
International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

DOI : 10.5121/ijnlc.2013.2602 17

ROBUST EXTENDED TOKENIZATION FRAMEWORK

FOR ROMANIAN BY SEMANTIC PARALLEL TEXTS

PROCESSING

Eng. Marius Zubac1 and Prof. PhD Eng. Vasile Dădârlat2

1Department of Computer Science, Technical University, Cluj-Napoca, Romania
2Department of Computer Science, Technical University, Cluj-Napoca, Romania

ABSTRACT

Tokenization is considered a solved problem when reduced to just word borders identification, punctuation

and white spaces handling. Obtaining a high quality outcome from this process is essential for subsequent

NLP piped processes (POS-tagging, WSD). In this paper we claim that to obtain this quality we need to use

in the tokenization disambiguation process all linguistic, morphosyntactic, and semantic-level word-related

information as necessary. We also claim that semantic disambiguation performs much better in a bilingual

context than in a monolingual one. Then we prove that for the disambiguation purposes the bilingual text

provided by high profile on-line machine translation services performs almost to the same level with

human-originated parallel texts (Gold standard). Finally we claim that the tokenization algorithm

incorporated in TORO can be used as a criterion for on-line machine translation services comparative

quality assessment and we provide a setup for this purpose.

KEYWORDS

Semantic Tokenization, Bi-lingual Corpora, Romanian WordNet, Bing, Google Translate, Comparative MT

Quality Assessment

1. INTRODUCTION

When faced with the task of text processing today’s systems need to implement robust procedures
for input text acceptance no matter the final processing purpose ranging from information
retrieval and sentiment analysis to machine translation applications. This acceptance criteria may
include various filtering pre-processing of the text, however the vast majority of researchers [1],
[2], [3] agree that tokenization should be the first step of the text processing pipe as shown in the
Figure 1 preceding any lexical analysis step.

Figure 1. Text processing before linguistic analysis

Raw Text

 1. Pre-processing/Filtering

2. Sentence Splitting

3. Tokenization

4. Further Lexical Analysis (POS-Tagging, Parsing)

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

18

The raw text that may very well originate from the internet in html/xml format is first extracted as
plain text inside a process usually called filtering. Then the text is forwarded to the next process
in the pipeline: the sentence splitting process. It is this process the one responsible with the
sentence boundary detection. For issues related to this process good surveys are provided in [4]
and [5]. In this paper however the focus is set on the word-level tokenization process.

2. TOKENS AND TOKENIZATION REVISITED

2.1. What is a token? What is tokenization?

While everyone agrees that tokenization is necessary there is no perfect agreement on what a
token is on one hand and what the tokenization process is or should be on the other hand and all
these for good reasons. The paragraph title paraphrases a well-known seminal paper by
Grefenstette and Tapanainen “What is a word? What is a sentence?” already mentioned in Section
1 [3]. There the authors states that “the isolation of word-like units is called tokenization” and
again in this process two types of tokens emerge: “one type corresponding to units whose
character structure is recognizable, such as punctuation, numbers, dates, etc.; the other type being
units which will undergo a morphological analysis”. Many researchers start by analyzing the
notion of word itself and in [1] Webster begins by looking at what is a word from a
lexicographer’s perspective. While “words”, “collocations” and “multi-morpheme items” are
significant from a lexicographer’s perspective, the author recognizes that the concept of token is
important from a NLP or MT application perspective and observes that a token cannot be broken
into smaller pieces for the purpose of these applications. The token is then a terminal node [1].
Palmer in [5] expresses the fact that “tokenization is the process of breaking up the sequence of
characters in a text by locating word boundaries, the point where one word ends and another
begins”. According to [6] there is “segmentation of a stream of signals, classification of these
signals and relating those to linguistic units” vs. tokenization that refers to segmentation of a
written text. In [7] the token is viewed from a linguistic status, a formal one and from an
application-based perspective. While in [3] a certain morphological analysis is presumed to
follow the tokenization process in [8] for instance, in lexical analysis processing for information

retrieval applications “tokens are groups of characters with collective significance”. More than
that, the ones that do not carry significance and belong to stoplists and negative-dictionaries are
even discarded as non-tokens. Applications centered on word sense disambiguation (WSD), text-
mining, terminology extraction, (cross lingual) question-answering (QA), information retrieval,
speech synthesis, etc. all have different needs than for instance machine translation (MT). To
summarize an answer to the paragraph questions we conclude that each type of application
defines in fact what a token is for its own purpose, and consequently adjusts the tokenization
process definition as well. A practical consequence would be to build flexibility in the
tokenization process in order to address different tokenization styles based upon the field of
application.

2.2. Why is tokenization hard?

A simple answer to this question is: lots of issues to address, lots of ambiguities to solve. In
addition more requirements shown in section 2.3.3 may complete the list.

2.2.1. Multiple issues to address

In [5] Palmer states that tokenization algorithms must address: language dependence, character-

set dependence, application-dependence and corpus dependence. Specifically at the language
dependence level the author observes that detecting word boundaries and solving the possible

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

19

ambiguities in the process is language specific and further observes that written Chinese and
Japanese although have adopted punctuation marks for end of sentences do not have word
boundaries. Tokenization follows different types of algorithms studied in [10], [11] (maximum
tokenization principle) and [12] (one tokenization per source). At the character-set dependence it
is mentioned the character encoding problem and it is observed the large usage of the GB and
Big-5 encoding for Chinese and notes that different rules must be in place for TIS620 versus
UTF-8 character encoding for Thai. The automatic discovery of text language and encoding
system is delicate, statistic-based and may occasionally point to a wrong language and/or
character-set encoding. In our opinion a tokenizer should be given along with the text, both the
language and the character-encoding set parameters. Historically, in case of Romanian language
many (on-line) texts have been generated using ISO 8859-2 (Latin 2) character encoding using ş
and ţ (with cedilla). It was the wide adoption of the Unicode standard and the UTF-8/16
encodings that paved the way for Romanian ș and ț (with comma) correct diacritics to come back
to life again. Although correcting Romanian diacritics is trivial, the process of total recovery for
most of the on-line texts must reach the semantic level of the processing as shown in [13].
Application dependence is explained in [5] by noticing that a token like I’m in English could be
left as such or expanded to I and am, depending upon how these tokens would be analysed in the
next processing step either a lexical or semantic analysis. Corpora dependence is related with the
fact that tagged corpora used in many researches are tokenized in a certain way, for instance in [5]
is mentioned that the word governor’s is considered one token in the Brown corpus [14] while is
two tokens in the Susanne corpus [15]. This is a tokenization issue only if using further other
toolkits aligned to specific corpora is a requirement. Unfortunately there is no unique standard for
tokenization, tagging, etc., and depending upon applications various large used corpora act as de
facto standards. Ambiguities come in many flavours. There are punctuation ambiguities, special
characters ambiguities and the ones generated by the words and expressions themselves. Another
way to look at ambiguities is to recognize the “good-old/classical” ones versus the “new wave”.

2.2.2. “Good-old/classical” ambiguities.

