;

E = {e1, e2, e3…, em } is a finite set of external entities;

Rule 1 defines the data flow diagram. Data flow diagram consists of a set of processes, data

flows, data stores and external entities.

Rule 2. Let C be a context diagram then

 mkjikjefppfeC ikji ≤≤≠><><= ,,1,},,,,,,{ 11 (2)

Rule 2 defines the context diagram. Context diagram consists of one process only and a set of

external entities and data flows. Data flow can be connected from external entity to a process

and vice versa but the data flow must be a different data flow. Note that, data store can only

exist in data flow diagram but not context diagram.

Rule 3.

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

101

mji, 1 ,,, ≤≤≠∈∀ jiji ppPpp (3)

From Rule 3, the name of the process is unique. For any process, no duplication is allowed. The

same rules apply for data flows (Rule 4), data stores (Rule 5) and external entities (Rule 6). The

name is unique and duplication of name is not allowed.

Rule 4.

 mjifFff jji ≤≤≠∈∀ ,1,f ,, i (4)

Rule 5.

 mjissSss jiji ≤≤≠∈∀ ,1,,, (5)

Rule 6.

 m j i, 1 ,e,, j ≤≤≠∈∀ iji eEee (6)

Rule 7.

 mjifDfCf jji ≤≤=∈∃∈∀ ,1,f , , i (7)

Rule 7 indicates that for any data flow that belongs to context diagram, that data flow must exist

in data flow diagram. The same rule applies to external entity. That is, for any external entity

that belongs to context diagram, that external entity must exist in data flow diagram (Rule 8).

Rule 8.

 mjieDeCe jji ≤≤=∈∃∈∀ ,1,e , , i (8)

Rule 9.

Dfssee kjiji ∈∀ ,,,, , then (9)

 },,{ ><≠ jki efeD and },,{ ><≠ jki sfsD , mkji ≤≤ ,,1

Rule 9 indicates that for any data flow diagram, a data flow cannot connect from one external

entity to another external entity and a data flow cannot also connect from one data store to

another data store.

Rule 10.

Dfse kji ∈∀ ,, , then (10)

 },,{ ><≠ jki sfeD and },,{ ><≠ ikj efsD , mkji ≤≤ ,,1

Rule 10 indicates that for any data flow diagram, a data flow cannot connect from one external

entity to data store and a data flow cannot also connect from one data store to external entity.

Rule 11.

 Dffsp kjii ∈∀ ,,, , then (11)

 },,{ ><= iji sfpD and },,{ ><= iki pfsD , mkjiff kj ≤≤≠ ,,1,,

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

102

Rule 11 indicates that for any data flow that connect from process to data store, another data

flow can connect from data store to process but must be different from the previous used data

flow.

Rule 12.

 Dffpe kjii ∈∀ ,,, , then (12)

 },,{ ><= iji pfeD and },,{ ><= iki efpD , mkjiff kj ≤≤≠ ,,1,,

Rule 12 indicates that for any data flow that connect from external entity to process, another

data flow can connect from process to external entity but must be different from the previous

used data flow.

Rule 13.

 Dffpp kjji ∈∀ ,,, , then (13)

 },,{ ><= jji pfpD and },,{ ><= ikj pfpD , mkjiff kj ≤≤≠ ,,1,,

Rule 13 indicates that for any data flow that connect from one process to another process,

another data flow can connect from another process to previous process but must be different

from the previous used data flow.

6. THE TOOL

The tool is developed based on the set of rules imposed by data flow diagrams as described in

Section 5. A graphical layout is used in order to use the tool as an editor for drawing the

diagrams and as a checker as well to check the correctness of the diagrams. Figure 1 shows the

main interface of the tool.

Figure 1. Interface of the Tool

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

103

From Figure 1, the main interface provides a platform that allows the user to input both

diagrams by using the data flow diagram elements provided. The main interface includes four

main parts where the top of the interface is the menu bar consists of five menu functions, the

toolbar of the data flow diagram elements is in the left-side of the interface, the bottom-right is

an error list text box and a “Consistency Check” button. The rest of interface is the drawing

panel for user to draw the particular diagram. The five functions in menu bar are open a new

file, open a saved file, save the data flow diagrams, print the data flow diagrams and open a help

menu. In the toolbar, there are four data flow diagram elements which are process, external

entity, data flow and data store. User is allowed to drag and drop the data flow diagram

elements on the drawing panel. “Consistency Check” button, on the other hand, is used to

perform the consistency check after both diagrams are created. Therefore, the tool serves two

purposes. The first purpose is as an editor for drawing the context diagram and level 0 data flow

diagram and the second purpose is as a checker for checking the consistency between context

diagram and level 0 data flow diagram.

In this paper, we give one simple example of an academic information system and use the tool

to represent the context diagram and its level 0 of data flow diagram. Figure 2 shows the

example of the context diagram for a lecturer who is going to use the Academic Information

System (AIS). A lecturer can send his or her academic information to the system and can get a

list of academicians from the system.

