
International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

DOI : 10.5121/ijsea.2010.1405 75

HEURISTIC APPROACH OF AUTOMATED

TEST DATA GENERATION FOR PROGRAMS

HAVING ARRAY OF DIFFERENT DIMENSIONS AND

LOOPS WITH VARIABLE NUMBER OF ITERATION

Hitesh Tahbildar
1
 and Bichitra Kalita

2

1
Department of Computer Engineering and Application, Assam Engineering Institute,

Guwahati, Assam 781003, India

tahbil@rediffmail.com

2
Department of Computer Application, Assam Engineering College,

Guwahati, Assam 781003, India

bichitra1_kalita@rediffmail.com

ABSTRACT

Normally, program execution spends most of the time on loops. Automated test data generation devotes
special attention to loops for better coverage. Automated test data generation for programs having loops
with variable number of iteration and variable length array is a challenging problem. It is so because the
number of paths may increase exponentially with the increase of array size for some programming
constructs, like merge sort. We propose a method that finds heuristic for different types of programming
constructs with loops and arrays. Linear search, Bubble sort, merge sort, and matrix multiplication
programs are included in an attempt to highlight the difference in execution between single loop, variable
length array and nested loops with one and two dimensional arrays. We have used two
parameters/heuristics to predict the minimum number of iterations required for generating automated test
data. They are longest path level (kL) and saturation level (kS). The proceedings of our work includes the
instrumentation of source code at the elementary level, followed by the application of the random inputs
until all feasible paths or all paths having longest paths are collected. However, duplicate paths are
avoided by using a filter. Our test data is the random numbers that cover each feasible path.

KEYWORDS

Longest path, saturation point, kL, kS, lmax, UFP, NFP, LLP

1. INTRODUCTION

In software testing, loops are important spot for error detection. Execution of program spend

large amount of time in loops. Without covering paths going through loops we can not get

better code coverage. Most of the mistakes are made in loops of programs. Infinite loop creates

lots of problem in detecting the errors. In fact, it is impossible to detect all kinds of infinite

looping automatically [23]. Test data generation is more challenging if loops are nested.

Automated test data is generated using symbolic value, actual value, and combining both. One

of the main problems in test data generation is detection of infeasible path. Statistics reveals that

many paths of a program can be infeasible[5]. The symbolic execution method suffers for

infeasible path detection due to non availability of efficient constraint solver and path feasibility

detector. The actual value execution method may spend lot of computation to detect the

infeasible path. It is observed that combined approach [16] is better method for avoiding

infeasible path. In a loop many paths are infeasible. It is seen that some combined method [16]

does code instrumentation and constraint solving. It has been found that [16], the PathCrawler

prototype tool is a more convenient method for automatic test data generation of programs

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

76

having loops and array constructs. But the number of iteration applied to loop construct is

satisfied with a minimum value like k = 2 where k is number of iteration allowed for finding

paths for test data generation. This is because the number of paths increases exponentially for

programming construct like merge sort where we have two array of variable length and three

sequential loops. The value of k is determined by trial and error method. The authors proposed a

heuristic called longest path criteria instead of k = 2 path criterion to improve automated test

data generation for programs having arrays of variable length, and loops with variable number

of iteration [12]. The methods ignore infeasible path problem as it considers only the feasible

paths. Test data generation for programs with loops causes a combinatorial explosion in the

number of execution paths for programming construct like merge sort [12]. But it is seen that

the number of feasible path decreases in case of matrix multiplication program because of the

restriction of equal number of rows and columns. The number of path is linearly increased with

increase of array size for program with one loop statement like linear search. The number of

path increases quadratically for bubble sort program with increase of array size. The basic idea

of our work is taken from path crawler. [16]. The path crawler work includes instrumentation of

the source code so as to recover the symbolic execution path each time that the program under

test is executed. The code is first executed using inputs arbitrarily selected from the input

domain. The resulting symbolic path is transformed into a path-predicate by projection of

conditions into the input variables. They have achieved the next test using constraint logic

programming to find new input values outside the domain of the path already covered. The

instrumented code is then executed on this test and so on until all the feasible paths have been

covered. In our work we avoid constraint solving part by generating random inputs to the

instrumented code until all feasible paths are covered. That is we stop when no more new

feasible path is created. This is saturation level(kS). For some programs with large array size,