Punctuation related ambiguities. From a linguistic perspective one can define three alphabets
[6]: a token alphabet, a punctuation alphabet and a delimiter alphabet. The main issue related with
this approach is that these three alphabets are overlapping. The rule of thumb for tokenizing
punctuation is to treat them as separate tokens. Palmer [5] observes that are many cases however
when punctuation should be “attached” to another token. The author observes that punctuation is
language specific and gives examples for English. In this paper a series of examples for
Romanian will be also given to further illustrate the language specific treatment of punctuation.
Almost always the blank space is a delimiter, but there are notable exceptions where the splitting
by space is usually performed but not desired: in the multi-word expressions like in spite of that
should count for a single token. Other noticeable situations where space should not be considered
delimiter for tokenization, according to [6] are: German large numbers grouping digits delimiter,
phone/fax prefixes, etc. All these situations can be detected and fixed by means of regular
expressions-based rule processing. The hyphen (-) is almost always part of the (word) token
alphabet [6] and is not to be confused with the dash character, although the more informal the text
(like blogs, chats) the more chances for confusion. This character plays an essential role in multi-

part words (see the appropriate paragraph) in which case splitting the multi-part word should not
be desired but also in building grammatical structures like in French e.g. va-t-il, celui-ci or in
Romanian, e.g. ne-am dus, v-ați adus, maică-sa, where splitting is necessary for tokenization.
Other undesired splitting on hyphen occurs in number ranges, phone/fax numbers, calendar dates
where regular expressions may help. Another source of confusion and ambiguity is generated by
the fact that dashes are sometimes used instead of hyphens. The comma is usually a delimiter [6]
except in German and American numerical expressions where it is part of the token. This
situation can be handled with regular expressions. The period (.) character beside the important
role as sentence delimiter (full stop) and as an abbreviation marker may be can be encountered in

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

20

many other constructs like name initial, email and internet addresses, dates, etc. where regular
expressions matching techniques can be employed. It can be ambiguous (along with comma) in
numerical expressions, reason why detecting/passing the language indicator is crucial. The
apostrophe is a word delimiter that beside the Saxon genitive that can be usually recognized and
expanded, also serves for contractions like I’m, he’s, it’s and in forming some plurals like in
I.D.’s or 1980’s [5]. In general contractions can be detected using table-lookup or regular
expressions-based strategies but sometimes reconstructing the full constituents may be
ambiguous. For example he’s may be expanded to he is or he has or l’ can be either le or la in
French. In our vision reconstruction is necessary (maybe to just disambiguate other tokens) even
if deeper analysis is necessary.

Word related ambiguities. This category of ambiguities concerns abbreviations, acronyms,
named entities, multi-part words and multi-word expressions. In most of the cases (as well in
Romanian) abbreviations are sequence of characters ended with a period. Recognizing and
eventually expanding the abbreviations is essential for tokenization and look-up tables and lists
based strategies may obviously help, however these techniques are not sufficient for some reasons
like: abbreviations are “productive” [5]. There will often be “new”, out-of-the-list abbreviations
not detected by the tokenizer; they may come without period character like in Mass for
Massachusetts (cited in [5]); the text will occasionally contain abbreviations from other
languages. Other type of abbreviation ambiguities may arise in the abbreviation expansion
process (e.g. should be St. expanded to Saint, Street or State - example from [5]). The most
important abbreviation detection ambiguous situation may arise in cases where the abbreviated
word is also the last word in the sentence. This type of situation is frequent and in [3] is stated
that in the Brown corpus there are 48885 sentences and 3490 contains at least one non-terminal
period (full-stop). In [3] the authors experiment with various filtering and both lexicon and non-
lexicon based strategies to detect true abbreviations in a context where the text is not sentence-
level segmented and reports a success of over 99.7% on the Brown corpus. In many of the
situation shown above cannot be solved at this level and a deeper semantic analysis is required.
Acronyms should be tokenized as such, without expansion, for both text and MT processing
purposes. The discussion starts though when other tokens need to be disambiguated and the actual
acronym meaning is required. In Table 1 are listed a few ambiguous acronyms and sometime
when there are more meanings in the same semantic domain choosing the right one from the list
is not trivial.

Table 1. Ambiguous acronyms.

Acronym Description

AR Aspect Ratio or Assault Rifle
CD Coefficient of Drag or Compact Disc
HP Horsepower or Hewlett Packard
PFD Personal Flotation Device (boating) or Partial Fraction Decomposition (math)

To complicate even more some acronyms can be also valid abbreviations written without the
ending period or just full regular words. If expansion is necessary acronyms can be first detected
with regular expressions but then should be deferred to list-lookup strategies. Abbreviations and
acronyms disambiguation in medical discourse are studied in [16]. Named entities
disambiguation faces the same type of ambiguity and treatment as acronyms. A much mediatized
name Bush may refer according to Wikipedia to one of the two presidents of United States, other
Bush persons, the family name, eight places form US, Canada, UK and NZ, four brand names,
and the name can be found in other NER constructs in cinematography, music and sports
domains. Is worthwhile mentioning that even in the same text president Bush can be mentioned in
various forms like Bush, G. Bush, G.W. Bush, George Bush and to automatically detect that the
words refer to the same person is not trivial. Eventually the tokenizer should perform here a text-

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

21

normalization. The named-entity recognition subtask is also vital for information extraction. The
main objective of this subtask is the identification of proper names and also their classification
into semantic categories (person, organization, location, artefact, etc.). It is estimated that around
20% of named entities occur in ambiguous positions. In relation with ambiguous situations
concerning capitalized words and NERs in [17] is cited the example Daily, Mason and Partners

lost their court case, where it is clear that Daily, Mason and Partners is the name of a company.
However in Unfortunately, Mason and Partners lost their court case, the name of the company
does not include the word Unfortunately, but the word Daily is just as common a word as
Unfortunately [17]. In [5] the author observes that the process of deriving a new semantic or
grammatical meaning from a group of words called multi-part words is specific to many written
languages. This process may imply completely agglutinating the constituents like in Turkish,
Swahili, or most Altaic languages and common to German (a non-agglutinative language) as well
(e.g. Nichtraucher, non-smoker) or just grouping the constituents and separating them with
hyphens in many European languages including English (e.g end-of-line, New York-based),
French, or Romanian (e.g. bine-crescut (Eng. well behaved), floarea-soarelui (Eng. sunflower). If
the tokenization algorithm separates the multi-part words by hyphens (as it normally should)
these tokens must be reconstructed back using a table-lookup strategy. Beside multi-part words
another multi word compound formation separated by spaces is the multi-word expression that
although is made of multiple words has a precise meaning sometimes replaceable by a synonym
and should be treated like one single token, In [5] are given English examples like in spite of
which is equivalent with despite and expressions borrowed from other languages like au pair, de

facto, joie de vivre which should again treated as a single token. In this category also belong dates
that have the month expressed in a word format, dates having the day of the week, some
numerical expressions (e.g. $2 million), etc. In this case the reconstruction of the token may
imply a combination of regular expression-based rules and table-lookup strategies and may prove
to be rather complex. Detecting a multi-word token raises a certain number of technical
problems. While continuous multi-word tokens can be detected with a table-look-up matching
algorithm in case of discontinuous multi-word token e.g. keep please in mind or keep for instance
in mind that have a generic form of keep [V/NP] in mind algorithms must incorporate syntactic
analysis, partial parsing and even more sophisticated knowledge processing according to [1].

2.2.3. The “new wave” ambiguities.

Lately we have all witnessed the large expansion of social networks. Blogs account for a large
quantity of written text that is of great interest to NLP applications like social intelligence, data-
mining, information retrieval and extraction, sentiment analysis to name just a few. A typical
English blog is shown in Figure 2.

Figure 2. Non-standard English text extracted from a blog

This text highlights some tokenization issues: special characters treatment: @, #, & or ♥;
abbreviation detection and expansion issues related to tokens like U, 2; capitalization issue related
to SOO PROUD; absence of apostrophe in contracted you’ve; grouping words to emphasize them
neversaynever.

