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ABSTRACT

In this paper we study the performance of Spiking Neural Networks (SNN)and Support Vector Machine
(SVM) by using a GPU, model GeForce 6400M. Respect to applications of SNN, the methodology may be
used for clustering, classification of databases, odor, speech and image recognition..In case of
methodology SVM, is typically applied for clustering, regression and progression. According to particular
characteristics of these methodologiestheycan be parallelizedin several grades. However, level of
parallelism is limited to architecture of hardware. So, is very sure to get better results using other
hardware with more computational resources. The different approaches are evaluated by the training
speed and performance. On the other hand, some authors have coded algorithms SYM light, but nobody
has programming QP SVM in a GPU. Algorithms were coded by authorsin the hardware, like Nvidia card,
FPGA or sequential circuits that depends on methodology used, to compare learning timewith between
GPU and CPU. Also, in the survey we introduce a brief description of the types of ANN and its techniques
of execution to be related with results of researching.
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1. INTRODUCTION

This paper presents a surveyof Spiking Neural Networks (SNN) and Support Vector Machine
(SVM) by using a GPU, model GeForce 6400M. In case of SNN, this methodology started to be
developed by Hodgkin — Huxleysince 1930whose model has four differentia equations with
partia non linear derivatives, and depends on the space and time. This describes propagation and
generation of potential of a big axon of squid in order to explain the main properties. SNN’s is the
model most similar to the neurons of mammalg[27].SNN can be applied to the same problems
that depend on behavior of time of parameters because of its singular characteristic of coding in
the time[13]. In case of SVM, in decade of 1990’s was started the development[34], even this
methodology had been invented since 1979 [31] by Vapnik, to solve more complex
problems,linearlly separable or non — separable. SVM uses strategies of optimization to get the
globa solution however, this consume big quantities of computational resources.
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Some trends of topics are about ANN is Parallel Programming to solve problems such as
clustering (Herrero-Lopez[8]), pattern recognition (Olaf [27]), regression (Carpenter[19]),
building of ANN in a specific hardware, such as FPGAs (Papadonikolakis[7]). The perceptron is
the first training unit in which atraining algorithm for linearly separable problems, that consist of
a single neuron. Mathematically, itis represented by a straight-line equation[35]. However, non —
linear problems can’t be solved with this methodology.

In 2003 was developed the methodology SNN aso caled Spike Response Modd (SRM)
(Bohte[ 28], Olaf[27]). At the same time, I zhikevich[29] developed a reduced model of Hodgkin —
Huxley model that consist on two differential equations that explain behavior of mammal
neurons. The main diference between SRM and Izhikevich’s model are the differential equations.

Respect to parallel programming[37], calculations are carried out simultaneously, operating on
the principle that large problems can often be divided into smaler ones, that are solved
concurrently. There are several different forms of parallel computing: bit-level, ingtruction level,
data, and task parallelism. This manuscript is focused on instruction level and task. In the figure
1, we can see principle of parallel computing.

Problems of paralel programming can be solved in OpenGL, Cg, C, C++ and Fortran.
Finaly, they are developed for CUDA language.

This paper is distributed as follows: in section 2 the state of the art of ANN is presented, in section
3 the performance of ANN in paralel programming is included, finaly in section 4 are the
conclusions.
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Figure 1.Parallel programming.

2.RELATING WORKS ON THE USE OF PARALLEL PROGRAMMING IN
ARTIFICIAL NEURAL NETWORKS

Recently works about SNN are shown in the next figure.

2007 D....
oo g ‘IIENM“JIZHIH-.':\':
) Maganda Model
s [Errorin (Spikeprop,
* Pavlidis Spikeprop) FPGA)
Evolution

Figure 2.State of the Art of SNN.
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Stewart and Bair 0, he Applies Runge — Kutta’s method for Izhikevich and Hodgkin Huxle’s
models. As aresult, second method is more efficient

Thomas and Luk[18], the author proposes a Simulation with maximum 1024 neurons in a FPGA
the Izhikevich’s model.

Nageswaran [17], he presents a compilation of thelzhikevich’s models.

Papadonikolakig[15], he has focused on improving the speed of learning and efficiency of SVMs
using several methods. Also, he compares these parameters between a GPU and a FPGA
programming Gilbert” algorithm.

