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ABSTRACT 

 
We consider the Multi-Area Economic Dispatch problem (MAEDP) in deregulated power system 

environment for practical multi-area cases with tie line constraints. Our objective is to generate allocation 

to the power generators in such a manner that the total fuel cost is minimized while all operating 

constraints are satisfied. This problem is NP-hard. In this paper, we propose Hybrid Particle Swarm 

Optimization (HGAPSO) to solve MAEDP. The experimental results are reported to show the efficiency of 

proposed algorithms compared to Particle Swarm Optimization with Time-Varying Acceleration 

Coefficients (PSO-TVAC) and RCGA. 
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1. INTRODUCTION 

 
In recent years, energy deregulation of the electricity industry has been deployed in many 

countries to improve the economic efficiency of power system operation. It has been used widely 

in a more competitive market of power industry. However, even in a competitive environment, 

we have to guarantee the adequate level of reliability to supply for customers. Therefore, 

economic dispatch (ED) is one of the main problems in many energy systems. In this paper, we 

focus on solving ED problem in multi-area environment, so we call this problem MAEDP (Multi-

Area Economic Dispatch problem). 

 

Our MAEDP system is comprised of three components. The generators are the electricity 

suppliers. The areas are where to receive and consume electricity from generators in our system. 

The tie-lines are the ways to transport electricity between two areas. The objective of MAEDP is 

to determine the generation levels and the power interchange between two areas which would 

minimize total fuel costs in all areas while satisfying power balance, generating limit and 

transmission capacity constraints. If an area with excess power is not adjacent to a power 

deficient area, or the tie-line between the two areas is at the transmission limit, it is necessary to 

find an alternative path between these two areas in order to transmit additional power. 

 

The most simple cost function of each generator can be represented as a quadratic function as 

follows. 
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 2( )u u u u u u uF P a P b P c= + +   (1) 

  

Where , ,u u ua b c  are fuel-cost coefficients of the generator u and uP  is the generated power of the 

generator .u  

 
In fact, the cost function of the MAED problem has non-differential points depending on the 

valve-point effects or the change of fuels; therefore, the cost function is usually a non-smooth 

function. This paper will consider two cases of non-smooth cost functions. The first case 

considers the valve-point effect where the objective function is normally expressed as the 

superposition of a sinusoidal function and a quadratic function. Another addresses multiple fuels 

where the objective function is described as a set of piecewise quadratic functions. 

 

1.1. ED Problem Considering Valve-Point Effects 

 
The generator with multi-valve steam turbines has input-output curve which is very different from 

the smooth cost function. To calculate the accurate cost curve of each generator, the valve-point 

effects must be included in the cost model. Therefore, the sinusoidal function is incorporated into 

the quadratic function. The fuel cost of the generator u can be formulated as follows: 

 

 2 min( ) | sin( ( )) |u u u u u u u u u u uF P a P b P c e f P P= + + + × × −   (2) 

 

Where ue and uf  are the coefficients of the generator u representing valve-point effects. 

 

1.2. ED Problem Considering Multiple Fuels 

 
When the generators are supplied by multiple fuel sources, the cost of each generator is 

represented by several piecewise quadratic functions reflecting the effects of fuel changes. The 

fuel cost function for such a case should be practically expressed as: 
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  (3) 

 

Where ,lk lk
u ua b and lk

uc are the fuel-cost coefficients of the generator u and k = 1, 2,. . ., k: the 

number of available fuels. 

 
( 1) , :l k lk

u uP P
− capacity consumption 

min max, :u uP P minimum and maximum capacity of generator u 

 

The objective of MAEDP is to determine the generated powers uP of generators so that the total 

fuel cost for the N number of generators is minimal. Therefore, the objective function of MAEDP 

is as follows. 
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Where ( )u uF P is the fuel cost function of generator u. 

Subject to: 

i. Area Power Balance Constraints 

 
| | |l l

u al l

u u a l T o a l From a

P P PD P
∀ ∈ ∀ = ∀ =

+ = +∑ ∑ ∑   (5) 

ii. Generating Limit Constraints 

 
| | |l l

u al l

u u a l T o a l From a

P P PD P
∀ ∈ ∀ = ∀ =

+ = +∑ ∑ ∑   (6) 

iii. Tie-line Limit Constraints 

 max max
l l lP P P− ≤ ≤   (7) 

max :lP maximum transmission capacity of line l; 

:lP transmission capacity of line l. 

:aPD addition charge demand of generator a 

 

In this paper, we propose new algorithm to solve the MAEDP, called Hybrid Particle Swarm 

Optimization (HGAPSO), which is the combination of Particle Swarm Optimization (PSO) 

algorithm and Genetic Algorithm (GA) model. This combination not only able to change search 

area by considering the value of ,best iP  and ,bestG but it also improve the running time. 