The Romanian blog text shown below in Figure 3 contains in addition: lack of capitalization at
the beginning of the sentence; total absence of Romanian diacritics; frequent presence in text of
foreign words (mostly English) like link, or back.

Great job @justinbieber! Were SOO PROUD of what youve accomplished! U taught us 2
#neversaynever & you yourself should never give up either♥

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

22

Figure 3. Authentic post from http://www.blog.betforcash.ro/2007/08/analiza-partea1.html

All these issues present more challenges for the tokenization process. In the new types of text
presented above there are new sources of ambiguities, the most important being generated by lack
of diacritics in Romanian texts.

2.3. Tokenization - a sense of direction

Tokenization is not a done deal yet, especially when concerned with performance, robustness,
complex annotations, solving ambiguities in languages other than English. In [7] there are
mentioned two factors that explain the renewed interest in tokenization: first the scale of NLP
application has changed. “Toy grammars and lexica belong to the past”. Very large corpora are
constantly assembled and the web is processed constantly for indexing purposes. The other factor
mentioned is the recently interest in glass-box (as opposed to black-box approaches) evaluation of
text ‘pre-processing’ tasks, tokenization included. Using the elephant in the living room metaphor
[18] the author states that tokenization “is a problem that is impossible to overlook whenever new
raw datasets need to be processed or when tokenization conventions are reconsidered” and
stresses that errors occurring early in the NLP pipeline affect further analysis negatively. While in
case of Standard English tokenizers usually provide good quality output it is still much to be done
in the case of social media text analysis. If for instance we try to pass the English blog text for
translation to Romanian using the Google Translate on-line translation services
(http://translate.google.com/) the result is shown in Figure 4.

Figure 4. Translation in Romanian of the text presented in Figure 2 using the Google Translate on-line
services

Here the tokenizer performed the splitting by the book but failed to reconstruct and hence
interpret correctly the tokens for translation purposes (@ was left split from the twitter username,
emphasized SOO was not replaced with so, U was not understood as you and 2 as to,
neversaynever was left un-tokenized and unrecognized). Another observed trend is the move
toward more complex and meaningful annotation schemes, recognizing some limitations in the
PTB tokenization style. In this paper we propose a more complex annotation mechanism based on
the concept of token class.

2.3.1. The concept of token class

While researchers recognized the variety of tokens encountered in the text we express the opinion
that this fact has not been studied and exploited enough for the benefit of the tokenization
process. We consider that the concept of token class is intuitive and comes in hand to solve many
aspects of tokenization. Period, word and multi-word expression are all valid and intuitive
tokenization classes. The task of tokenization can be further specified as being the process of
splitting the sentence in meaningful tokens and assigning each token to a certain class. From an
ambiguities solving perspective the concept of class holds benefits as well paving the way that
makes the disambiguation process (no matter how complex) clear and manageable. If for instance
the tokenizer recognizes that for instance the token li is a valid roman numeral (51) belonging to
this class (roman numeral) and also a valid Romanian pronoun belonging to class word as well,

cred ca GORAN va fi rescris, sincer ma gandesc si la factorul marketing, doresc sa-l trimit
catorva situri mari pentru un link back. poate o fi cineva care imi va aprecia balariile.

Mare de locuri de muncă @ justinbieber! Au fost SOO mândru de ceea ce le-ați realizat! U
ne-a învățat 2 # neversaynever si te-ai nu ar trebui să renunțe, fie ♥

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

23

the tokenizer should mark in annotations the token to both classes, and should recognize an
ambiguity situation. The decision of handling the ambiguity ‘on the spot’ or deferring it to the
text analysis pipeline is another matter. We will further analyse the token class concept for
Romanian and propose an algorithm for handling class-based tokenization in section 3.3.

2.3.2. Inline vs. stand-off annotations

Annotations may be created inline (in the same file) as or can be standoff [19] generating a file
with pointers to the tokens. In [20] is given an example of inline mark-up for tokenization, shown
here in Figure 5 containing also class attributes information for words w, numbers n and
punctuation p.

Figure 5. Sample of tokenized sentence reproduced from Mikeev [20]

The space between words (�) in the initial text is preserved in between <W> xml elements. The
standoff annotation is more complex, is always generated automatically, leaves the text intact
(which may be very well a read-only source, or for security/copyright issues) and generates
structures that may contain annotations in multiple layers that contain pointers to the original
data. Standoff annotation has been successfully used in many projects like NITE [21], GATE
[22], WHITEBOARD [23], DELPHIN [24, 25], XCES [26, 27] xComForT [28] or BLIS [29] for
bilingual encoding.

2.3.3. Tokenization design requirements

Besides the obvious requirements for a tokenization algorithm of recognizing unambiguously
tokens and sentence boundaries, here is an additional list of requirements for tokenization without
claiming that we have exhausted them: text traceability; flexible text normalization; generating
the tokenized output in XML format; inline vs. standoff annotation option; flexibility and
trainability; aligned to popular corpora formats; logging; language detection; character-encoding
handling/conversion; missing diacritics detection and restoration. It is often desirable (and most
tokenizers implement this feature) for some text structures to be ‘normalized’ and as such to be
changed. For instance the tokenizer from the Charniak & Johnson [30] parser makes
modifications to the text lemmatizing expressions such as won’t as will and n’t. In [31] the author
expresses the opinion that in this case mostly for inline annotation tokenizers it is critical to
provide more than just an additional but full traceability from the token objects back to the raw
text annotation and introduces the concept of characterization to express the character position
links back to the source. It is important to have the tokenizer capable to work in three
normalization contexts: without normalization, with (forced) normalization, and with tokenizer-
driven text normalization, for each type of text normalization option (including abbreviation and
acronym expansion, apostrophe marked genitive and marked contracted forms, etc.). Let’s notice
here that abbreviations and acronyms expansion may cause ambiguities. Generating the

tokenized output in XML format requirement has not acquired the deserved attention in the
research community and unfortunately there is no standard for the tokenization process output by
itself and in this situation the role of de facto standard has been taken by the Penn Treebank (or
PTB) [32]. While the PTB has a rich set of tags for POS tagging and further syntax analysis at
the tokenizer level itself the format is rather Spartan. The GENIA corpus and project [33] states
that following the PTB tokenization scheme GENIA uses one XML tag for both words and
punctuation marks. It should be clear that in order to support abbreviation expansion, traceability,
information about tokenization rule applied or ambiguity situations to be transferred to the
syntactical analysis level a more elaborated xml structure must be elaborated. Flexibility is a

<W c=w>It</W>�<W c=w>was</W>�<W c=p>‘</W><W c=n>3</W><W
c=p>’</W><W c=p>.</W>

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

24

requirement that concerns mostly rule-based tokenizer. It is important when faced with new texts
to be able to quickly add new rules or change their execution. For statistical-based tokenizers this
requirement is expressed by the trainability feature. Aligning the output format to popular

corpora formats (but mostly with PTB) enables further processing to be performed with the
corpora- related NLP toolkits. Although adding logging to the tokenization process may look like
an unnecessary overhead, sometimes we might wonder about the tokenizer’s decisions in
classifying the tokens or in choosing the disambiguation strategy. This detailed information
should be logged in standoff annotation and should be used in for text tokenization analysis and in
tokenization debugging and development. Language detection is an important issue in
tokenization for two reasons. We need to understand the language context of the sentence to be
able to extract the proper language-specific rules from the database and to point to the proper
dictionaries/lists of abbreviations, acronyms, multi-part-words, etc. A second reason for language
detection within a sentence context lies in the fact that both formal and informal may often
contain expressions and words from other languages (like French or Latin) than the text language.
Romanian blogs are filled with English words like shown in Figure 3. Issues related with Natural

Language Diagnosis, and language identification are studied in [34] and [35]. Although
character encoding detection and handling is an important issue for some languages and
definitely is a valuable feature added to the tokenization process we need to say that this operation
can also be seen as a pre-processing or pre-tokenization step and can be treated separately. For
certain languages like French, German, Arabic or Romanian that all have diacritic characters in
their alphabets the ability for tokenizers to recognize and restore the correct word with

diacritics from the form without diacritics is important and not trivial. At least for Romanian the
diacritic characters have semantic implications and their absence increases artificially the number
of homographs on which the disambiguation analysis must be performed. Lately the social web is
the major source of text without diacritics and this situation will not change any time soon.

