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ABSTRACT 

Normally, program execution spends most of the time on loops. Automated test data generation devotes 
special attention to loops for better coverage. Automated test data generation for programs having loops 
with variable number of iteration and variable length array is a challenging problem. It is so because the 
number of paths may increase exponentially with the increase of array size for some programming 
constructs, like merge sort. We propose a method that finds heuristic for different types of programming 
constructs with loops and arrays. Linear search, Bubble sort, merge sort, and matrix multiplication 
programs are included in an attempt to highlight the difference in execution between single loop, variable 
length array and nested loops with one and two dimensional arrays. We have used two 
parameters/heuristics to predict the minimum number of iterations required for generating automated test 
data. They are longest path level (kL) and saturation level (kS). The proceedings of our work includes the 
instrumentation of source code at the elementary level, followed by the application of the random inputs 
until all feasible paths or all paths having longest paths are collected. However, duplicate paths are 
avoided by using a filter. Our test data is the random numbers that cover each feasible path. 
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1. INTRODUCTION 

In software testing, loops are important spot for error detection. Execution of program spend 

large amount of time in loops.  Without covering paths going through loops we can not get 

better code coverage.  Most of the mistakes are made in loops of programs. Infinite loop creates 

lots of problem in detecting the errors.  In fact, it is impossible to detect all kinds of infinite 

looping automatically [23]. Test data generation is more challenging if loops are nested. 

Automated test data is generated using symbolic value, actual value, and combining both. One 

of the main problems in test data generation is detection of infeasible path. Statistics reveals that 

many paths of a program can be infeasible[5].  The symbolic execution method suffers for 

infeasible path detection due to non availability of efficient constraint solver and path feasibility 

detector. The actual value execution method may spend lot of computation to detect the 

infeasible path. It is observed that combined approach [16] is better method for avoiding 

infeasible path. In a loop many paths are infeasible. It is seen that some combined method [16] 

does code instrumentation and constraint solving. It has been found that [16], the PathCrawler 

prototype tool is a more convenient method for automatic test data generation of programs 
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having loops and array constructs. But the number of iteration applied to loop construct is 

satisfied with a minimum value like k = 2 where k is number of iteration allowed for finding 

paths for test data generation. This is because the number of paths increases exponentially for 

programming construct like merge sort where we have two array of variable length and three 

sequential loops. The value of k is determined by trial and error method. The authors proposed a 

heuristic called longest path criteria instead of k = 2 path criterion to improve automated test 

data generation for programs having arrays of variable length, and loops with variable number 

of iteration [12]. The methods ignore infeasible path problem as it considers only the feasible 

paths. Test data generation for programs with loops causes a combinatorial explosion in the 

number of execution paths for programming construct like merge sort [12]. But it is seen that 

the number of feasible path decreases in case of matrix multiplication program because of the 

restriction of equal number of rows and columns. The number of path is linearly increased with 

increase of array size for program with one loop statement like linear search. The number of 

path increases quadratically for bubble sort program with increase of array size. The basic idea 

of our work is taken from path crawler. [16]. The path crawler work includes instrumentation of 

the source code so as to recover the symbolic execution path each time that the program under 

test is executed. The code is first executed using inputs arbitrarily selected from the input 

domain. The resulting symbolic path is transformed into a path-predicate by projection of 

conditions into the input variables. They have achieved the next test using constraint logic 

programming to find new input values outside the domain of the path already covered. The 

instrumented code is then executed on this test and so on until all the feasible paths have been 

covered. In our work we avoid constraint solving part by generating random inputs to the 

instrumented code until all feasible paths are covered. That is we stop when no more new 

feasible path is created. This is saturation level(kS). For some programs with large array size, 

like merge sort it may not be possible to get saturation level, because the number of paths 

increases exponentially when array size is increased. In that case our coverage criteria will be 

kL.( minimum number of iteration where longest path exist).  Our experimental results confirm 

that after certain number of iteration we found all the feasible paths.  Even if we increase the 

