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ABSTRACT 
 
Tokenization is considered a solved problem when reduced to just word borders identification, punctuation 

and white spaces handling. Obtaining a high quality outcome from this process is essential for subsequent 

NLP piped processes (POS-tagging, WSD). In this paper we claim that to obtain this quality we need to use 

in the tokenization disambiguation process all linguistic, morphosyntactic, and semantic-level word-related 

information as necessary. We also claim that semantic disambiguation performs much better in a bilingual 

context than in a monolingual one. Then we prove that for the disambiguation purposes the bilingual text 

provided by high profile on-line machine translation services performs almost to the same level with 

human-originated parallel texts (Gold standard). Finally we claim that the tokenization algorithm 

incorporated in TORO can be used as a criterion for on-line machine translation services comparative 

quality assessment and we provide a setup for this purpose. 
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1. INTRODUCTION 
 
When faced with the task of text processing today’s systems need to implement robust procedures 
for input text acceptance no matter the final processing purpose ranging from information 
retrieval and sentiment analysis to machine translation applications. This acceptance criteria may 
include various filtering pre-processing of the text, however the vast majority of researchers [1], 
[2], [3] agree that tokenization should be the first step of the text processing pipe as shown in the 
Figure 1 preceding any lexical analysis step. 
 

 

 

 

 

 

 

 

Figure 1.  Text processing before linguistic analysis 

Raw Text 
 
 1. Pre-processing/Filtering 

2. Sentence Splitting 

3. Tokenization 

4. Further Lexical Analysis (POS-Tagging, Parsing) 
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The raw text that may very well originate from the internet in html/xml format is first extracted as 
plain text inside a process usually called filtering. Then the text is forwarded to the next process 
in the pipeline: the sentence splitting process. It is this process the one responsible with the 
sentence boundary detection. For issues related to this process good surveys are provided in [4] 
and [5]. In this paper however the focus is set on the word-level tokenization process. 
 

2. TOKENS AND TOKENIZATION REVISITED 

 
2.1. What is a token? What is tokenization? 

 
While everyone agrees that tokenization is necessary there is no perfect agreement on what a 
token is on one hand and what the tokenization process is or should be on the other hand and all 
these for good reasons. The paragraph title paraphrases a well-known seminal paper by 
Grefenstette and Tapanainen “What is a word? What is a sentence?” already mentioned in Section 
1 [3].  There the authors states that “the isolation of word-like units is called tokenization” and 
again in this process two types of tokens emerge: “one type corresponding to units whose 
character structure is recognizable, such as punctuation, numbers, dates, etc.; the other type being 
units which will undergo a morphological analysis”.   Many researchers start by analyzing the 
notion of word itself and in [1] Webster begins by looking at what is a word from a 
lexicographer’s perspective. While “words”, “collocations” and “multi-morpheme items” are 
significant from a lexicographer’s perspective, the author recognizes that the concept of token is 
important from a NLP or MT application perspective and observes that a token cannot be broken 
into smaller pieces for the purpose of these applications. The token is then a terminal node [1]. 
Palmer in [5] expresses the fact that “tokenization is the process of breaking up the sequence of 
characters in a text by locating word boundaries, the point where one word ends and another 
begins”. According to [6] there is “segmentation of a stream of signals, classification of these 
signals and relating those to linguistic units” vs. tokenization that refers to segmentation of a 
written text. In [7] the token is viewed from a linguistic status, a formal one and from an 
application-based perspective. While in [3] a certain morphological analysis is presumed to 
follow the tokenization process in [8] for instance, in lexical analysis processing for information 

retrieval applications “tokens are groups of characters with collective significance”. More than 
that, the ones that do not carry significance and belong to stoplists and negative-dictionaries are 
even discarded as non-tokens. Applications centered on word sense disambiguation (WSD), text-
mining, terminology extraction, (cross lingual) question-answering (QA), information retrieval, 
speech synthesis, etc. all have different needs than for instance machine translation (MT). To 
summarize an answer to the paragraph questions we conclude that each type of application 
defines in fact what a token is for its own purpose, and consequently adjusts the tokenization 
process definition as well. A practical consequence would be to build flexibility in the 
tokenization process in order to address different tokenization styles based upon the field of 
application. 
 