Y udanov[13], implements a hybrid method with numeric integration of Parker Sochacki (PS)
with adaptative order. Thisisvalidated at the moment in the comparision made between GPU and
CPU in their characteristics.

Bhuiyan[11], compares the models of SNN such as Izhikevich and Hodgkin Huxley, these
models applied to recognition of characters.

| zhikevich[9], designs a hybrid mode for SNN in order to combine continuous and discontinuous
numeric methods.

Scanzio[12], He compares the speed of processing in CUDA of agorithms feedfordward and
backpropagation.

Prabhu[20], He applies GPU for pattern classifier in images. He focuses on the degree of
paralelism of a problem. He uses maximum size of image of 256 MB, and in a video memory
GPU of 768 MB. As aresult, author compares Dua — Core AMD processor with a Geforce 6150
GPU, and when the number of patternsincrease, the CPU is linearly slower than GPU, But when
the network size increase the curve isn’t linear.
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Figure 3. State of the Art of SVM

MarkosPapadonikolakis[7], he proposes to implement a FPGA for accelerate SVM for
classifying.

Catanzaro [21], the author proposes the SVM using algorithm of Sequentia Minimal
Optimization (SMO), aso he compares time of learning and precision of classification between
GPU and libraries of SVM of MatLab

Austin Carpenter [19], he applies cuSVM for NVIDIA with amodified version of SMO.

Sergio HerreroLOpez[ 8], he made classification using SVM in a GPU. He continues the work of
Catanzaro.

3.PARALLEL PROGRAMMING FOR SVM AND SNN

According to Thomas [18], Artificia Neural Networks (ANN) can be paralelized with a GPU,
FPGAspecificcard [14],SVM’s are wellimplementedin a GPUbecause of optimizing
methodrequires of solving repetitively operations of matrixes. However, for SNN methodology is
better to use FPGA or sequentia circuits, athough it can be smulated in GPU. The reason is that
in a GPU thelearning time is calculated with anon linear and exponentia equation,which algebraic
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order depends directly of number of neurons in the input. This equation is solved with
mathematical approximations, so if the number of neurons in an input layer is increasing, the
computational complexity too. However, to design SNN architecture in the circuit mentioned, the
time does not need a mathematical solution to find the threshold, this is only detected with a
simplex circuit.

3.1. Considerationsto start with a GPU

This section is focused in program CUDA in a GPU. Respect to state of the art, configuration of a
GPU depends on limitations of the hardware, so authorstake into account other investigations as
reference to improve the algorithms.

An important problemisto configure the hardware selected. In this case, SNN can be programmed
with kernel in three dimensions. The simplest configuration in one or two dimensions as
perceptron method.

Starting to work with a GPU, we have to know how many threads, blocks and grids we need to
use. In case of SNN each block can represent only one neuron. Sometimes computational
resources are not enough. Other problem ifthemethod is recursive and weightsmust be frequently
adjusted because of local memory coul dnotbe enough.

3.2. Levelof parallelization

In case of perceptron, allneuronsperlayer can be calculated at the same time because of thesimple
form of its activation function. On the other hand, each layer must be calculated sequentially
because of input of hidden layer depends on output of previous layer. However, this activity
seems like FIFO principle (First in — First out).

SVM depends of quantity of instances, because of this methodology spend a thread per data of
the matrix, but the size of the matrix is the quantity of dataspow two or three. Thisimply reduce
paral€elization of the algorithm when data are approximately more than 16 instances.

SNN an implement algorithmof a mathematical or sequential method to calculate the value of
threshold in amplitude and time is needed. This impliesthatmany values of time are needed, as
well as, maybe hundreds or thousands per row in ablock. So, a neuron is represented as a grid in
tree dimensions, where each row can represent a previous neuron to be added for one output of
the following neuron. This method requiresgood memory resources.

3.3. Algorithmsfor parallelization

Paralldization of ANN consists in two phases: first learning phase, and second execution phase.
Paraleization for learning phase in case of SVM is in parallelization of matrixes operations,
what is well defined in webpage of CUDA[37], athough this depends on optimization method
applied what is focused on solving quadratic problem[38]. In case of SNN, the mathematical
caculusin phase of learning is more sequential because of its approximation method.But in both
SVM and SNN all weight of hidden layers neurons can be parallelized and calculated at the same
time.