2.3.4. Tokenization algorithms, principles and trends

From a practical side according to [1] there are two aspects of tokenizing: 1) automatic
segmentation (using dictionaries for example) and 2) strategies for disambiguation. Automatic
segmentation algorithms can be divided in two main classes: rule-based and statistical based
usually on HMM models. Both these classes may use lexicon resources to correct and validate
tokenization. Overview of tokenization algorithms is beyond the scope of this paper and as well is
algorithms for un-segmented languages like Chinese. In [10] the author introduces critical

tokenization a precise formal way to define and discover various types of ambiguities, following
the principle of maximum tokenization, defines critical and hidden ambiguities (blueprint vs. blue

print) and proves that the principle of maximum tokenization [11] would not be effective in
resolving the critical ambiguity in tokenization. In [12] Guo reports on the principle of one

tokenization per source that states that if a text contains more sentences having the same
ambiguity this must be resolved in the same manner along the whole text. In [9] it is proposed a
rule-based extended tokenization process that interprets and groups isolated tokens to create
higher level tokens including all sorts of linguistic knowledge (e.g., grammar rules, dictionaries).
We agree we this approach and believe that it is the tokenizer’s task to provide meaningful tokens
and if needed even semantic analysis no matter how complex must be employed at this stage. In
[17] the author claims a Document-Centered Approach that states that capitalized words and
abbreviations occur at least once in an unambiguous context inside a document and that these
values can be used further for the same tokens when these tokens appear in ambiguous contexts.

2.3.5. Strategies for disambiguation

Strategies for tokenization disambiguation can be grouped in two main categories: deferred and
solved in situ. A first approach for handling complex ambiguities is to defer them to the
downstream processes that will eventually solve them through lexical or syntactical analysis. An

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

25

example of inline treatment of ambiguities is cited from [7] where is shown that in the Intex
system [36] these ambiguities are treated like linearized graphs in Figure 6.

Figure 6. Intex system inline tokenized senetence for “Luc a travaillé pour la Ministère de l’intérieur” [7]

In [24] the author defines a lattice for token ambiguities representation in standoff annotation and
promotes the idea of passing the ambiguities for downstream processing. Regarding ambiguities
we hold the opinion that these must be solved in situ. At this point we are not thrilled to use
statistics and give a final verdict but rather invoke a complex mechanism for semantic

tokenization described later in this paper in section 4.

2.3.5. Tokenizers evaluation

There are two important aspects to this topic. One regards the case when a certain tokenization
process is designed to serve later in a pipeline for a specific NLP application. In this case it is
important to measure the progress in the tokenization development process. Usually in this case
the tokenization process is regarded as a classification algorithm where various tokens must be
assigned to tokenization classes as discussed above in 2.3.1. In this case we can use the precision,
recall, F1-measure and coverage set of indicators. Precision (or accuracy) is defined as the
percentage of tokens returned by the algorithm that occurred in the hand segmented text (the Gold
standard) in the same position and having the same class as the corresponding hand segmented
token (1).

(1) P =

Let us mention here that close related with precision is also the error rate defined by the
percentage of incorrect assigned tokens from the total number of tokens offered by the tokenizer
in (2).

(2) Error rate = 1 – P

Recall is the percentage of tokens and classes in the manually segmented text (the Gold standard)
identified by the segmentation algorithm (3).

(3) R =

The F1-measure is the harmonic average of the measures (1) and (3) above, defined by the
formula (4).

(4) F1-measure =

Also useful can be the coverage indicator (5) defined as the percentage of tokens generated by the
tokenizer from the total number of tokens from the hand segmented text (the Gold standard).

(5) C =

From a methodological perspective a hand-segmented file/corpus is created and is set as a Gold
standard file/corpus. This file is compared then with the tokenized file generated by the
segmentation algorithm. An annotation guideline can be provided to the human annotator to bring
consistency to the process.

Luc a travaillé pour la [1 Ministère [2 de l’intérieur 2] 1]

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

26

A second aspect corresponds to the situation when multiple tokenizers are compared for the result
of their output. In [7] it is shown the need for evaluation, and the difficulty of the endeavor. By
analyzing 18 tokenizers within project GRACE [37] the significant discrepancies in the number
of words and sentences detected is partially explained by the structural differences amongst
tokenizers and also by the lack of standards starting with the concept of token. In [31]
tokenization results from different tokenizers have been compared with a Gold tokenization but
here the comparison has been facilitated by the common PTB output format standard that all
tokenizers observed. The author introduced yet another measure, the total Levenshtein distance
calculated over the sentences tokenized differently than in the Gold standard.

3. THE TORO TOKENIZER SYSTEM

3.1. Overview and architecture

The decision for building TORO (TOkenizer for ROmanian) was made upon several
considerations. There are several generic tokenizers that have been used for tokenization of
Romanian like MtSeg [38] used in [39], GATE [22], or RO-Balie [40] and specialized tokenizers
like the tokenization web service hosted by RACAI (Research Institute for Artificial Intelligence
of the Romanian Academy) web site [41]. Although some of these tools obtained good results in
practice we felt the need to develop a more robust specialized tokenizer for Romanian. A second
requirement was to be able to use this tokenizer in a complete Romanian-oriented NL text
processing pipe-line in a context which is both stable and controllable. From a software design
perspective the TORO System has been built in a modular structure as part of a more generic
NLP framework - PERSEUS that contains also modules for lemmatization, POS-tagging, Word-
Sense Disambiguation, and Diacritics Restoration. The main components of the tokenization
system are shown in Figure 7: the TORO tokenization module; Tokenization Class
Disambiguation Module; tokenization resources management system; the MRDEX lexicon;
evaluation utilities; conversions utilities; external services access interface.

Figure 7. PERSEUS framework – TORO System components

3.2. The tokenization module. Word-entities

The tokenization module is responsible with the actual tokenization process. TORO uses a rules-
based approach, generates inline annotation in the xml format, permits reconstruction of the initial
text, uses lexicon resources (MRDEX) and lists for abbreviations, acronyms, named entities, and

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

27

clitics. The tokenizer employs the concept of tokenization class and when ambiguous situations
occur, it invokes the Tokenization Class Disambiguation Module for the task (section 4). The
TORO algorithm works based upon a set of presumptions regarding the input text. The input text
is a bitext (Rou-Eng), in the sense that there are two sentence-level aligned corresponding text
files: one for Romanian and one for English. The files are sentence-level segmented. Each line
contains one sentence/segment (both for English and Romanian).

The Romanian text contains diacritic characters. For disambiguation purposes there is access to:
English tokenization services; on-line access to RACAI/Ro-WordNet; on-line translation services.
While at a first look these requirements seem quite restrictive and limiting the usefulness of the
tokenizer, in reality these presumptions are not hard to meet as we will prove in the paper. The
main tokenization algorithm is a complex and acts in four stages. Each segment Sj for the source
language (Romanian) is analyzed and split into entities. The stage I of the algorithm is presented

in Figure 8.