like merge sort it may not be possible to get saturation level, because the number of paths

increases exponentially when array size is increased. In that case our coverage criteria will be

kL.(minimum number of iteration where longest path exist). Our experimental results confirm

that after certain number of iteration we found all the feasible paths. Even if we increase the

number of iteration no more paths can be generated. The randomly generated inputs may cover

same path more that one time as we know there can be more than one input that traverse the

same path. The paths generated by our random inputs are passed through a filter to find out the

unique feasible paths. An important issue of our method is how long we will continue random

number generation. We collected from our experiments a number of test cases, unique feasible

path(UFP), new feasible path(NFP), longest length path(LLP), and execution time(Etime) for

different number of iteration(k). Our experimental results shows that for program like linear

search no more new path is generated if we take number of iteration greater than array size, for

programs like matrix multiplication number of iteration is greater than a3 where a is number of

rows/column of a square matrix. Number of iteration for program like bubble sort can be taken

as half of square of array size. For programs like merge sort we can not get kS level as the

number of paths increases exponentially with the increase of array size. In this case, we take

longest path level(kL)[12]. kL increases linearly with the increase of array size. Similarly we can

have a heuristic table for other programming constructs those can be used for determining the

number of iterations to be adopted for test data generation. Therefore our test data generation

method provide us test data for programs with variable number of loops and array length in less

effort and with better coverage in comparison to path crawler method.

 The rest of the paper is organized as follows: The section 2 presents a survey of related works

of path oriented test data generation. Section 3 describes our approach of test data generation.

Section 4 illustrates our test data generation process with examples. Section 5 shows our

experiment results and propose heuristics for different types of programming constructs. Section

6 discusses our experimental results. Finally in section 7 we conclude with some observation

and future works for automatic test data generation of loop and array constructs.

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

77

2. Related Work

In [18] Prather described a new software testing strategy. The method uses previous test paths to

guide in the subsequent path selection. The method ensures branch coverage and generates path

dynamically making the best possible use of previously generated test cases. But the method

does not give clear cut idea about infeasible paths. Flow analysis can identify infeasible paths.

Gustafsson etc. [14, 13] presented method that uses static worst case Execution time (WCET)

analysis to derive upper bounds of nested loops and automatic detection of infeasible path using

abstract execution. But the claim of improvement of WCET is only for some programming

constructs. Williams [3] proposed a novel method for the automatic test data generation of tests

satisfying the k paths criteria. The method claims 100% coverage of feasible paths, but uses trial

and error method to predict the value of k. The method requires code instrumentation and

constraint solving. Williams present a Pathcrawler tool [16] for automatic generation of test

cases satisfying user defined limit. Their method is a combination of both static and dynamic

analysis in a way that avoids the disadvantages of both. The authors could not satisfy the all

paths criterion. Their approach was limited to k-path (k being the number of user defined loop

iterations). The value of k is restricted to two for avoiding exponential increase of paths. They

have used a trial and error method for computing k. They failed to put forth an upper bound

testing. Approach was constricted only to merge-sort program. Hence diversified observation of

the statistical variation of data could not be observed and it proved very difficult to come to a

generalized conclusion regarding their observations. In [12] a heuristic is developed based on

experimental results to predict the value of k for which longest path is covered. The heuristic

avoids trial and error method of predicting the minimum number of iteration k. But it is focused

on longest path criteria for predicting k. All feasible paths are not covered in longest path

criteria. There are many programming construct where saturation level (kS) and longest path

level (kL) difference is minimal and that can be neglected for coverage analysis.

3. Our Approach

3.1. Model

In our model, we first instrument source code so as to print out the symbolic execution paths.

Then we apply random inputs from a given domain to the instrumented object code for

extracting all possible feasible paths. All paths are collected and then filtered to get unique

feasible paths. Main issue in our model is after how many iteration all feasible paths are

collected. The different phases of our approach are shown in figure 1. This approach is

applicable to all sequential programs coded in an imperative language and the prototype has

been implemented for C using function merge sort, linear search, bubble sort and matrix

multiplication.