number of iteration no more paths can be generated. The randomly generated inputs may cover 

same path more that one time as we know there can be more than one input that traverse the 

same path. The paths generated by our random inputs are passed through a filter to find out the 

unique feasible paths.  An important issue of our method is how long we will continue random 

number generation. We collected from our experiments a number of test cases, unique feasible 

path(UFP),  new feasible path(NFP),  longest length path(LLP), and execution time(Etime) for 

different number of iteration(k). Our experimental results shows that for program like linear 

search no more new path is generated if we take number of iteration greater than array size, for 

programs like matrix multiplication number of iteration is greater than a3 where a is number of 

rows/column of a square matrix. Number of iteration for program like bubble sort can be taken 

as half of square of array size. For programs like merge sort we can not get kS level as the 

number of paths increases exponentially with the increase of array size. In this case, we take 

longest path level(kL)[12]. kL increases linearly with the increase of array size. Similarly we can 

have a heuristic table for other programming constructs those can be used for determining the 

number of iterations to be adopted for test data generation. Therefore our test data generation 

method provide us test data for programs with variable number of loops and array length in less 

effort and with better coverage in comparison to path crawler method. 

 

 The rest of the paper is organized as follows: The section 2 presents a survey of related works 

of path oriented test data generation. Section 3 describes our approach of test data generation. 

Section 4 illustrates our test data generation process with examples. Section 5 shows our 

experiment results and propose heuristics for different types of programming constructs. Section 

6 discusses our experimental results. Finally in section 7 we conclude with some observation 

and future works for automatic test data generation of loop and array constructs. 
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2. Related Work  

In [18] Prather described a new software testing strategy. The method uses previous test paths to 

guide in the subsequent path selection. The method ensures branch coverage and generates path 

dynamically making the best possible use of previously generated test cases. But the method 

does not give clear cut idea about infeasible paths. Flow analysis can identify infeasible paths. 

Gustafsson etc. [14, 13] presented method that uses static worst case Execution time (WCET) 

analysis to derive upper bounds of nested loops and automatic detection of infeasible path using 

abstract execution. But the claim of improvement of WCET is only for some programming 

constructs. Williams [3] proposed a novel method for the automatic test data generation of tests 

satisfying the k paths criteria. The method claims 100% coverage of feasible paths, but uses trial 

and error method to predict the value of k. The method requires code instrumentation and 

constraint solving. Williams present a Pathcrawler tool [16] for automatic generation of test 

cases satisfying user defined limit. Their method is a combination of both static and dynamic 

analysis in a way that avoids the disadvantages of both. The authors could not satisfy the all 

paths criterion. Their approach was limited to k-path (k being the number of user defined loop 

iterations). The value of k is restricted to two for avoiding exponential increase of paths. They 

have used a trial and error method for computing k. They failed to put forth an upper bound 

testing. Approach was constricted only to merge-sort program. Hence diversified observation of 

the statistical variation of data could not be observed and it proved very difficult to come to a 

generalized conclusion regarding their observations. In [12] a heuristic is developed based on 

experimental results to predict the value of k for which longest path is covered. The heuristic 

avoids trial and error method of predicting the minimum number of iteration k. But it is focused 

on longest path criteria for predicting k. All feasible paths are not covered in longest path 

criteria. There are many programming construct where saturation level (kS) and longest path 

level (kL) difference is minimal and that can be neglected for coverage analysis. 

3. Our Approach 

3.1.  Model 

In our model, we first instrument source code so as to print out the symbolic execution paths. 

Then we apply random inputs from a given domain to the instrumented object code for 

extracting all possible feasible paths. All paths are collected and then filtered to get unique 

feasible paths. Main issue in our model is after how many iteration all feasible paths are 

collected. The different phases of our approach are shown in figure 1. This approach is 

applicable to all sequential programs coded in an imperative language and the prototype has 

been implemented for C using function merge sort, linear search, bubble sort and matrix 

multiplication. 