Figure 8. TORO tokenization algorithm – stage I

3.3. Tokenization classes

At this point we introduce the concept of tokenization class. We are not satisfied with the
reduced set of {word, number, punctuation} set encountered so far and propose a reach set shown
in Table 2.

Table 2. Main TORO tokenization classes.

Class
symbol

Class name Class detection strategy Additional notes

AC Acronym Table lookup+expansion Includes POS-tagging info.
D Dates Regular expression Standardization
E Email address Regular expression Includes POS-tagging info.
NE Named entity Table lookup Includes POS-tagging info.
P Punctuation Regular expression Retains the character code
RN Roman numeral Regular expression +

Table lookup
Some tokens like li, ci, mi, vi, vii
are also tokenized at class W

U Url address Regular expression Includes POS-tagging info.
W word Regular expression

The strategies for classifying the word entities according to these classes use regular expressions
matching, lists and table-lookups and combination of these two.

In the second stage of the algorithm presented in Figure 9 for each word entity wei we apply in
order all the regular expressions-based class detection rules from the rules database and obtain a
possible set of overlapping class tags Cwei.

Each segment Sj is considered a string of characters containing spaces (or tab characters).
1. Sj is segmented by space and a first list of entities L0j is obtained. Each entity ei from L1j is
considered to have the format:

ei = lci+lpi+wei+rpi+rci where lci – left special chars; lpi – left punctuation; rpi – right
punctuation; rci – right special characters; wei – the word entity; lci,lpi,rpi,rci can be eventually the null
strings; the ‚+’ is the string concatenation operation.
2. In step 2 we build a list L1j that has all the lci,lpi,rpi,rci and wei tokens.

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

28

Figure 9. TORO tokenization algorithm – stage II – regex class allocation

Some examples of regular expressions for token class detection are presented in Table 3.

Table 3. Regular expressions for class detection

Class
symbol

Regular expression Additional notes

D ^(0[1-9]|1[012])[- /.](0[1-9]|[12][0-9]|3[01])[- /.](19|20)\d\d$ Dates in
mm/dd/yy format

E \b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b Email address
N ([0-9]+[,])*[0-9]([.][0-9]+)? English number

Number detection is subject to regular expression matching with the observation that English,
French, or Romanian for that matter, all require different regex formulae and therefore detecting
or sending as parameter the language of the text is crucial. Emoticon and other Twitter-related
tokens are examined on the site http://sentiment.christopherpotts.net/tokenizing.html. It is
considered that emoticons are not only extremely common in social media but they are reliable
carriers of sentiment and therefore important. Usually at this stage there are no class ambiguities
with one noticeable exception. Some roman numerals like li, ci, mi, vi, vii are also valid
Romanian words. In these particular cases Cwei = {RN, W}. A similar, ambiguous situation for
English should arise from tokens like 2 and 4 which are usually numbers but in informal texts
these tokens can stand for the words to and for. Obviously this is an ambiguous tokenization that
can only be solved by invoking the semantic analysis algorithm mentioned in the fifth stage of the
algorithm and described in details in section 4.

3.4. Word class tokens refinements. Periods, hyphens, apostrophes

In the third stage (Figure 10) the tokenizer analyses all the word entities assigned to the generic
class W that contains periods (.), hyphens (-) and apostrophes (‘). Periods are sure signs of
abbreviations. Hyphens and apostrophes are markers for clitics, and multi-word tokens. The
separator role of hyphens inside the tokens is determined using lists and table-lookup strategies.

Figure 10. TORO tokenization algorithm – stage III – periods and hyphens

This process is also prone to generate ambiguities if multiple ways to expand the abbreviations
are possible. In addition another ambiguity is presented by the last word in a period ending
sentence: is it just a normal word or is it also an abbreviation? Examples of abbreviations are
shown in Table 4, and we notice here that the abbreviation abr. stands for both abreviere noun

for each wei from L1j
1. we apply all detection rules for dates, email addresses, IP addresses, numbers, etc and obtain a
set of classes Cwei
2. if Cwei= Ø then Cwei = {W}
3. if Card(Cwei)=1 and Cwei ≠ {W} the token is final.
4. word entities are copied in L2j.
end for

for each wei from L2j in class W and not final:
1. if wei ends with period then processAbbrev(wei) and
2. if wei contains hyphens or apostroph processHyphen(wei)
3. expanded abbreviations and hyphenated word entities are copied to L3j.
end for

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

29

and abreviat adjective generating expansion ambiguity. Examples of Romanian clitics are listed
in Table 5 and multi-word tokens are presented in Table 6.

Table 4. Romanian abbreviation expansion list

Abbreviation Expansion English translation

Adj. Adjectiv Adjective
Anat. Anatomie Anatomy
Cont. Contabilitate Accountancy
Min. Mineralogie, minerit Mineralogy, mining

Beside the list lookup strategy for abbreviation expansion when a certain presumable abbreviation
is not found in the list the algorithm employs a lookup in the MRDEX lexicon and returns a
ranked list with possible candidate words for the given abbreviation.

Table 5. Common Romanian clitics

Clitic particle Description

într- Preposition in prefix position in într-un (in)
le- Pronoun in prefix position in le-ar or le-a (vb. construct)
ne- Pronoun in prefix position in ne-ar or ne-a (vb. construct)
s- Pronoun in prefix position in s-ar or s-a (vb. construct)
-o Pronoun in suffix position in într-o, or dintr-o (in)
-mi Pronoun in prefix position in să-mi (vb. construct)

According to the Romanian orthography the hyphen (Romanian cratima) plays a complex role,
one of them being a separator in compound words not completely welded.

Table 6. Romanian multi-word tokens

Compound words English translation

câine-lup Wolfhound, wolf dog
dus-întors round trip
floarea-soarelui sunflower
româno-american Romanian-American
nou-născut new-born

3.5. Word class tokens refinements. Capital letters, acronyms, named entities (NE)

In the fourth stage (Figure 11) the tokenizer analyses all the word entities that begin or are formed
entirely with capital letters. This category contains important classes like acronyms, named
entities (or NEs, e.g. name of persons, places, artifacts, etc.) and also presents an interesting
ambiguity problem: is the first word in the sentence (starting with a capital letter) an ordinary
word or is it a NE?

Figure 11. TORO tokenization algorithm – stage IV – acronyms and NEs

for each wei from L3j in class W and not final:
1. if wei contains all caps then processAcronyms(wei). Identified acronyms are marked final.
2. if wei contains only the first letter cap. processNE(wei,i)
3. word entities are copied to L4j.
end for

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

30

Acronyms fall in two categories. A first category contains English-origin internationally
recognized acronyms used as such in every language (e.g. CPU, RAM, CD, DVD, ADA). A
second category of acronyms are language and country specific. These types of acronyms should
provide a translation. In both cases acronyms are just identified and pointers to the list should be
copied in L4j. Examples of acronyms are listed in Table 7.

Table 7. Acronyms encountered in Romanian texts

Acronym Description

CPU Central Processing Unit
CJ Cluj County (Romania)
SRI, S.R.I. Romanian Information Service
UTCN, U.T.C.N. Technical University of Cluj-Napoca, Romania

Acronyms are highly ambiguous (like shown in section 2.2.3 Table 1) many of them designating
tens of different concepts. General ontology domain information can be attached to acronyms but
this is useful only when there are domain indicators for the tokenized text as well. Named Entity
recognition (NER), a task specific to information retrieval domain is solved in TORO through
lookup strategies. A sample list of NEs for Romanian space is shown in Table 8.