It starts with the instrumentation of the source code. The instrumentation stage is an automatic

transformation of the source code to a form that can print out all the feasible paths when random

inputs are supplied by random number generator within a defined domain. The random inputs

will be supplied to the instrumented code until no more new paths are generated. The number of

iteration required is denoted as kL and kS. There can be duplicate paths. Because random data

may traverse same path more than once. The paths generated are filtered to get the unique

feasible paths by using shell script. The comparator is used to compare either kL or kS value

depending on programming constructs. The test data generation process terminates when the

difference of kL/kS between current and previous iteration is equal to zero. Our test data is the

random numbers that cover the unique feasible paths.

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

78

 Source Code

 CFG information

 Instrumental Code

 All feasible paths

 Unique feasible paths

 Diff > 0

 Diff = 0

K Number of Iteration

KL Longest Path iteration

KS Saturation Path iteration

 Figure 1: Sequential overview of the process

.3.2. Test Data

Our test data are random numbers that cover unique feasible paths. There may be many inputs

that cover the same path. We take one input for each unique path which is our test data.

4. Examples

4.1. Matrix multiplication

Matrix multiplication takes as input two matrices A[a1; a2] and B[a3; a4] of dimensions (a1;

a2) and (a3; a4) respectively, where a2 = a3 and produces the output in another matrix C[a1;

a4]. Input: The input of the program is received from the user includes the following –

Maximum limit of dimensions for the two matrices a[][] and b[][]. Maximum range of

domain from which elements of the matrices are randomly selected. Maximum number of

iterations to be allowed during feasible path generation. Source Code of the function Matrix

multiplication is given in Appendix I. The control flow of the graph is shown in figure 2. Test

generated for Matrix: Considering two matrices a and b of order m x n and p x q respectively.

Assuming n=p=2, the test data and path covered is given in table 1.

Program Analyzer

Code Implementation

Instrumented Object Code

Filter

K++

Collect Heuristic KL or Ks

Comparator for KL or KS

Random number

generator within

defined domain

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

79

− a

N

Y

N

− b

i = i + 1

−c

j = j + 1

 i < m

CONTROL FLOW GRAPH FOR MATRIX MULTIPLICATION :

a

j < q

b Y

 x < n

x = x + 1

c Y

N

 Figure 2. Control flow of matrix multiplication

4.2. Linear Search

Linear search takes as input an array of random integers and a random number to be searched

within the array. Input: The input of the program is received from the user includes the

following –

Maximum limit of the array size for a[]. Maximum range of domain from which elements of

the array are randomly selected. Maximum number of iterations to be allowed during feasible

path generation. Source code of the function Linear Search is given in Appendix I. The control

flow of the graph is shown in figure 3.

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

80

Table 1. Test data generation for Matrix multiplication

CONTROL FLOW GRAPH FOR LINEAR SEARCH :

 i < = d − a

N

Y a

a [i] = = z

Y b

N

− b

i = i + 1

Figure 3. Control flow of linear search program

No. m n p q a[m][n] b[p][q] Path Generated

1. 1 1 1 1 [3] [5] a b c -c -b -a

2. 1 1 1 2 [6] [7 8] a b c -c b c -c -b -a

3. 1 2 2 1

 [4 9]

 5

 11

a b c c -c -b -a

4. 1 2 2 2 [7 3]

 9 2

 1 6

a b c c -c b c c -c -b -a

5. 2 1 1 1

 12

 13

 [8]

a b c -c -b a b c -c -b -a

6. 2 1 1 2

 5

 14

 [21 9]

a b c -c b c -c -b a b c -c b c

-c -b -a

7. 2 2 2 1

 9 2

 1 6

 3

 5

 a b c c -c -b a b c c -c -b -a

8. 2 2 2 2

 1 7

 4 8

 6 2

 3 9

a b c c -c b c c -c -b a b c c

-c b c c -c -b -a

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

81

− a

N

Y

N

− b

i = i + 1

CONTROL FLOW GRAPH FOR BUBBLE SORT :

 i < n − 1

a

j < n − i − 1

Y b

b[j] > b [j + 1]

Y c

−c

N

j = j + 1

 Figure 4. Control flow of bubble sort program

Test generated for Linear search: Considering an array a[l] of size l, where a[l] ='0,2,5,6,7'

with item to be searched=7 test data and path covered is shown in table 2.

Table 2. Test data generation for Linear Search

No. l a[l] Path Generated

1. 1 0 a -b -a

2. 2 0 2 a -b a -b -a

3. 3 0 2 5 a -b a -b a -b -a

4. 4 0 2 5 6 a -b a -b a -b a -b -a

5. 5 0 2 5 6 7 a -b a -b a -b a -b a b

4.3. Bubble Sort

Source Code of the function Bubble Sort is given in Appendix. The control flow of the graph is

shown in figure 4.