 

It starts with the instrumentation of the source code. The instrumentation stage is an automatic 

transformation of the source code to a form that can print out all the feasible paths when random 

inputs are supplied by random number generator within a defined domain. The random inputs 

will be supplied to the instrumented code until no more new paths are generated. The number of 

iteration required is denoted as kL and kS. There can be duplicate paths. Because random data 

may traverse same path more than once. The paths generated are filtered to get the unique 

feasible paths by using shell script. The comparator is used to compare either kL or kS value 

depending on programming constructs. The test data generation process terminates when the 

difference of kL/kS between current and previous iteration is equal to zero. Our test data is the 

random numbers that cover the unique feasible paths. 
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                                         Figure 1: Sequential overview of the process 

 

.3.2. Test Data 

Our test data are random numbers that cover unique feasible paths. There may be many inputs 

that cover the same path. We take one input for each unique path which is our test data. 

4. Examples 

4.1. Matrix multiplication 

Matrix multiplication takes as input two matrices A[a1; a2] and B[a3; a4] of dimensions (a1; 

a2) and (a3; a4) respectively, where a2 = a3 and produces the output in another matrix C[a1; 

a4]. Input: The input of the program is received from the user includes the following –  

 

Maximum limit of dimensions for the two matrices a[ ][ ] and b[ ][ ]. Maximum range of 

domain from which elements of the matrices are randomly selected. Maximum number of 

iterations to be allowed during feasible path generation. Source Code of the function Matrix 

multiplication is given in Appendix I. The control flow of the graph is shown in figure 2. Test 

generated for Matrix: Considering two matrices a and b of order m x n and p x q respectively. 

Assuming n=p=2, the test data and path covered is given in table 1. 
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                                         Figure 2.  Control flow of matrix multiplication 

4.2. Linear Search 

Linear search takes as input an array of random integers and a random number to be searched 

within the array. Input: The input of the program is received from the user includes the 

following –  

Maximum limit of the array size for a[ ]. Maximum range of domain from which elements of 

the array are randomly selected. Maximum number of iterations to be allowed during feasible 

path generation. Source code of the function Linear Search is given in Appendix I. The control 

flow of the graph is shown in figure 3. 
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Table 1. Test data generation for Matrix multiplication 
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Figure 3.  Control flow of linear search program 

No. m n p q a[m][n] b[p][q]            Path Generated 

1. 1 1 1 1      [3]       [5] a  b  c  -c  -b  -a 

2. 1      1 1 2      [6]       [7  8] a  b  c  -c  b  c  -c  -b  -a  

 

3. 1 2 2 1      

    [4  9]          

         

        5 

       11 

a  b  c  c  -c  -b  -a 

4. 1 2 2 2    [7  3]          

       9  2  

       1  6 

a  b  c  c  -c  b  c  c  -c  -b  -a 

5. 2 1 1 1          

       12 

       13 

 

       [8] 

a  b  c  -c  -b  a  b  c  -c  -b  -a 

6. 2 1 1 2             

         5 

       14 

 

    [21  9] 

a  b  c  -c  b  c  -c  -b  a  b  c  -c  b  c   

-c  -b  -a 

7. 2 2 2 1          

        9  2  

        1  6 

       

        3 

        5 

 a  b  c  c  -c  -b  a  b  c  c  -c  -b  -a 

8. 2 2 2 2          

         1  7  

         4  8 

         

        6  2  

        3  9 

a  b  c  c  -c  b  c  c  -c  -b  a  b  c  c  

-c  b  c  c  -c  -b  -a 
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                                              Figure 4.  Control flow of bubble sort program 

Test generated for Linear search: Considering an array a[l] of size l, where a[ l ] ='0,2,5,6,7' 

with item to be searched=7 test data and path covered is shown in table 2. 