Table 8. Romanian named entities from Romanian Constitution corpus

NE Description

1 Decembrie December 1st , Romanian national day
Avocatul Poporului Ombudsman
București Bucharest, Romania’s Capital
Camera Deputaților Chamber of Deputies
Consiliul Superior al Magistraturii The Superior Council of Magistracy
Consiliul Suprem de Apărare a Țării Supreme Council of National Defence
Curtea Supremă de Justiție Supreme Court

TORO uses a list of over ten thousands named entities including names of persons, geographical
places, names of organizations, famous literary and artistic work, etc. all related with the
Romanian cultural space. A phenomenon typical for NER is token formation based on the
maximum expansion principle. Let’s examine the construct from Figure 12:

Figure 12. Romanian NE construct Curtea Suprema de Justiție a României

This named entity word formation can generate multiple sensible tokenizations like the ones
shown in Figure 13.

Figure 13. Possible tokenizations for Romanian NE Curtea Suprema de Justiție a României
From all the possible tokenizations only the last one is really the one we want. The maximum

tokenization principle calls for creating the token with the maximum number of words while the

Curtea Supremă de Justiție a României

Supreme Court of Romania (Eng.)

<Curtea Supremă><de><Justiție><a><României>

<Curtea Supremă de Justiție><a><României>

<Curtea Supremă de Justiție a României>

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

31

construction refers to one single named entity. The lookup strategy starts looking for the whole
chain of proper names and dropping gradually words from right to left until a match is found.

3.6. Word class tokens processing. Looking for multi-word expressions

In the fifth stage (Figure 14) the tokenizer analyses all the word entities that are not final and tries
to identify multi-word expressions with database-lookup strategies. A new list L5 is compiled
containing multi-word expressions assigned to class M. Some rules for detecting these
expressions include the equivalence with one-word synonym (câte o dată , synonym uneori engl.
sometime, de bunăvoie, synonym benevol engl. voluntarily), numerals (douăzeci și unu = 21) or
in compound words constructions where the sense is somehow different from the sense derived
from constituents (Anul Nou engl. New Year, Evul Mediu engl. Middle Ages).

Figure 14. TORO tokenization algorithm – stage V – Looking for multi-word expressions

For each detection of a multi-word expression a new tokenization is created and such a new
ambiguity is inserted in L5 list. The last stage (VI) of the tokenization process is reserved for the
disambiguation process described in details in the next section.

4. THE TOKENIZATION CLASS DISAMBIGUATION MODULE

The ambiguities discovered so far by the tokenization process are forwarded for resolution to the
Tokenization Class Disambiguation procedure that provides deep semantic analysis for this
purpose. One of the most employed methods when semantic is involved is based on the Lesk
algorithm which keeps the resolution paradigm in a monolingual context. In this paper we
describe method based on parallel texts processing. It has been mentioned that a presumption for
this algorithm is to have a parallel text. The idea of this algorithm presented in Figure 15 is to use
lexicon resources (MRDEX for Romanian text), off-line or on-line translation services and
eventually the Ro-WordNet service (hosted by RACAI institute) to create translated tokenizations
of the ambiguous situations and then detect from this set the one that matches the tokenization of
the target parallel segment. The MRDEX lexicon is a resource created and maintained in-house
and is based initially upon the DEX dictionary offered in a GNU-GPL license on the DEX-
ONLINE website (http://dexonline.ro).

Figure 15. TORO tokenization algorithm – stage VI – Class Disambiguation Module

for each wei from L4j in class W and not final:
1. processMultiWorddExpression(wei)
2. multi-word expressions found and left word entities are copied to L5j.
end for

if segment Sj contains ambiguous tokenizations then
1. extract corresponding segment Tj from the parallel text:
2. for each weik that is ambiguous (there are k alternatives)

2.1 get the lemma and POS from MRDEX: wiek= getMRDEXInfo(weik)
2.2 translate lemma using on-line translation services (Google)/RACAIWdNet:
twek=getTranslatedLemma(wiek)
2.3 tokenize the target segment Tj using RACAItoken on-line service.
2.4 scan through twek tokens and identify the one that is also in Tj tokenization.
end for

end if

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

32

The MRDEX (Machine Readable DEX) lexicon contains a changed table structure; it contains
POS tagging information for each word-form using a tagset aligned to the MULTEXT standard
for Romanian. The MUTEXT project initiative is presented in [42], and the POS tagset
specifications are described in [43] and [44].We used in this algorithm the linguistic services
hosted on the web services portal of the RACAI site - www.racai.ro. The web services are also
described in [41]. We wish to thank this institution for the access to these services. In essence
these services are: tokenization services for both Romanian and English texts, Romanian
WordNet services, and Ro-En translation services. We have also experimented with other off-line
and on-line translation services including Google Translate and Microsoft Bing. Let us reconsider
a few ambiguities mentioned so far in this paper and see how the algorithm handles them. We
have mentioned at the end of the paragraph 3.3 that a word like li is both a roman numeral (51)
tokenized at class RN and also pronoun tokenized at class W. In case li has the sense of roman
numeral the parallel text would also contain the word li which is not translated. In case when the
li word is a pronoun the parallel text should contain one of the translated tokens for li: they, their.
An example of text containing the word li is extracted from the 1991 Romanian Constitution
document published also in English and French on the Romanian Deputies’ Chamber website
hosted on (www.cdep.ro) and shown in Table 9.

Table 9. Text disambiguation example – Roman numeral or pronoun?

No Source Text with ambiguous token li

1 Romanian Constitution - Article 110,
paragraph 4, Romanian text

Dacă li se solicită prezența , participarea lor
este obligatorie .

2 Romanian Constitution - Article 110,
paragraph 4, English text

If they are requested to be present ,
participation shall be compulsory .

3 Romanian Constitution - Article 110,
paragraph 4, Microsoft Bing translation

If you are requesting their presence,
participation is mandatory.

4 Romanian Constitution - Article 110,
paragraph 4, Google Translate

If requested, and their presence is mandatory.

The Romanian text is presented in the first row. The English parallel text shown in the second
row contains the word they that solves the ambiguity to class W. It is here the moment to
comment on the parallel text existence presumption. We know that this is hardly the case. What
rows three and four from Table 9 above show is the fact that for tokenization purposes we can
rely on the translation output given by these first-class on-line translation services: Bing and
Google Translate. Although both translations are not accurate they are good enough to serve the
purpose. Let’s illustrate this assumption with one more example. Another ambiguous situation is
presented in the Romanian text shown in Table 10 first row. Here the word Continental is
capitalized because it starts the sentence. This word can be tokenized as both normal adjective
word to class W but can also be interpreted as the airline company Continental and tokenized at
class NE (named entity). By invoking the Google Translate services we got the word Continental
in a context that matches semantically the named entity which again solves the ambiguity to class
NE.

Table 10. Text disambiguation example – Capitalized word – Normal word or Named entity?

No Source Text with ambiguous token Continental

1 Romanian text - informal Continental și-a amânat zborurile.
2 Google Translate Continental has delayed flights.

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

33

A comparison between the TORO tokenizer and the similar service offered by RACAI is difficult
to produce due to differences in NE lists used by the tokenizers. However on the Romanian
Constitution corpus containing 10219 tokens, tokenized by hand and used like Gold standard for
TORO development we measured a precision of 98.87% for TORO and below 80% for RACAI
web service.