Input: The input of the program is received from the user which includes the following -

Maximum limit of the array size for a[]. Maximum range of domain from which elements of

the array are randomly selected. Maximum number of iterations to be allowed during feasible

path generation. Test Generated for Bubble Sort: Considering an array a[l] of size l, where

a[l] ='2,4,3,7,6'. Test data and path covered is shown in table 3.

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

82

4.4. Implementation Algorithm

1. Generate random input and execute the instrumented program to be tested.

2. Repeat step 1 until all the feasible paths are collected in a file.

3. Filter all paths to get the unique feasible paths.

4. Repeat above steps until either the saturation level or longest path level is found and generate

 test data for corresponding k.

5. Experimental Results

5.1. Linear Search

The experimental results of linear search program given in Appendix I shows that for program

with single loop the longest path value or optimal value of k for which no more

Table 3. Test data generation for Bubble sort

new feasible paths are generated is given by

kL=Array Size

kS= Array size + 1

We have taken 1000 domain and different array size 2,3,5,10,20,50,60,80,100. A sample data

collected from our experiment for array size=3 is shown in table 4.

Table 4: Array size 3

k Test Cases UFP NFP LLP ETime(ms)

0 100 1 1 1 1900

1 200 2 1 3 2100

2 300 3 1 5 2200

10 1100 11 8 21 1600

20 2100 21 10 41 1900

50 5100 51 30 101 2200

80 8100 81 30 191 3200

95 9600 96 15 197 2200

98 9900 99 3 199 2300

99 10000 100 1 201 2100

100 10100 101 1 201 2600

101 10200 101 0 201 2900

102 10300 101 0 201 3600

200 20100 101 0 201 3900

300 30100 101 0 201 6500

No. l a[l] Sorted a[l] Path Generated

1. 0 -a

2. 1 2 2 -a

3. 2 2 4 2 4 a b -c -b -a

4. 3 2 4 3 2 3 4 a b -c b c -b a b -c -b -a

5. 4 2 4 3 7 2 3 4 7 a b -c b c b -c -b a b -c b -c -b

a b -c -b -a

6. 5 2 4 3 7 6 2 3 4 6 7 a b -c b c b -c b c -b -a b -c b

-c b -c -b a b -c b -c -b a b -c -

b -a

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

83

The graph for k and unique feasible path for different array size is shown in figure 5. From the

graph it is clear that after array size number of iteration no more new feasible path is generated

even if we increase the value of k. The graph for k and new feasible path is shown in figure 6.

5.2. Bubble Sort

The experimental results of bubble sort program given in Appendix I show that for program

with two loops. The longest path value and optimal value of k for which no more new feasible

paths are generated is given by

 kLi = kL(i ¡ 1) + (arraysize-1)

 n-1

 kLi = ∑ arraysizei + base value of kL(arraysize=3)

 i=3

 n-1

 kSi = ∑ arraysizei + base value of kS(6) where kL(i ¡ 1) is the value of kL in

 i=6 previous array size.

We have taken 1000 domain and different array size 2,3,5,6,7,8,9,10,20,40. This formula for kL

is applicable for array size greater than equal to 3 and that of kS is for array size greater than

equal to 6. A sample data collected from our experiment for array size=20 is shown in table 5.

.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160

U
ni

qu
e

fe
as

ib
le

pa
th

k

Arraysize=2
Arraysize=3
Arraysize=5

Arraysize=10
Arraysize=20
Arraysize=40
Arraysize=60
Arraysize=80

Arraysize=100

Figure 5. Linear Search: k vs unique feasible path

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

84

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

ne
w

 fe
as

ib
le

 p
at

h

k

Figure 6. Linear Search: k vs new feasible path

Table 5: Arraysize 20

k Test Cases UFP NFP LLP ETime(ms)