The second phase refers about to evaluations of weights calculated according to inputs. The
sections A, B and C show away of parallelizing of this phase.
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Preceptron.Graphically, the following components of the model represent the actual activity of a
neuron. All inputs are summed altogether and modified by the weights. This activity isreferred as
a linear combination. Finaly, an activation function controls the amplitude of the output. This
process is described in the figure 2. Each thread represents a layer. In the GPU, pardlelism for a
neuron of perceptron isfocused on mathematical operations[37].
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Figure 2.Simple perceptron.

Backpropagation.In this case has the sameal gorithm in weight thatSNN. The weight needs to be
adjusted per iteration. Parallelization in two dimensionsis like the figure 3.

Support Vector Machines (SVM).In the figure 3, the parallelization of SVM could be observed,
in this case each thread represents a layer with n or k number of rows, however the mathematics
calculus are paraldized into of each neuron of hidden layer in other kernel, what is solved as a
optimization problem. The dimension of the Hessian matrix isequal to numberof input
parameters. So, the multiplication of matrix is another operation to parallelize that can be solved
in aseparated kernel. In the figure 3, the y0 neuron gets at the same time al values multiplied per
its respective weight, the in other kernel in CUDA the mathematical operations are parallelized.
At the same time the other neurons of hidden layer computing its respective output. However, the
next layer cannot calculate its output without the previous layer has done.

Figure 3. Parallelization of Support Vector Machine (SVM), 2D Array
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Spiking Neural Networks (SNN).Thearrange of figure 4 represents a configuration of the GPU
device in three dimensions. Thisis a solution for parallelizing SNNalgorithm.The cube showedin
this figure is only a neuron of a hidden or output layer.There are as many cubes as neurons are
required. Each cube is divided in blocks, what depend on the length of time in the input[27]. All
neurons per layer can be calculated in pardlel, but a disadvantage is thatthis procedure requires
many resources of memory. .
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Figure 4.Paralelization in 3 dimensions of Spiking Neural Network.
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SNN has significant characteristics that must be considerated. The synapses of the biologica
neuron are modeled as weights. Let’s remember that the synapse of the biological neuron is
which interconnects the neural network and gives the strength of the connection. For an artificid
neuron, the weight is a number, and represents the synapse. A negative weight reflects an
inhibitory connection, while positive vaues designate excitatory connections.Inherent parallelism
of commodity graphic hardware is used to accelerate the computationof ANN.According to
Nikola[33], taxonomy of parallelization approaches for neurosimulations is represented in the

figure5.
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Figure 5. Taxonomy of parallelization approaches for neurosimulations.

Sridhar [1] says that the main advantage of GPU over CPU is high computational paralelism and
efficiency with a relatively low cost.However, it is difficult to design an agorithm. Also, the
author says that although exist Integrated Circuits (IC) for high paralelism, it is very difficult to
trandate this parallelism in an efficient software.On the other hand, human brain can be trained to
solve complex problems, such as thermal modeling of specific IC layouts.

Prabhu [20], compares efficiency of the human brain with enormous computational powerand
parallel environs of GPU’s, so we understand that GPU has some limitations. According to him,
the role played by Graphical Processing Unit (GPU) is approaching to Artificial Neural Networks
to the nature of human brain. Also, GPU’s have been used for rendering high quality images in
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real time, virtual reality simulations and games. Modern GPU’s can perform highly intensive
paralel tasks.

5. CONCLUSIONS

In this paper weconcludethatparallelisminANNincreasespeedof learning time. However, is very
difficult to design this sort of algorithms. On the other hand, we can parallelize by hardware
(FPGA) of software (GPU). Tendency is study to know which algorithm is the most efficient and
faster, because of their mathematical characteristics and their architecture. So, is better to solve a
problem with large database using SVM and SNN than traditional ANN.

The importance to compare the efficiency between these agorithms is to know the error in the
results and which is faster for learning according to quantity of instances and parameters per
instance. So, with this information is possible to know what applications are the most
appropriates for each application.

As afuture work, there are some aspects, as parallelizing SVM or SNN in a GPU and SNN in a
FPGA, then compare learning time. However, also is necessary to propone an important
application to solve real problems.
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