 

The rest of this paper is organized as follows. Section 2 describes the related works. Our new 

proposed algorithm is showed in section 3. Section 4 gives our experiments and computational 

and comparative results. The paper concludes with discussions and future works in section 5. 

 

2. RELATED WORKS 

 
Economic dispatch is a complex problem with many different models and has been set up for a 

long time. Through twenty years, along with the development of competitive electricity markets 

and smart grid technology, many new models of the problem have been introduced. At the same 

time, the heuristic algorithms also provide a new approach to solve the ED problem. 

 

In 1994, Bakirtzis et al. proposed a Binary-Coded Genetic Algorithm for traditional ED problem 

with the generating limit constraints and power balance constraints [3, 4]. In 2005, Hamid 

Bouzeboudja et al. solve that problem by Real-Coded Genetic Algorithm [5] and Jong-Bae Park 

et al. proposed PSO algorithm [1, 2] for the ED problem which has the non-smooth cost function 

[6]. With smooth cost functions, they have provided the global solution satisfying the constraints. 

And their global solution has a high probability for 3-generator system and it is better than other 

heuristic approaches for 40-generator system. However, they have just solved ED problem with 

one or two area. The next year, GA and PSO approaches are modified to apply to the more 

complex model of ED problem such as: generators with valve point effect and multiple fuels, 

ramp rate limit, thermal generator forbidden zones… 

 

MAEDP problem with transmission capacity limit constraints were also interested in solving in 

recent years. Zarei et al. introduced Direct Search Method (DSM) for the two-area problem in 

2007 [7]. In 2008, Nasr Azadani et al. solve the two-area problem with spinning reserve 

constraints by PSO [8]. In 2009, Prasanna et al. proposed algorithms which are based on the 

combined application of Fuzzy logic strategy incorporated in both Evolutionary Programming 
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and Tabu-Search algorithms for the n-area problem. In 2010 and 2011, Manjaree Pandit et al. 

introduced and compare different versions of PSO for the MAED problem with n-area [8, 9]. The 

results show that the PSO algorithm achieves better solutions and faster computation time than 

previous methods. 

 

In [14], Binh et al. proposed genetic algorithm, called RCGA, for solving MAEDP. The main idea 

of this algorithm is to make a modified GAs employing real valued vector for representation of 

the chromosomes. The use of real number representation in the GAs has a number of advantages 

in numerical function optimization compared to the binary representation as: no need to convert 

chromosomes to binary code; requires less memory capacity; no loss of accuracy incurred by 

discretion of the binary value and easy implementation of different genetic operators. This 

algorithm gives good results, but the running time is so great. 

 

In next section a new approach using PSO will be introduced. The new algorithm can achieve 

better result than previous methods in some known benchmark and the running time are 

improved. 

 

3. HYBRID OF GENETIC ALGORITHM AND PARTICLE SWARM 

OPTIMIZATION FOR SOLVING MAEDP 

 
3.1. Individual Representation 

 
We propose to apply real-coded to encode solution. An individual is represented by a 

chromosome whose length is equal to U + L (U: the number of generators; L: the number of tie-

lines in the system). 

 

 
 

Figure 1. Individual representation 

 

Figure 1 shows that ( 1 )iP i U= → represents the generated power of the generator i, and 

( 1 )jT j L= → represents the transport power in tie-line j. 

 

Each individual has two components which are position and velocity vector. With MAEDP, the 

position and velocity vector are represented bellow: 

 

 ( ) ( )1 2 1 2, ,..., , , ,...,i iU iLi i i iX P P P T T T 
 =   (8) 

 

 ( ) ( )1 2 1 2, ,..., , , ,...,i i i iU i i iLV VP VP VP VT VT VT =     (9) 

 
In the first population, we initialize randomly the velocity value as satisfying: 

 

 ( ) ( )min 0 0 max 0
iu iu iu iu iuP P VP P Pε ε− − ≤ ≤ + −   (10) 

 

 ( ) ( )min 0 0 max 0
il il il il ilor T T VT T Tε ε− − ≤ ≤ + −   (11) 

Where  
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ε  : the very small positive real number, 
0

iuP  : initial power of generator u on individual i, 

0
ilT  : initial power of tie-line l on individual i. 

0 0, :iu ilVP VT  initial velocity vector of power of generator u or power of tie-line l on 

individual i. 

 

3.2. Fitness function 

 
We use fitness function to estimate the optimality of solution. Fitness value of an individual is 

calculated by the total of the fuel cost of all generators and penal cost when the system does not 

guarantee the energy balance constraint. Therefore, this function is as follows: 

 

 
1 1

( )
U A

u u a

u a

Fitness F P PenCoef AreaV
= =

= + ∗∑ ∑   (12) 

 

 ( ) ( )a a a a aAreaV PG Pin PD Pout= + − +   (13) 

 

Where uP is the generated power of generator u. 