0 20 1 1 1 3900

1 40 2 1 5 1500

2 60 4 2 9 1000

10 220 70 66 41 1300

20 420 201 131 77 1200

30 620 320 119 97 900

40 820 426 106 117 1200

50 1020 521 45 131 1100

60 1220 606 65 157 1100

100 2020 861 179 237 1300

120 2420 946 85 277 2000

150 3020 1022 76 337 1600

170 3420 1045 23 377 1900

171 3440 1046 1 379 1800

172 3460 1046 0 379 1600

175 3520 1046 0 379 1300

180 3620 1046 0 379 2000

200 4020 1046 0 379 2300

220 4420 1046 0 379 3600

500 10020 1046 0 379 3500

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

85

The graph for k and unique feasible path for different array size is shown in figure 7. From the

graph it is clear that after array size number of iteration no more new feasible path is generated

even if we increase the value of k. The graph for k and new feasible path is shown in figure 8.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 100 200 300 400 500 600 700 800

U
ni

qu
e

fe
as

ib
le

pa
th

k

Arraysize=2
Arraysize=3
Arraysize=5

Arraysize=10
Arraysize=20
Arraysize=40

Figure 7. Bubble Sort: k vs unique feasible path

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500

ne
w

 fe
as

ib
le

 p
at

h

k

Figure 8. Bubble Sort: k vs new feasible path

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

86

5.3. Matrix multiplication

The experimental results of matrix multiplication program given in Appendix I show that for

program with three loops. The longest path value and optimal value for which no more new

feasible paths are generated is given by

kL= (No of row Ist matrix * No. of Column Ist matrix * No.

 of row 2nd matrix * No. of column 2nd matrix)/No. of column Ist matrix

kS=kL + 1

We have taken 1000 domain and different matrices are

(1,2)(2,1), (1, 3)(3, 1), (1, 3)(3, 2), (1, 3) (3, 3), (2, 2)(2, 2), (3, 3)(3, 3), (3,4)(4,6), (5, 3) (3,

8), (4, 5)(5, 6), (6, 3)(3, 2), (4, 4)(4, 4). The graph for k and unique feasible path for different

matrices are shown in figure 9. From the graph it is clear that after kS number of iteration no

more new feasible path is generated even if we increase the value of k. The graph for different

size matrices and new feasible path are shown in figure 10.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200

U
n
iq

u
e
 f
e
a
s
ib

le
p
a
th

k

Matrix1221
Matrix1332
Matrix1333
Matrix2222
Matrix3333
Matrix3446
Matrix4556
Matrix6332
Matrix4444

Figure 9. matrix: k vs unique feasible path

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

87

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

ne
w

 fe
as

ib
le

 p
at

h

k
Figure 10. matrix: k vs new feasible path

A sample data collected from our experiment for matrix (4,4)(4, 4) is shown in table 6.

Table 6: Matrix 4444

k Test Cases UFP NFP LLP ETime(ms)
0 64 1 1 1 1300

1 128 2 1 6 2000

2 192 9 7 11 1100

3 256 32 23 16 1100

5 320 140 108 24 1100

10 704 350 210 39 1500

15 1024 502 152 54 1200

20 1344 602 100 61 1500

30 1980 733 131 71 1200

40 2624 797 64 81 1500

50 3264 831 34 91 1500

60 3904 841 10 101 1200

62 4032 843 2 103 1600

63 4096 844 1 104 1600

64 4160 845 1 105 1400

65 4224 845 0 105 1500

70 4544 845 0 105 1600

72 4672 845 0 105 2300

75 4864 845 0 105 1600

80 5184 845 0 105 1500

90 5824+ 845 0 105 2200

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

88

5.4. Merge sort

The detail experimental results of merge sort program can be seen in [12]. It is found that kL has

a linear increase with array size. But kS is exponentially increased with array size. Therefore kL

is taken as heuristic for this type of programming construct. The values of kL and kS for different

array size of merge program is shown in table7.

Table 7: Merge sort: Array size, kL,kS,lmax

Arraysize kL kS Lmax

2 3 15 14

3 8 49 20

5 10 1198 32

6 14 5252 38

7 15 44

8 16 50

9 18 56

10 19 62

20 41 122

50 100 302

Table 8: Linear search: Array size, kL,kS,lmax

Array size kL kS Lmax

2 2 3 5

3 3 4 7

5 5 6 11

10 10 11 21

20 20 21 41

30 30 31 61

40 40 41 81

50 50 51 101

60 60 61 121

80 80 81 161

100 100 101 201

Table 9: Bubble sort: Array size, kL,kS,lmax

Array size kL kS Lmax

2 0 1 1

3 1 2 5

5 6 7 19

6 10 11 29

7 15 16 41

8 21 22 55

10 36 37 89

20 171 172 379

30 30 31 61

40 741 742 1559

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

89

Table 10: Matrix multiplication: Matrixsize, kL, kS, and lmax

Matrix size kL kS Lmax

1221 2 3 7

1331 3 4 8

1332 6 7 13

1333 9 10 18

1558 120 121 211

3446 72 73 115

4556 120 121 177

6332 36 37 73

2222 8 9 21

3333 27 28 52

4444 64 65 105

6. Discussion

It is fact that experimental results have several limitations to its validity. It is also not possible