Figure 2. Example of Context Diagram

In reference to Figure 2, using Rule 2, the AIS consists of 1 entity, 1 process and 2 data flows.

That is, },,,,,{ 121111 ><><= efppfeC . The context diagram also follows Rule 4 for the

uniqueness of data flow name. From context diagram, a level 0 data flow diagram can be drawn

as shown in Figure 3.

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

104

Figure 3. Example of Level 0 Data Flow Diagram

Based on Figure 3, level 0 data flow diagram for AIS consists of 2 processes, 1 external entity, 1

data store and 5 data flows. That is,

 },,,,,,,,,,,,,,{ 351143332223212 ><><><><><= pfssfppfpefppfeD

Data flow diagram follows Rules 3 until 6 for uniqueness name used. For data flow, Rule 7 is

also followed. However, for external entity, Rule 8 is not followed. That is, if there exist

external entity in context diagram, that external entity must exist in data flow diagram.

Therefore, the data flow diagram consists of syntax errors.

The tool verifies the syntax errors for all the data flow diagram elements used. When there is

any syntax errors exist in the data flow diagram elements, the tool displays an error message to

user. Figure 3 shows an existence of syntax error from the data flow diagram. Since the entity

from context diagram is Lecturer, the tool informs the inconsistency between context diagram

and data flow diagram. The user can then use the editor of the tool to correct the syntax error. If

the entity is correct, the tool validates the consistency check as shown in Figure 4.

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

105

Figure 4. Consistency Check

Based on Figure 4, level 0 data flow diagram consists of the correct external entity. That is,

},,,,,,,,,,,,,,{ 351143332123211 ><><><><><= pfssfppfpefppfeD

Data flow diagram described in Figure 4 follows Rule 8. That is the external entity exists in

context diagram as well as in data flow diagram. The tool verifies that both diagrams are

consistent.

Once the diagrams are drawn, they can be saved to a new or existing folder. The tool allows the

user to save and print the diagrams. The user can open the folder again for viewing or editing of

the diagrams. The user can also print the diagrams. The Help menu can be used for getting more

information regarding the tool.

The development of the tool also incorporated the rules for syntax errors. Rules 9 until 12 are

also implemented inside the tool. For example, if a user wants to draw a data flow from one

external entity to another external entity, the tool prompts a syntax error indicating that such

connection cannot be done. Figure 5 shows the example of it.

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

106

Figure 5. Example of Syntax Error for Rule 9.

Figure 5 shows that if a user wants to connect a data flow from one external entity to another

external entity, the tool prompts a syntax error indicating that the drawing cannot be done. The

same goes to other rules such as Rule 10. The tool prompts a syntax error if a user tries to

connect a data flow from external entity to data store.

We demonstrate another example of using our tool to represent the context diagram and its level

0 of data flow diagram. Figure 6 shows the example of the context diagram for a student who

wants to borrow book using the Library System (LS). A Student can send his or her list of book

to borrow to the system and can get a list of book that is available for him or her to borrow from

the system.

Figure 6. Context Diagram for Library System (LS)

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

107

In reference to Figure 6, using Rule 2, the LS consists of 1 process, 3 entities and 6 data flows.

The context diagram also follows Rule 4 for the uniqueness of data flow name. From context

diagram, a level 0 data flow diagram can be drawn as shown in Figure 7.

Figure 7. Example of Level 0 Data Flow Diagram

Based on Figure 7, level 0 data flow diagram for LS consists of 3 processes, 3 entities, 1 data

store and 10 data flows. Data flow diagram follows Rules 3 until 6 for uniqueness name used.

For external entity, Rule 8 is followed. However, for data flow, Rule 7 is not followed. That is,

if there exist data flow in context diagram, that data flow must exist in data flow diagram.

Therefore, the data flow diagram consists of syntax errors.

The tool validates the syntax errors for all the data flow diagram elements used. When there is

any syntax errors exist in the data flow diagram elements, the tool displays an error message to

user. Figure 7 shows an existence of syntax error from the data flow diagram. Since the data

flow from context diagram is <check list>, the tool informs the inconsistency between context

diagram and data flow diagram. The user can then use the editor of the tool to correct the syntax

error. If the data flow is correct, the tool can also be used for the consistency check. Figure 8

shows that the diagrams (context diagram and level 0 data flow diagrams) are consistent.

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

108

Figure 8. Consistency Check

Based on Figure 8, level 0 data flow diagram consists of the correct data flow. Data flow

diagram follows Rule 7. That is the data flow exists in context diagram as well as in data flow

diagram. The tool will verify that both diagrams are consistent.

Once the diagrams are drawn, they can be saved to a new or existing folder. The tool allows the

user to save and print the diagrams. The user can open the folder again for viewing or editing of

the diagrams. The user can also print the diagrams. The Help menu can be used for getting more

information regarding the tool.

The development of the tool also incorporated the rules for syntax errors. Rules 9 until 12 are

also implemented inside the tool. For example, if a user wants to draw a data flow from one

external entity to data store, the tool prompts a syntax error indicating that such connection

cannot be done. Figure 9 shows the example of it.