5. ROMANIAN-ENGLISH MACHINE TRANSLATION QUALITY EVALUATION

CRITERIA BASED ON TORO

The TORO algorithm presented in this paper suggests itself as a mechanism to be used in a setup
for comparing machine translation services (MT) – translation quality. From the very beginning
we must specify that this comparison is valid only for the Romanian-English language pair. The
algorithm is presented in Figure 16.

Figure 16. TORO – based setup for machine-translation quality evaluation

There are two levels of assessment for on-line translation services. The first and direct level is
when the translation forces the disambiguation mechanism to create a different tokenization class
for the ambiguous word/token than the class found in the gold standard file. A good example of
this situation is related with interpreting roman numerals vs. pronouns as shown already in Table
9. Situation that might generate different tokenization.

A second level where the translation services may generate differences for the tokenization
process is when the services return the same word class but with different POS or word sense
information that is further needed to disambiguate other tokens in the sentence. The following
examples analyse several homonymy situations encountered in Romanian language. A first
example takes into account the homonymy presented by the Romanian word broască that has
multiple meanings like frog/turtle or lock. The Romanian text in Table 11 line 1 is rather
ambiguous and both frog and lock can be valid interpretations if no further context is provided.
Both on-line services Bing and Google Translate had no doubts and translated to frog. If however
we want to point that the lock was broken in line 4, only Google feels the different sense of the
word broască and changes the translation to the correct one.

Table 11. Text disambiguation example based on homonymy of word broască/frog vs. lock

No Source Text with ambiguous word broască

1 Romanian text El văzu broasca și plecă.
2 Bing translation He saw turtle and went away.
3 Google Translate He saw the frog and left.
4 Romanian text El văzu broasca stricată și plecă.
5 Bing translation He saw the wanton and frog went away.
6 Google Translate He saw the broken lock and left.

1. A text T containing as many ambiguities as possible is first compiled for Romanian language.
2. This text is hand-tokenized to become the Gold standard G.
3. Then TORO is used for tokenization connected to the machine translation A service to handle

ambiguities. The output is MTA.
4. Calculate precision, recall, F1 metrics comparing MTA with G and build a global index IA(P,R,F).
5. Connect TORO to the machine translation B and repeat steps 3 and 4.
6. Compare Indexes IA(P,R,F) and IB(P,R,F).

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

34

Another interesting homonymy situation that can generate ultimately differences in tokenization
class and therefore in the precision index is shown in Table 12, where the ambiguous word nouă

has both the sense of new (adjective-word class) and nine (numeral- number tokenization class).

Table 12. Text disambiguation example based on homonymy of word nouă/new vs.nine

No Source Text with ambiguous token nouă

1 Romanian text Du-te la poarta nouă.
2 Bing translation Go to the new gate.
3 Google Translate Go to the new gate.
4 Romanian text Du-te la poarta nouă, nu la zece.
5 Bing translation Go to the new gate, not ten.
6 Google Translate Go to gate nine, not ten.

The Romanian text is ambiguous but both translation services return the translation based on the
new meaning. In Line 4 though the text emphasized the sense of nine vs. ten and this situation has
only been captured by the Google Translation. In the end if we decide to normalize nine to a
number class token, Google Translation precision index would be higher. Based on a limited
number of samples we cannot draw a clear conclusion but we showed the way in which TORO
can be used to generate indexes for the translation services. The real issue we see with this
approach is the fact that in order to draw a meaningful conclusion we need to build a large-
enough and equilibrated corpus to act as Gold standard.

6. CONCLUSION AND FUTURE WORKS

In this paper we have presented the TORO tokenizer build for tokenizing Romanian texts. This
tokenizer is robust, has a very high precision and can provide quality tokenization for next text
processing steps in the pipeline. This tokenizer uses token class concepts, uses semantics and
parallel texts to solve the tokenization ambiguities. In the absence of these parallel resources we
proved that by invoking first-class on-line translation services for the disambiguation task we get
almost the same information like the one retrieved from the parallel text. In addition we provided
a setup based on TORO that can serve for quality translation comparison between various
machine translation systems or services. Future work is required to test the impact of missing
diacritics in the source text, and also for including the sentence boundary detection in the
algorithm. Another area for continuous improvements with direct impact in the tokenizer’s
robustness regards feeding the tokenizer with a larger variety of text inputs mostly from the social
media resources and continuously expanding the Named Entities, abbreviations and the acronyms
lists. The experiments presented in this paper may be carried out for English-Romanian language-
pair direction as well and based upon the experimental results using the on-line MT services
(instead of parallel text resources) additional MT translation quality indexes can be produced.

REFERENCES

[1] Webster, J.J. & Kit, C., “Tokenization as the initial phase in NLP”, University of Trier, volume 4, pp.
1106-1110, 1992.

[2] Jurafsky, D., Martin H. J. 2009, Speech and Language Processing, Second Edition, Pearson Education
International, Upper Saddle River, New Jersey.

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

35

[3]Grefenstette, G. & P. Tapanainen (1994). “What is a word, what is a sentence?” In Proceedings of
the 3rd International Conference on Computational Lexicography (COMPLEX-94). pp. 79-87.

[4] Read, J., R. Dridan, S. Oepen, and L. J. Solberg (2012). “Sentence Boundary Detection: A Long
Solved Problem?” The 24th International Conference on Computational Linguistics (Coling 2012).
India.

[5] Palmer, D. D. (2000). “Tokenisation and Sentence Segmentation”. In R. Dale, H. Moisl & H. Somers
(eds.), Handbook of Natural Language Processing, New York: Marcel Dekker, pp. 11–35.

[6] Lemnitzer, L. Tokenization, Seminar für Sprachwissenschaft, Eberhard Karls Universität
 Tübingen.

[7] Habert, B., Adda, G., Adda-Decker, M., Boula de Marëuil, P., Ferrari,S., Ferret, O., Illouz, G.,
Paroubek, P. (1998) Towards Tokenization Evaluation Proceedings of the First International
Conference on Language Resources and Evaluation (LREC) Granada, May 1998.

[8] Fox, C., “Lexical analysis and stoplists”, pp. 102-130, 1992.

[9] Hassler, G. Fliedl, “Text Preparation through Extended Tokenization”, In Data Mining VII: Data,
Text and Web Mining and Their Business Applications.Volume 37.WIT Press/Computational
Mechanics Publications;Zanasi, A and Brebbia, CA and Ebecken, NFF 2006:13-21.

[10] Guo, J., “Critical tokenization and its properties” In Computational Linguistics, 23(4), pp. 569-596,
1997.

[11] Guo, J., “Longest Tokenization” In Computational Linguistics and Chinese Language Processing,
2(2), pp. 25-46, 1997.

[12] Guo, J., “One tokenization per source”. In Proceedings of the Thirty-Sixth Annual Meeting of the
Association for Computational Linguistics and Seventeenth International Conference on
Computational Linguistics, 2(2), pp. 457-463, 1998.

[13] Dădârlat V., Zubac M., A Semantic Approach to Automatic Diacritics Restoration, In ACAM
Scientific Journal Volume 20/2, 2011.

[14] Francis, W.N. and Kucera, H. (1982). Frequency Analysis of English Usage. Houghton Mifflin,
Boston.

[15] Sampson, G. R., English for the Computer. Oxford University Press, 1995.

[16] Pakhomov, S., Pedersen, T., Chute, CG. Abbreviation and acronym disambiguation in clinical
discourse. AMIA Annu Symp Proc. 2005:589–93.

[17] Mikheev, A., Periods, Capitalized Words, etc. in Computational Linguistics, 1999, vol 28, pp. 289-
318.