Table 2. Test data generation for Linear Search 

No. l a[l] Path Generated 

1. 1 0 a  -b  -a 

2. 2 0  2 a  -b  a  -b  -a 

3. 3 0  2  5 a  -b  a  -b  a  -b  -a 

4. 4 0  2  5  6 a  -b  a  -b  a  -b  a  -b  -a 

5. 5 0  2  5  6  7 a  -b  a  -b  a  -b  a  -b  a  b 

 

4.3. Bubble Sort 

Source Code of the function Bubble Sort is given in Appendix. The control flow of the graph is 

shown in figure 4. 

Input: The input of the program is received from the user which includes the following - 

Maximum limit of the array size for a[ ]. Maximum range of domain from which elements of 

the array are randomly selected. Maximum number of iterations to be allowed during feasible 

path generation. Test Generated for Bubble Sort: Considering an array a[ l ] of size l, where 

a[ l ] ='2,4,3,7,6'. Test data and path covered is shown in table 3. 
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4.4. Implementation Algorithm 

1. Generate random input and execute the instrumented program to be tested. 

2. Repeat step 1 until all the feasible paths are collected in a file.  

3. Filter all paths to get the unique feasible paths. 

4. Repeat above steps until either the saturation level or  longest path level is found and generate   

    test data for corresponding k. 

 

5.  Experimental Results 

5.1. Linear Search 

The experimental results of linear search program given in Appendix I shows that for program 

with single loop the longest path value or optimal value of k for which no more 

 
 

Table 3. Test data generation for Bubble sort 

 

new feasible paths are generated is given by 

kL=Array Size 

kS= Array size + 1 

 

We have taken 1000 domain and different array size 2,3,5,10,20,50,60,80,100. A sample data 

collected from our experiment for array size=3 is shown in table 4. 

Table 4: Array size 3 

k   Test Cases  UFP  NFP  LLP  ETime(ms) 

0 100 1 1 1 1900 

1 200 2 1 3 2100 

2 300 3 1 5 2200 

10 1100 11 8 21 1600 

20 2100 21 10 41 1900 

50 5100 51 30 101 2200 

80 8100 81 30 191 3200 

95 9600 96 15 197 2200 

98 9900 99 3 199 2300 

99 10000 100 1 201 2100 

100 10100 101 1 201 2600 

101 10200 101 0 201 2900 

102 10300 101 0 201 3600 

200 20100 101 0 201 3900 

300 30100 101 0 201 6500 

No.     l         a[l]     Sorted   a[l]        Path Generated 

1.    0       -a 

2.    1    2      2 -a 

3.    2   2  4     2  4   a  b  -c  -b  -a 

4.    3   2  4  3      2  3  4   a  b  -c  b  c  -b  a  b  -c  -b  -a 

5.    4   2  4  3  7     2  3  4  7 a  b  -c  b  c  b  -c  -b  a  b  -c  b  -c  -b  

a  b  -c  -b  -a 

6.    5   2  4  3  7  6   2  3  4  6  7 a  b  -c  b  c  b  -c  b  c  -b  -a  b  -c  b  

-c  b  -c  -b  a  b  -c  b  -c  -b  a  b  -c  -

b  -a 
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The graph for k and unique feasible path for different array size is shown in figure 5. From the 

graph it is clear that after array size number of iteration no more new feasible path is generated 

even if we increase the value of k. The graph for k and new feasible path is shown in figure 6.  

5.2. Bubble Sort 

The experimental results of bubble sort program given in Appendix I show that for program 

with two loops. The longest path value and optimal value of k for which no more new feasible 

paths are generated is given by  

 

                     kLi = kL(i ¡ 1) + (arraysize-1) 

 
                               n-1 

                     kLi =    ∑  arraysizei        +   base value of kL(arraysize=3) 

                               i=3  

 

           n-1  

                    kSi =         ∑  arraysizei        +   base value of kS(6)     where kL(i ¡ 1) is the value of kL in   

                                    i=6                                                            previous array size.  