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

109

Figure 9. Example of Syntax Error for Rule 10.

Figure 9 shows that if a user wants to connect a data flow from one external entity to data store,

the tool prompts a syntax error indicating that the drawing cannot be done. The same goes to

other rules such as Definition 9. The tool prompts a syntax error if a user tries to connect a data

flow from external entity to data store. The tool ensures the correctness of the diagrams drawn

and the balancing of every data flow and external entity between context diagram with level 0

data flow diagram.

7. CONCLUSIONS

This paper has discussed how to model a business process flow using data flow diagrams and

presented a set of syntax and semantics rules of data flow diagrams. The rules are then being

formalized and used to automate the process of checking the consistency between the context

diagram and level 0 data flow diagrams. The automatic checking of consistency overcomes the

time-consuming process of manually checking the correctness of the diagrams. The developers

can use the tool for drawing and designing their process model of the system that they want to

develop.

The tool serves two purposes. The first purpose is as an editor to draw the diagrams and the

second purpose is as a checker to check the correctness of the diagrams drawn as well as

consistency between the diagrams. Our tool has several advantages. First, we can minimize the

syntax errors when drawing the diagrams since the tool prevents the user from making such

errors. Second, the correctness of diagrams is guaranteed since the consistency check between

diagrams are also done via the tool.

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

110

ACKNOWLEDGEMENTS

This research is supported by the Science Fund under Ministry of Science, Technology and

Innovation (MOSTI), Malaysia.

REFERENCES

[1] Ahmed Jilani, A. A., Nadeem, A., Kim, T. H. and Cho, E. S. (2008). Formal Representations of the Data

Flow Diagram: A Survey. Proc. of the 2008 Advanced Software Engineering and Its Applications.

Washington, USA: IEEE Computer Society. pp. 153-158.

[2] Lucas, F.J., Molina, F. and Toval, A. (2009). A Systematic Review of UML Model Consistency

Management. Information and Software Technology, 51(12), pp. 1 – 15.

[3] Dennis, A., Wixom, B.H. and Roth, R.M. (2006). Systems Analysis and Design. 3rd ed. Hoboken: John

Wiley & Sons, Inc.

[4] Dixit, J. B. and Kumar, R. (2008). Structured System Analysis and Design. Paperback ed. New Delhi, India:

Laxmi Publisher.

[5] Tao, Y.L. and Kung, C.H. (1991). Formal Definition and Verification of Data Flow Diagrams. Journal of

Systems and Software, 16(1), pp. 29-36.

[6] Tong, L. and Tang, C.S. (1991). Semantic Specification and Verification of Data Flow Diagrams. Journal

of Computer Science and Technology, 6(1), pp. 21-31.

[7] Lee, P.T and Tan, K.P. (1992). Modelling of visualized data-flow diagrams using Petri Net Model.

Software Engineering Journal, January 1992, pp. 4-12.

[8] Kim, D.H. and Chong, K. (1996). A Method of Checking Errors and Consistency in the Process of Object-

Oriented Analysis. Proceedings of the 1996 Third Asia-Pacific Software Engineering Conference. Korea:

IEEE Computer Society. Pp. 208-216.

[9] Rosziati Ibrahim and Noraini Ibrahim. A Tool for Checking Conformance of UML Specification.

Proceedings of the 2009 World Academic of Science and Technology (WASET), Volume 51 (v51-45),

pp262-266.

[10] Leavens, G.T., Wahls, T. and Bakar, A.L. (1999). Formal Semantics for SA Style Data Flow Diagram

Specification Languages. Proceedings of the 1999 ACM Symposium on Applied Computing. Oregon, US:

IEEE Computer Society. pp. 526–532.

[11] Jeffrey, A. H., George, J.F. and Valacich, J.S. (2002) Modern Systems Analysis and Design. 3rd ed. US:

Prentice-Hall.

[12] Donald, S. and Le Vie, Jr. (2000). Understanding Data Flow Diagram. Proceedings of the 47th annual

conference on Society for Technical Communication. Texas: Integrated Concepts, Inc.

[13] Gao Xiaolei and Huaikou Miao. (2008). The Axiomatic Semantics of PDFD. Proceedings of the 2008

Japan-China Joint Workshop on Frontier of Computer Science and Technology, IEEE Computer Society,

pp. 139-146.

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

111

Authors

Rosziati Ibrahim is with the Software Engineering

Department, Faculty of Computer Science and

Information Technology, Universiti Tun Hussein

Onn Malaysia (UTHM). She obtained her PhD in

Software Specification from the Queensland

University of Technology (QUT), Brisbane and her

MSc and BSc (Hons) in Computer Science and

Mathematics from the University of Adelaide,

Australia. Her research area is in Software

Engineering that covers Software Specification,

Software Testing, Operational Semantics, Formal

Methods, Data Mining and Object-Oriented

Technology.

Siow Yen Yen is a student at the Department of

Software Engineering, Faculty of Computer

Science and Information Technology, Universiti

Tun Hussein Onn Malaysia (UTHM), Batu Pahat,

Johor, Malaysia.