2.2. Why is tokenization hard? 

 
A simple answer to this question is: lots of issues to address, lots of ambiguities to solve. In 
addition more requirements shown in section 2.3.3 may complete the list. 
 
2.2.1. Multiple issues to address 

 
In [5] Palmer states that tokenization algorithms must address: language dependence, character-

set dependence, application-dependence and corpus dependence. Specifically at the language 
dependence level the author observes that detecting word boundaries and solving the possible 
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ambiguities in the process is language specific and further observes that written Chinese and 
Japanese although have adopted punctuation marks for end of sentences do not have word 
boundaries. Tokenization follows different types of algorithms studied in [10], [11] (maximum 
tokenization principle) and [12] (one tokenization per source). At the character-set dependence it 
is mentioned the character encoding problem and it is observed the large usage of the GB and 
Big-5 encoding for Chinese and notes that different rules must be in place for TIS620 versus 
UTF-8 character encoding for Thai. The automatic discovery of text language and encoding 
system is delicate, statistic-based and may occasionally point to a wrong language and/or 
character-set encoding. In our opinion a tokenizer should be given along with the text, both the 
language and the character-encoding set parameters.  Historically, in case of Romanian language 
many (on-line) texts have been generated using ISO 8859-2 (Latin 2) character encoding using ş 
and ţ (with cedilla). It was the wide adoption of the Unicode standard and the UTF-8/16 
encodings that paved the way for Romanian ș and ț (with comma) correct diacritics to come back 
to life again. Although correcting Romanian diacritics is trivial, the process of total recovery for 
most of the on-line texts must reach the semantic level of the processing as shown in [13]. 
Application dependence is explained in [5] by noticing that a token like I’m in English could be 
left as such or expanded to I and am, depending upon how these tokens would be analysed in the 
next processing step either a lexical or semantic analysis. Corpora dependence is related with the 
fact that tagged corpora used in many researches are tokenized in a certain way, for instance in [5] 
is mentioned that the word governor’s is considered one token in the Brown corpus [14] while is 
two tokens in the Susanne corpus [15]. This is a tokenization issue only if using further other 
toolkits aligned to specific corpora is a requirement. Unfortunately there is no unique standard for 
tokenization, tagging, etc., and depending upon applications various large used corpora act as de 
facto standards. Ambiguities come in many flavours. There are punctuation ambiguities, special 
characters ambiguities and the ones generated by the words and expressions themselves. Another 
way to look at ambiguities is to recognize the “good-old/classical” ones versus the “new wave”. 
 
2.2.2. “Good-old/classical” ambiguities. 
 
Punctuation related ambiguities. From a linguistic perspective one can define three alphabets 
[6]: a token alphabet, a punctuation alphabet and a delimiter alphabet. The main issue related with 
this approach is that these three alphabets are overlapping. The rule of thumb for tokenizing 
punctuation is to treat them as separate tokens. Palmer [5] observes that are many cases however 
when punctuation should be “attached” to another token. The author observes that punctuation is 
language specific and gives examples for English. In this paper a series of examples for 
Romanian will be also given to further illustrate the language specific treatment of punctuation. 
Almost always the blank space is a delimiter, but there are notable exceptions where the splitting 
by space is usually performed but not desired: in the multi-word expressions like in spite of that 
should count for a single token. Other noticeable situations where space should not be considered 
delimiter for tokenization, according to [6] are: German large numbers grouping digits delimiter, 
phone/fax prefixes, etc. All these situations can be detected and fixed by means of regular 
expressions-based rule processing. The hyphen (-) is almost always part of the (word) token 
alphabet [6] and is not to be confused with the dash character, although the more informal the text 
(like blogs, chats) the more chances for confusion. This character plays an essential role in multi-