We have taken 1000 domain and different array size 2,3,5,6,7,8,9,10,20,40. This formula for kL 

is applicable for array size greater than equal to 3 and that of kS is for array size greater than 

equal to 6. A sample data collected from our experiment for array size=20 is shown in table 5.  
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Figure 5.  Linear Search: k vs unique feasible path 
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Figure 6.  Linear Search: k vs new feasible path 

Table 5: Arraysize 20 

k   Test Cases  UFP  NFP  LLP  ETime(ms) 

0 20 1 1 1 3900 

1 40 2 1 5 1500 

2 60 4 2 9 1000 

10 220 70 66 41 1300 

20 420 201 131 77 1200 

30 620 320 119 97 900 

40 820 426 106 117 1200 

50 1020 521 45 131 1100 

60 1220 606 65 157 1100 

100 2020 861 179 237 1300 

120 2420 946 85 277 2000 

150 3020 1022 76 337 1600 

170 3420 1045 23 377 1900 

171 3440 1046 1 379 1800 

172 3460 1046 0 379 1600 

175 3520 1046 0 379 1300 

180 3620 1046 0 379 2000 

200 4020 1046 0 379 2300 

220 4420 1046 0 379 3600 

500 10020 1046 0 379 3500 
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The graph for k and unique feasible path for different array size is shown in figure 7.  From the 

graph it is clear that after array size number of iteration no more new feasible path is generated 

even if we increase the value of k.  The graph for k and new feasible path is shown in figure 8. 
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Figure 7.  Bubble Sort: k vs unique feasible path 
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Figure 8.  Bubble Sort: k vs new feasible path 
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5.3. Matrix multiplication 

The experimental results of matrix multiplication program given in Appendix I show that for 

program with three loops. The longest path value and optimal value for which no more new 

feasible paths are generated is given by  

 

kL= (No of row Ist matrix * No. of Column Ist matrix * No. 

         of row 2nd matrix * No. of column 2nd matrix)/No. of column Ist matrix 

 

kS=kL + 1 

 

We have taken 1000 domain and different matrices are 

(1,2)(2,1),  (1, 3)(3, 1), (1, 3)(3, 2),  (1, 3) (3, 3),  (2, 2)(2, 2),  (3, 3)( 3, 3),  (3,4)(4,6),  (5, 3) ( 3, 

8),  (4, 5)(5, 6),  (6, 3)(3, 2),  (4, 4)(4, 4).  The graph for k and unique feasible path for different 

matrices are shown in figure 9.  From the graph it is clear that after kS number of iteration no 

more new feasible path is generated even if we increase the value of k. The graph for different 

size matrices and new feasible path are shown in figure 10. 
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A sample data collected from our experiment for matrix ( 4,4)(4, 4) is shown in table 6. 

 

Table 6:  Matrix 4444 

k   Test Cases  UFP  NFP  LLP  ETime(ms) 
0 64 1 1 1 1300 

1 128 2 1 6 2000 

2 192 9 7 11 1100 

3 256 32 23 16 1100 

5 320 140 108 24 1100 

10 704 350 210 39 1500 

15 1024 502 152 54 1200 

20 1344 602 100 61 1500 

30 1980 733 131 71 1200 

40 2624 797 64 81 1500 

50 3264 831 34 91 1500 

60 3904 841 10 101 1200 

62 4032 843 2 103 1600 

63 4096 844 1 104 1600 

64 4160 845 1 105 1400 

65 4224 845 0 105 1500 

70 4544 845 0 105 1600 

72 4672 845 0 105 2300 

75 4864 845 0 105 1600 

80 5184 845 0 105 1500 

90 5824+ 845 0 105 2200 
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5.4. Merge sort 

The detail experimental results of merge sort program can be seen in [12]. It is found that kL has 

a linear increase with array size. But kS is exponentially increased with array size. Therefore kL 

is taken as heuristic for this type of programming construct. The values of kL and kS for different 

array size of merge program is shown in table7. 