to set a common heuristic that will be applicable to generate test data for different programming

construct. Test data generation algorithm in general is unsolvable problem.[7]. But from our

experimental data we observed much similarity that can be efficient heuristic to reduce

computation cost for program having variable number of loops, variable length of arrays. We

experimented 3 types of programming construct(one loop and two loop with one dimensional

array and three loops with two dimensional arrays. In case of linear search program, Length of

the paths generated increases linearly with k initially as shown in figure 5. As k is increased

further, at a particular value, the length of the paths become constant and does not increase any

further even if value of k is increased. This is the longest path criterion. It is denoted by kL,

value of k at this point. In the graph for array size 100, the length of the longest path become

constant at k=100 and therefore kL =100. It is observed that for a particular value of k, a

saturation point is achieved after which no more new possible paths are generated. At k=101, for

array size 100 we attained a saturation with 101 feasible paths, which means that even if we

increment the value of k, the number of feasible paths remains constant. Let kS denote the value

of k at this point. In case of bubble sort program, length of path generated increases

quadratically as the value of array size increases as shown in figure 7. The value of longest path

length becomes constant at kL number of iteration and the number of paths generated becomes

onstant at kS number of iterations. For example for array size=20 as shown in table 5, the value

of the longest path become constant at k = 170 and therefore kL =170. No new paths are

generated after k = 171, so the value of kS=171. Similarly we got kL and kS for matrix

multiplication program as shown in the table 6. Here kL=63, and kS=64. It can be observed from

table 7 that the value of kL increases linearly with increase of array size. Due to exponential

increase of kS we are taking only kL for large array size to save the computational time.

Therefore test data generation tool we may either use kL number of iteration or kS number of

iteration depending on type of programming constructs. kS ensure all path coverage and kL

ensures all path coverage containing the longest path. We may satisfy the coverage with kL

iteration if the value of kS exponentially increases with the increase of the array size. The values

of kL and kS for different array size for programming construct linear search, bubble sort, and

matrix multiplication are shown in tables 8, 9, 10 respectively. It has been observed that value

of kL can be computed for any array size and programming construct with less effort as

compared to kS. One observation from our plotted data is that there is always saturation on

number of path that can be generated in a loop construct. Taking less number of iteration we can

not get better coverage. Taking more iteration is costly. Therefore our experimental data gives

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

90

us the lower bound on number of iteration to be allowed for either longest path coverage or all

path coverage and that can be used as heuristic for that type of programming construct. We have

found from our practical observation that the execution time of the program for greater array

sizes increases manifolds. Also it depends on the configuration of the machine. We used Xeon

(IBM System X3650) with 2GB RAM and Red Hat Enterprise Linux 5.0 operating system for

our experiments.

7. Conclusion and Future Work

In this paper, we have described techniques for finding minimum number of iterations to be

adopted to get test data for all path coverage or longest path coverage for programs with loops

and arrays of variable length. Our sample represents the basic programming constructs of

almost all sequential programs. By studying the behavior of our prototypes on those for arrays

of different dimensions and sizes with variable user defined number of iterations(k), we found

that

1. For a particular value of k, a saturation point is achieved after which no new unique

feasible paths are generated. We term this value of k as kS.

2. For a particular value of k, a maximum path length is obtained for each array size. This

length remains constant thereafter even if k is increased further. This value is termed as
kL.