PenCoef : the penal coefficient. 

U, A: the number of generators and the number of areas respectively. 

 

aAreaV is penal cost when the system does not guarantee the energy balance constraint and 

calculated as above. 

 

3.3. Individuals updated 

 
Each iteration, position and velocity are updated by 

 

 ( ) ( )1
1 1 2 2

k k k k
i i i ibesti bestV V w C R P X C R G X+ = ∗ + ∗ ∗ − + ∗ ∗ −   (14) 

 

 1 1k k k
i i iX X V+ += +   (15) 

 

• k
iV : velocity of individual i at iteration k; 

• k
iX : position of individual i at iteration k; 

• ,best iP : the best position of individual i up to the iteration k; 

• bestG : the best position of population up to the iteration k; 

• w: inertia weight 

• 1C : cognitive acceleration coefficient; 

• 2C : social acceleration coefficient; 

• 1 2,R R : randomize number between 0 and 1. 
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Figure 2. Individuals updated 
 

Inertia weight: High inertia weight is good for global search while small one is good for local 

search [2]. So, it it better if we use high inertia weight in the first step and descending to the final 

step. We propose time-varying inertia weight as bellow. 
 

 ( ) max
maxmin min

max

iter iter
w w w w

iter

−
= + − ×   (16) 

 

In which 
 

•  wmin, wmax:  range on inertia weight; 

• iter : the number of iteration;  

• maxiter : maximum iteration. 

 

Acceleration factors 
 

 ( )1 1 1 1

max

i f i

iter
C C C C

iter
= + − ×   (17) 

 

 ( )2 2 2 2

max

i f i

iter
C C C C

iter
= + − ×   (18) 

 

1 1 2 2, , ,i f i fC C C C : initial and final value of cognitive acceleration and social acceleration. 

 

3.4. Crossover Operator 
 

In population i, we choose two randomly individuals called parent1 and parent2 and recombine 

them to create two childs. The position and velocity vectors of offspring are formulated 

respectively as followings: 
 

 1 1 2( ) ( ) (1.0 ) ( )i i i i iChild x p parent x p parent x= ∗ + − ∗   (19) 

 

 2 2 1( ) ( ) (1.0 ) ( )i i i i iChild x p parent x p parent x= ∗ + − ∗   (20) 

 
The velocity of the child is calculated as bellow: 
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1 1

1 2

( ) ( )
( )

( ) ( )
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Child v parent v

parent v parent v

+
=

+

r r
r r

r r   (21) 

 

 ( )1 2
2 2

1 2

( ) ( )
( )

( ) ( )

parent v parent v
Child v parent v

parent v parent v

+
=

+

r r
r r

r r   (22) 

 

ip : randomized number between 0 and 1. 

 

3.5. Proposed algorithm structure 
 

1. Procedure GeneticAlgorithm 
2. Begin 
3. Initialize population 
4. Update GBest 
5. While !(Maximum_Number Interations) 
6. Individual Updated 
7. For i = 1 to number_crossover do 

Begin 

8. Random parent1, parent2 
9. Random pi 
10. Create Child1, Child2 

11. Calculate Child1( v
r
),Child2( v

r
) 

12. Endfor 
13. Update Pbest,i,GBest 
14. Endwhile 
15. Return GBest 

 

4. EXPERIMENTAL RESULTS 
 

4.1. Problem Instances 
 

In our experiments, we used five test systems that have different sizes and nonlinearities. They 

are: test systems I taken from [10] (one area, 3 generators, quadratic cost function), test system II 

taken from [11] (2 areas, 4 generators, quadratic cost function), test system III taken from [12] (3 

areas, 10 generators, with three fuel options), test system IV taken from [13] (2 areas, 40 

generators, with valve-point effects), and test system V taken from [13] (2 areas, 120 generators, 

quadratic cost function). With each test system, we create four different values of total power 

demand (PD). Therefore, we have 20 test cases. 
 

4.2. Experiment Setup 
 

We experiment our proposed algorithm independently and compare its performance with PSO-

TVAC [9, 10] and RCGA [14]. 
 

4.3. System Setting 
 

The parameters are used in our algorithm: 

Population size: 400 

Max iteration: 100 

Minimum inertia weight: 0.4 

Maximum inertia weight: 0.9 
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Initial value of cognitive acceleration factors: 1.8 

Final value of cognitive acceleration factors: 0.2 

Initial value of social acceleration factors: 0.2 

Final value of social acceleration factors: 1.9 

Crossover probability: 0.7 

Our system is run 20 times for each test set. All the programs are run on a machine with Intel 

Core 2 Duo P7450 2.13Ghz, RAM 3GB, Windows 7 Professional, and are installed in C# 

language. 