 

Table 7: Merge sort: Array size, kL,kS,lmax 

Arraysize   kL  kS  Lmax  

2 3 15 14 

3 8 49 20 

5 10 1198 32 

6 14 5252 38 

7 15  44 

8 16  50 

9 18  56 

10 19  62 

20 41  122 

50 100  302 

              

Table 8: Linear search: Array size, kL,kS,lmax 

Array size   kL  kS  Lmax  

2 2 3 5 

3 3 4 7 

5 5 6 11 

10 10 11 21 

20 20 21 41 

30 30 31 61 

40 40 41 81 

50 50 51 101 

60 60 61 121 

80 80 81 161 

100 100 101 201 

              

Table 9: Bubble sort: Array size, kL,kS,lmax 

Array size   kL  kS  Lmax  

2 0 1 1 

3 1 2 5 

5 6 7 19 

6 10 11 29 

7 15 16 41 

8 21 22 55 

10 36 37 89 

20 171 172 379 

30 30 31 61 

40 741 742 1559 
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Table 10: Matrix multiplication: Matrixsize, kL, kS, and lmax 

Matrix size   kL  kS  Lmax  

1221 2 3 7 

1331 3 4 8 

1332 6 7 13 

1333 9 10 18 

1558 120 121 211 

3446 72 73 115 

4556 120 121 177 

6332 36 37 73 

2222 8 9 21 

3333 27 28 52 

4444 64 65 105 

              

 

6. Discussion 

It is fact that experimental results have several limitations to its validity.  It is also not possible 

to set a common heuristic that will be applicable to generate test data for different programming 

construct. Test data generation algorithm in general is unsolvable problem.[7].  But from our 

experimental data we observed much similarity that can be efficient heuristic to reduce 

computation cost for program having variable number of loops, variable length of arrays. We 

experimented 3 types of programming construct( one loop and two loop with one dimensional 

array and three loops with two dimensional arrays. In case of linear search program, Length of 

the paths generated increases linearly with k initially as shown in figure 5.  As k is increased 

further, at a particular value, the length of the paths become constant and does not increase any 

further even if value of k is increased. This is the longest path criterion. It is denoted by kL, 

value of k at this point. In the graph for array size 100, the length of the longest path become 

constant at k=100 and therefore kL =100. It is observed that for a particular value of k, a 

saturation point is achieved after which no more new possible paths are generated. At k=101, for 

array size 100 we attained a saturation with 101 feasible paths, which means that even if we 

increment the value of k, the number of feasible paths remains constant. Let kS denote  the value 

of k at this point. In case of bubble sort program, length of path generated increases 

quadratically as the value of array size increases as shown in figure 7.  The value of longest path 

length becomes constant at kL number of iteration and the number of paths generated becomes 

onstant at kS number of iterations. For example for array size=20 as shown in table 5, the value 

of the longest path become constant at k = 170 and therefore kL =170. No new paths are  

generated after k = 171, so the value of kS=171. Similarly we got kL and kS for matrix 

multiplication program as shown in the table 6. Here kL=63, and kS=64. It can be observed from 

table 7 that the value of kL increases linearly with increase of array size. Due to exponential 

increase of kS we are taking only kL for large array size to save the computational time. 

Therefore test data generation tool we may either use kL number of iteration or kS number of 

iteration depending on type of programming constructs. kS ensure all path coverage and kL 

ensures all path coverage containing the longest path. We may satisfy the coverage with kL 

iteration if the value of kS exponentially increases with the increase of the array size. The values 

of kL and kS for different array size for programming construct linear search, bubble sort, and 

matrix multiplication are shown in tables 8, 9, 10 respectively. It has been observed that value 

of kL can be computed for any array size and programming construct with less effort as 

compared to kS.  One observation from our plotted data is that there is always saturation on 

number of path that can be generated in a loop construct. Taking less number of iteration we can 

not get better coverage. Taking more iteration is costly. Therefore our experimental data gives 
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us the lower bound on number of iteration to be allowed for either longest path coverage or all 

path coverage and that can be used as heuristic for that type of programming construct. We have 

found from our practical observation that the execution time of the program for greater array 

sizes increases manifolds. Also it depends on the configuration of the machine. We used Xeon 

(IBM System X3650) with 2GB RAM and Red Hat Enterprise Linux 5.0 operating system for 

our experiments.  