3. It is observed that for almost all type of programming construct the value of kL increase

linearly with the increase of array size.

kL may be applicable for those programs where number of paths increases exponentially when

we increase the array size. In that situation, it is not feasible to determine kS. kL gives us longest

path coverage , kS gives us all path coverage. We have chalked out relations which predict the

value of kS and the length of the longest path(lmax) for a given array size. But for merge

program we restrict our heuristic to kL as the value of kS increases exponentially with increasing

array size. The relations for kS satisfy the rigorous all paths criterion. The relationship found

between array size, kL, and kS are independent of the domain. Given an array size for a program

We can determine the value of kS, and kL of that program. It has been observed that value of kL

can be computed for any array size and programming construct with less effort as compared to

kS. The various possibilities of inputs are taken as test input to observe the abilities to improve

fault detection by those test input. Our results suggest that more experiments can be done for

different types of commonly found programming constructs. The minimum number of iteration

required for all path coverage or longest path coverage can be listed as a heuristic table for test

data generation problem of programs having loops and arrays. Our method is ignoring all

infeasible paths and no constraint solving is required. The all paths are filtered to get unique

paths using shell script. Our model is less costly because it avoids constraint solving and no

time spent on infeasible path detection. We have found from our practical observation that

number of paths increases with array size for some program linearly, for some program

quadratically, and for some program exponentially. Accordingly we will take heuristic either kL

or kS. The behavior of kS should be observed with more examples to obtain a greater precision.

For that we require to experiment many different types of sample programs. In future, a

generalized heuristic table can be formed for different types of programming constructs with

real life examples for kL and kS. Our method is seems to be good provided we can predict the

minimum number of iterations required to find the all feasible paths from a heuristic table. Our

testing method is useful for unit testing.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers for their helpful comments and

suggestions.

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

91

REFERENCES

[1] C. Cadar and D. Engler, “Execution Generated Test Cases: How to Make systems Code Crash

 Itself” , Technical Report, Computer Systems Laboratory Standford University, Standford CA-

 94305, U.S.A. 2005.

 [2] M. Gittens, K. Romanufa, D. Godwin, J. Racicot, “All Code Coverage is not created equal: A

 case study in prioritized code coverage”, Technical Report, IBM Toronto Laboratory, 2006.

[3] Nicky Williams, Bruno Marre and Patricia Mouy. “On the Fly Generation of K-Path Tests for C

 Functions” 19th IEEE International Conference on Automated Software Engineering (ASE'04),

 Linz, Austria September 20-September 24, 2004.

[4] J. Edvardsson,, “A Survey on Automatic Test Data Generation," In Proceedings of the Second

Conference on Computer Science and Systems Engineering(CCSSE'99), Linkoping, pp. 21-28

10/1999.

[5] Chen Xu, J. Zhang, Xiaoliang Wang, “Path Oriented Test Data Generation Using Symbolic

 execution and Constraint solving Techniques," In Proceedings of the Second International IEEE

 Conference on Software Engineering and Formal Methods(SEFM'04),2004.

[6] A. Gotlieb, M. Petit, “Path-Oriented Random Testing", Proceedings of the First International

 Workshop on Random testing(RT'06), Portland, ME, USA, 07/2006.

[7] Xiao Ma, J. Jenny Li, and David M. Weiss, “Prioritized Constraints with Data Sampling

Scores for Automated Test Data Generation", Eighth ACIS International Conference on

Software Engineering, Ariti¯ cial Intelligence, Networking, and Parallel/Distributed

Computing, 2007.

[8] A. Bertolino, “Software Testing Research: Achievements, Challenges, Dreams," In Future of

Software Engineering(FOSE'07),2007.

[9] J. Jenny Li, “Prioritize Code for Testing to Improve Code Coverage of Complex Software", In

Proceedings of the 16th IEEE International Symposium on Software Relaibility

Engineering(ISSRE'05), 2005.

[10] Jun-Yi Li, Jia-Guang Sun, Ying-Ping Lu, “Automated Test Data Generation Based on Program

Execution", In Proceedings of the Fourth IEEE International Conference on Software

Engineering Research, Management and Applications(SERA'06), 2006.

[11] N. Klarlund, P. Godefroid, and K. Sen, “Directed Automated Random Testing", In Proceedings

of the ACM SIGPLAN 2005 Conference on Programming Language Design and

Implementation(PLIID'05), 2005.

[12] H.Tahbildar and B. Kalita, “Automated test data generation for programs having array of

variable length and loops with variable number of iteration", Proceedings of International

MultiConference of Engineers and Computer Scientists 2010 VOL1, IMECS'2010, March 17-

19, 2010, Hongkong, 2010.