 

4.4. Computational Results 

 
Table 1. Comparison of the best results found by HGAPSO, PSO-TVAC and RCGA  

 

No 
Test 

system 
PD 

Min 

PSO-TVAC RCGA HGAPSO 

1 

I 

1 100,00% 100,00% 100,00% 

2 2 100,00% 100,00% 100,00% 

3 3 100,00% 100,02% 100,00% 

4 4 100,00% 100,01% 100,00% 

5 

II 

1 100,00% 100,52% 100,02% 

6 2 100,00% 100,41% 99,98% 

7 3 100,00% 100,24% 100,07% 

8 4 100,00% 100,06% 100,00% 

9 

III 

1 100,00% 97,17% 98,02% 

10 2 100,00% 100,16% 99,89% 

11 3 100,00% 105,23% 100,01% 

12 4 100,00% 105,96% 100,00% 

13 

IV 

1 100,00% 99,09% 100,62% 

14 2 100,00% 100,35% 101,77% 

15 3 100,00% 101,44% 104,19% 

16 4 100,00% 99,30% 100,13% 

17 

V 

1 100,00% 104,25% 101,12% 

18 2 100,00% 100,55% 99,19% 

19 3 100,00% 103,32% 103,00% 

20 4 100,00% 102,59% 103,01% 
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Table 2. Comparison of the average results found HGAPSO, PSO-TVAC and RCGA 

 

No 
Test 

system 
PD 

Average 

PSO-TVAC RCGA HGAPSO 

1 

I 

1 100,00% 99,91% 100,10% 

2 2 100,00% 99,94% 100,04% 

3 3 100,00% 100,03% 100,03% 

4 4 100,00% 100,02% 100,00% 

5 

II 

1 100,00% 99,27% 99,25% 

6 2 100,00% 99,87% 99,75% 

7 3 100,00% 100,03% 99,96% 

8 4 100,00% 116,41% 99,96% 

9 

III 

1 100,00% 93,57% 95,93% 

10 2 100,00% 101,40% 99,84% 

11 3 100,00% 123,64% 100,00% 

12 4 100,00% 111,87% 99,99% 

13 

IV 

1 100,00% 95,81% 99,51% 

14 2 100,00% 98,12% 102,86% 

15 3 100,00% 98,02% 103,39% 

16 4 100,00% 96,79% 101,91% 

17 

V 

1 100,00% 101,54% 101,79% 

18 2 100,00% 100,16% 101,76% 

19 3 100,00% 100,09% 100,97% 

20 4 100,00% 99,29% 103,62% 
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Table 3. Comparison of the running time found by HGAPSO, PSO-TVAC and RCGA 

 

No 
Test 

system 
PD 

Time  

PSO-TVAC RCGA HGAPSO 

1 

I 

1 100,00% 241,65% 89,49% 

2 2 100,00% 255,36% 91,39% 

3 3 100,00% 254,70% 91,72% 

4 4 100,00% 254,47% 94,88% 

5 

II 

1 100,00% 280,11% 86,04% 

6 2 100,00% 278,21% 87,92% 

7 3 100,00% 286,46% 89,19% 

8 4 100,00% 281,13% 88,65% 

9 

III 

1 100,00% 450,02% 81,35% 

10 2 100,00% 455,81% 82,32% 

11 3 100,00% 457,01% 82,75% 

12 4 100,00% 462,80% 83,10% 

13 

IV 

1 100,00% 614,82% 79,29% 

14 2 100,00% 611,01% 79,49% 

15 3 100,00% 622,53% 79,58% 

16 4 100,00% 617,50% 78,76% 

17 

V 

1 100,00% 975,79% 87,59% 

18 2 100,00% 1198,74% 89,69% 

19 3 100,00% 1257,07% 90,97% 

20 4 100,00% 1258,36% 91,32% 

 
• Table 1 shows that the best results found by HGAPSO are better than or equal to PSO-

TVAC and RCGA in 9/20 test cases. 

• Table 2 shows that the average results found by HGAPSO are better than or equal to 

PSO-TVAC and RCGA in 8/20 test cases. 

• Table 3 shows that the running time of HGAPSO is better than PSO-TVAC and RCGA in 

all of the test cases. 

• The experiment results show that the combination between PSO and GA can find better 

results in the fastest running time. 

 

5. CONCLUSION 

 
In this paper, we proposed new hybrid particle swarm optimization algorithm for solving 

MAEDP. We experimented on five test systems. With each test system, we create 4 test cases 

which are different from the value of total power demand. The results show that our proposed 

approaches are stable and quite effective with MAEDP. The running time of HGAPSO is fastest 

compare to PSO-TVAC and RCGA. 

 

In the future work, we are planning to improve the algorithm for solving MAEDP with more 

constraints. Moreover, we hope that we can find the other approach with better results for 

MAEDP. 
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