 

7. Conclusion and Future Work 

In this paper, we have described techniques for finding minimum number of iterations to be 

adopted to get test data for all path coverage or longest path coverage for programs with loops 

and arrays of variable length. Our sample represents the basic programming constructs of 

almost all sequential programs. By studying the behavior of our prototypes on those for arrays 

of different dimensions and sizes with variable user defined number of iterations(k), we found 

that  

 

1. For a particular value of k, a saturation point is achieved after which no new unique 

feasible paths are generated. We term this value of k as kS.  

2. For a particular value of k, a maximum path length is obtained for each array size. This 

length remains constant thereafter even if k is increased further. This value is termed as 
kL. 

3. It is observed that for almost all type of programming construct the value of kL increase 

linearly with the increase of array size. 

kL may be applicable for those programs where number of paths increases exponentially when 

we increase the array size. In that situation, it is not feasible to determine kS. kL gives us longest 

path coverage , kS gives us all path coverage. We have chalked out relations which predict the 

value of kS and the length of the longest path(lmax) for a given array size. But for merge 

program we restrict our heuristic to kL as the value of kS increases exponentially with increasing 

array size. The relations for kS satisfy the rigorous all paths criterion. The relationship found 

between array size, kL, and kS are independent of the domain. Given an array size for a program 

We can determine the value of kS, and kL of that program. It has been observed that value of kL 

can be computed for any array size and programming construct with less effort as compared to 

kS. The various possibilities of inputs are taken as test input to observe the abilities to improve 

fault detection by those test input. Our results suggest that more experiments can be done for 

different types of commonly found programming constructs. The minimum number of iteration 

required for all path coverage or longest path coverage can be listed as a heuristic table for test 

data generation problem of programs having loops and arrays. Our method is ignoring all 

infeasible paths and no constraint solving is required. The all paths are filtered to get unique 

paths using shell script. Our model is less costly because it avoids constraint solving and no 

time spent on infeasible path detection. We have found from our practical observation that 

number of paths increases with array size for some program linearly, for some program 

quadratically, and for some program exponentially. Accordingly we will take heuristic either kL 

or kS. The behavior of kS should be observed with more examples to obtain a greater precision. 

For that we require to experiment many different types of sample programs. In future, a 

generalized heuristic table can be formed for different types of programming constructs with 

real life examples for kL  and kS. Our method is seems to be good provided we can predict the 

minimum number of iterations required to find the all feasible paths from a heuristic table. Our 

testing method is useful for unit testing. 
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Annexure I 

Source Code of the function Linear search: 

        int linear_search(int a[],int d,int z){       

        int i,d,z,f; 

        for(i=1;i<=d;i++){  

           if(a[i]==z) 

              f=1; 

           

          else                     

             f=0;             

          }  

       return f;     }  

 
Source Code of the function Bubble Sort: 

void Bubble_sort(int b[],int n){ 

       int i,j,temp; 

       for(i=0;i<n-1;i++){      

       for(j=0;j<n-i-1;j++){      

                 if(b[j]>b[j+1]){ 

           temp=b[j]; 

         b[j]=b[j+1];        

     b[j+1]=temp; 

              } } } } 
 

Source Code of the function Matrix multiplication: 

void Matrix_mult(int a[][],int b[][],int m, int n, int p,int q) 

{        int c[20][20],i,j,x;    

      for(i=0;i<m;i++){                

      for(j=0;j<q;j++){                     

                       c[i][j]=0;     

                       for(x=0;x<n;x++){                           

                       c[i][j]=c[i][j]+ a[i][p]*b[p][j]; 

                      } } } } 
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