[13] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, Bjrn Lisper, “Automatic Derivation of

Loop Bounds and Infeasible Paths for WCET Analysis Using Abstract Execution" , In Proc. 27th

IEEE Real-Time Systems Symposium (RTSS06), December 2006.

[14] Andreas Ermedahl, Christer Sandberg, Jan Gustafsson, Stefan Bygde, and Bjorn Lisper, “Loop

Bound Analysis based on a Combination of Program Slicing, Abstract Interpretation, and

Invariant Analysis", 2005

[15] N. Williams, B. Marre, P. Mouy, and M. Roger, “Heuristics-based infeasible path detection for

dynamic test data generation ", ELSEVIER Information and Software Technology,

50(2008)641-655.

[16] N. Williams, B. Marre, P. Mouy, and M. Roger, “PathCrawler: Automatic Generation of Path

Tests by Combining Static and Dynamic Analysis", SpringeVerlag Berlin Heidelberg, LNCS

3463, pp. 281-292, 2005.

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

92

[17] Koushik Sen, Darko Marinov, Gul Agha, “CUTE: A Concolic Unit Testing Engine for C" ,

ACM, pp. 5-9, 09/2005.

[18] R. E. Prather, J. P. Myers, “The Path Prefix Software Engineering", IEEE Trans on Software

Engineering”, SE-13(7), pp. 761-766, 07/1987.

[19] B. Korel, “Automated Software Test Data Generation", IEEE Trans on Software Engineering,

Vol. 16, No.8, pp. 870-879, 08/1990.

[20] L. A. Clarke , “A System to Generate Test Data and Symbolically Execute Programs", IEEE

Trans on Software Engineering, Vol. SE-2, No.3, pp. 215-222, 09/1976

[21] J. Zhang, Xiaoxu Wang., “A Constraint Solver and its Application to Path Feasibility Analysis" ,

International Journal of Software Engineering and Knowledge Engineering, 11(2): pp. 139-156,

2001.

[22] R. FerGuson, B. Korel, “The Chaining approach for Software Test Data Generation,", ACM

Transactions on Software Engineering and Methodology, 5(1): pp. 63-86, 01/1996

[23] Jian Zhang, “A path-based approach to the detection of infinite looping ," IEEE , 2001.

Annexure I

Source Code of the function Linear search:

 int linear_search(int a[],int d,int z){

 int i,d,z,f;

 for(i=1;i<=d;i++){

 if(a[i]==z)

 f=1;

 else

 f=0;

 }

 return f; }

Source Code of the function Bubble Sort:

void Bubble_sort(int b[],int n){

 int i,j,temp;

 for(i=0;i<n-1;i++){

 for(j=0;j<n-i-1;j++){

 if(b[j]>b[j+1]){

 temp=b[j];

 b[j]=b[j+1];

 b[j+1]=temp;

 } } } }

Source Code of the function Matrix multiplication:

void Matrix_mult(int a[][],int b[][],int m, int n, int p,int q)

{ int c[20][20],i,j,x;

 for(i=0;i<m;i++){

 for(j=0;j<q;j++){

 c[i][j]=0;

 for(x=0;x<n;x++){

 c[i][j]=c[i][j]+ a[i][p]*b[p][j];

 } } } }

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.4, October 2010

93

Authors

H. Tahbildar Received his B. E. degree in Computer Science and

Engineering from Jorhat Engineering College, Dibrugarh University in 1993

and M. Tech degree in Computer and Information Techno logy from Indian

Institute of Technology, Kharagpur in 2000. Presently he is doing Ph.D and

his current research interest is Automated Software Test data generation,

Program Analysis. He is working as HOD, Computer Engineering

Department, Assam Engineering Institute, Guwahati, INDIA.

B. Kalita: Ph.D degree awarded in 2003 in Graph Theory. At present

holding the post of Associate Professor, Department of Computer

Application, Twenty research papers have got published in national and

international level related with graph theory, Application of graph theory in

VLSI design, software testing and theoretical computer science. Field of

interest: Graph theory, VLSI Design, Automata theory, network theory, test

data generation etc. Associated with the professional bodies, such as Life

member of Indian Science Congress association, Life member of Assam

Science Society, Life member of Assam Academy of Mathematics, Life

member of Shrimanta Sankar deva sangha (a cultural and religious society).

Delivered lecture and invited lectures fourteen times in national and

international level.