[18] Evang, K., Basile, V., Chrupała, G., and Bos, J. (2013): Elephant: Sequence Labeling for Word and
Sentence Segmentation. Proceedings of the EMNLP 2013: Conference on Empirical Methods in
Natural Language Processing, Seattle, United States (unpublished).

[19] H. Thompson and D. McKelvie. 1997. Hyperlink semantics for standoff markup of read-only
documents. In Proceedings of SGML-EU-1997.

[20] Mikheev, A., Text segmentation. In The Oxford Handbook of Computational Linguistics, Ed. Mitkov
R., Oxford University Press, 2009.

[21] J. Carletta, J. Kilgour, T. O’Donnell, S. Evert, and H. Voormann. 2003. The NITE Object Model
Library for Handling Structured Linguistic Annotation on Multimodal Data Sets. In Proceedings of
3rd Workshop on NLP andXML, NLPXML-2003.

[22] H. Cunningham, D.Maynard, K. Bontcheva, and V. Tablan. 2002. GATE: A Framework and
Graphical Development Environment for Robust NLP Tools and Applications. In Proceedings of the
40th AnniversaryMeeting of the Association for Computational Linguistics (ACL’02), Philadelphia.

[23] A. Frank, M. Becker, B. Crysmann, B. Kiefer, and U. Sch¨afer. 2003. Integrated shallow and deep
parsing: TopP meets HPSG. In Proceedings of ACL-2003, Sapporo, Japan.

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

36

[24] Waldron,B., Copestake, A., 2006 - A Standoff Annotation Interface between DELPHIN Components.
The fifth workshop on NLP and XML: Multi-dimensional Markup in Natural Language Processing
(NLPXML-2006, 2006).

[25] Waldron, B., Copestake, A., Schäfer, U., Kiefer, B. (2006). Preprocessing and tokenisation standards
in DELPH-IN tools. Proceedings of the 5th International Conference on Language Resources and
Evaluation LREC-2006 (pp. 2263 – 2268). Genoa, Italy.

[26] Ide N., Romary, L. Encoding Syntactic Annotation in Natural Language Engineering, Volume 10
Issue 3-4, September 2004, Pages 211 – 225, Cambridge University Press New York, NY, USA.

[27] Ide N., Bonhomme, P., Romary, L. (2000) XCES: An XML-based Encoding Standard for Linguistic
Corpora, Proceedings of the Second International Language Resources and Evaluation Conference.
Paris: European Language Resources Association , 2000.

[28] Freese, M., Heid, U., Emele M. Enhancing XCES to xComForT - An Extensible Modular
Architecture for the Annotation and Manipulation of Text Resources. 2003 Proceedings of the 3rd
Workshop on NLP and XML, ECAL 2003, Budapest Hungary, April 2003.

[29] Kit, C., Chan, H.T., Liu, X. Encoding Hierarchical Bilingual Texts of Hong Kong Laws with XCES.
Proceedings of The First International Conference and Global Interoperability for Language
Resources, ICGL 2008 Hong Kong.

[30] Charniak, E., & Johnson, M. (2005). Coarse-to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (pp. 173–180). Ann Arbor, USA.

[31] Dridan, R., Oepen, S. 2012, Tokenization: Returning to a Long Solved Problem. A Survey,
Contrastive Experiment, Recommendations, and Toolkit. Jeju, In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) pages 378–382,
Jeju Island, Korea. Association for Computational Linguistics.

[32] Marcus, M.P., Santorini, B., and Marcinkiewicz, M. A. (1993), Building a large an annotated corpus
of English: The Penn treebank, Computational Linguistics, 19(2), 313-330.

[33] Kim, J.D., Ohta, T., Teteisi, Y., Tsujii, J. GENIA Corpus Manual Encoding schemes for the corpus
and annotation, Date of Release: 15 November 2006 , © Copyright 2006 Tsujiilab, University of
Tokyo.

[34] Giguet, E., Multilingual Sentence Categorization according to Language In Proceedings of the
European Chapter of the Association for Computational Linguistics SIGDAT Workshop “From text
to tags : Issues in Multilingual Language Analysis”, Dublin, 1995.

[35] Giguet, E.The Stakes of multilinguality: Multilingual Text Tokenization in Natural Language
Diagnosis. Proceedings of the 4th Pacific Rim International Conference on Artificial Intelligence
Workshop “Future Issues for Multilingual Text Processing”, Cairns, Australia, 1996.

[36] Silberztein, M., (1993). Dictionnaires ´electroniques et analyse automatique de textes. Le syst`eme
INTEX. Paris:Masson.

[37] Paroubek, P., Adda, G., Mariani, J. & Rajman, M. (1997). Les procédures de mesure automatique de
l’action GRACE pour l’ évaluation des assignateurs de Parties du Discours pour le Français. In Actes
Journ´ees Scientifiques et Techniques du R´eseau Francophone de l’Ing´eni´erie de la Langue de
l’AUPELF-UREF (pp. 245–252). Avignon.

[38] Armstrong, S. 1996, Multext: Multilingual Text Tools and Corpora. In Lexikon und Text, pages 107-
119, 1996.

[39] Ion, R., 2007. Word Sense Disambiguation Methods Applied to English and Romanian. PhD thesis
(in Romanian). Romanian Academy, Bucharest.

[40] Frunza, O; Inkpen, D. and Nadeau, D. (2005) A Text Processing Tool for the Romanian Language.
Proc. of the EuroLAN 2005 Workshop on Cross-Language Knowledge Induction.

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.6, December 2013

37

[41] D. Tufiș, R. Ion, A. Ceaușu, D. Ștefănescu, “RACAI’s Linguistic Web Services”, in Proceedings of
the 6th Language Resources and Evaluation Conference – LREC 2008, Marrakech, Morocco, May
2008, ELRA.

[42] Dimitrova, L., Erjavec T., Ide, N., Kaalep, H. J., Oravetz, C., Petkevic, V., Tufiș, D. Multext-East:
Overview of the project. În Proceedings of the ALLC-ACH 98 Conference, Debrecen, Hungary, July
5-10 1998.

[43] Erjavec, T. MULTEXT-East Version 3: Multilingual Morphosyntactic Specifications, Lexicons and
Corpora. In Proceedings of the Fourth International Conference on Language Resources and
Evaluation, LREC 04, Lisbon, Portugal, 2004.

[44] Tufiș, D., Barbu, A. M. Specifications and Notation for MULTEXT-East Lexicon Encoding, Chapter
5, 2001, Multext-East, Concede, TELRI EU projects.

Authors

Marius Zubac (b. June 13, 1957) received his M. Sc. in Electrical Engineering (1982) from
Technical University of Cluj-Napoca, Romania. Now he is a researcher and PhD student
within the Computer Science Department of the Automation and Computers Faculty,
Technical University of Cluj-Napoca. His current research interests include modelling of
complex technical processes modelling and also natural language processing (NLP). He has
authored two books, more than 10 papers, and designed complex software systems both in Romania and
Canada.

Vasile-Teodor Dădârlat (b. January 13, 1955) received his M.Sc. in Computer Science
(1980) from „Politehnica” University Bucharest and PhD in Computer Science (1995) from
the Technical University of Cluj-Napoca. Now he is full professor of computer sciences
within the Computer Science Department of the Automation and Computers Faculty,
Technical University of Cluj-Napoca, Romania and director of associated „Computer
Networks” Research Lab. His current research interests include different aspects of communications
networks and protocols, digital circuits and e-learning systems. He has (co)authored 15 books and more
than 60 papers, has more than 40 conferences participation, and has served on the TPCs of major
conferences in networking and e-learning. Prof. Dadarlat has received a number of awards from the
Romanian academic and technical bodies.