part words (see the appropriate paragraph) in which case splitting the multi-part word should not 
be desired but also in building grammatical structures like in French e.g. va-t-il,  celui-ci or in 
Romanian, e.g. ne-am dus, v-ați adus, maică-sa, where splitting is necessary for tokenization. 
Other undesired splitting on hyphen occurs in number ranges, phone/fax numbers, calendar dates 
where regular expressions may help. Another source of confusion and ambiguity is generated by 
the fact that dashes are sometimes used instead of hyphens. The comma is usually a delimiter [6] 
except in German and American numerical expressions where it is part of the token. This 
situation can be handled with regular expressions. The period (.) character beside the important 
role as sentence delimiter (full stop) and as an abbreviation marker may be can be encountered in 
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many other constructs like name initial, email and internet addresses, dates, etc. where regular 
expressions matching techniques can be employed. It can be ambiguous (along with comma) in 
numerical expressions, reason why detecting/passing the language indicator is crucial. The 
apostrophe is a word delimiter that beside the Saxon genitive that can be usually recognized and 
expanded, also serves for contractions like I’m, he’s, it’s and in forming some plurals like in 
I.D.’s or 1980’s [5].  In general contractions can be detected using table-lookup or regular 
expressions-based strategies but sometimes reconstructing the full constituents may be 
ambiguous. For example he’s may be expanded to he is or he has or l’ can be either le or la in 
French. In our vision reconstruction is necessary (maybe to just disambiguate other tokens) even 
if deeper analysis is necessary. 
 
Word related ambiguities. This category of ambiguities concerns abbreviations, acronyms, 
named entities, multi-part words and multi-word expressions. In most of the cases (as well in 
Romanian) abbreviations are sequence of characters ended with a period.  Recognizing and 
eventually expanding the abbreviations is essential for tokenization and look-up tables and lists 
based strategies may obviously help, however these techniques are not sufficient for some reasons 
like: abbreviations are “productive” [5]. There will often be “new”, out-of-the-list abbreviations 
not detected by the tokenizer; they may come without period character like in Mass for 
Massachusetts (cited in [5]); the text will occasionally contain abbreviations from other 
languages. Other type of abbreviation ambiguities may arise in the abbreviation expansion 
process (e.g. should be St. expanded to Saint, Street or State - example from [5]). The most 
important abbreviation detection ambiguous situation may arise in cases where the abbreviated 
word is also the last word in the sentence. This type of situation is frequent and in [3] is stated 
that in the Brown corpus there are 48885 sentences and 3490 contains at least one non-terminal 
period (full-stop).  In [3] the authors experiment with various filtering and both lexicon and non-
lexicon based strategies to detect true abbreviations in a context where the text is not sentence-
level segmented and reports a success of over 99.7% on the Brown corpus. In many of the 
situation shown above cannot be solved at this level and a deeper semantic analysis is required. 
Acronyms should be tokenized as such, without expansion, for both text and MT processing 
purposes. The discussion starts though when other tokens need to be disambiguated and the actual 
acronym meaning is required. In Table 1 are listed a few ambiguous acronyms and sometime 
when there are more meanings in the same semantic domain choosing the right one from the list 
is not trivial. 

Table 1.  Ambiguous acronyms. 
 

Acronym Description 

AR Aspect Ratio or Assault Rifle 
CD Coefficient of Drag or Compact Disc 
HP Horsepower or Hewlett Packard 
PFD Personal Flotation Device (boating) or  Partial Fraction Decomposition (math) 

 
To complicate even more some acronyms can be also valid abbreviations written without the 
ending period or just full regular words. If expansion is necessary acronyms can be first detected 
with regular expressions but then should be deferred to list-lookup strategies. Abbreviations and 
acronyms disambiguation in medical discourse are studied in [16]. Named entities 
disambiguation faces the same type of ambiguity and treatment as acronyms. A much mediatized 
name Bush may refer according to Wikipedia to one of the two presidents of United States, other 
Bush persons, the family name, eight places form US, Canada, UK and NZ, four brand names, 
and the name can be found in other NER constructs in cinematography,  music and  sports 
domains. Is worthwhile mentioning that even in the same text president Bush can be mentioned in 
various forms like Bush, G. Bush, G.W. Bush, George Bush and to automatically detect that the 
words refer to the same person is not trivial. Eventually the tokenizer should perform here a text-
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normalization. The named-entity recognition subtask is also vital for information extraction. The 
main objective of this subtask is the identification of proper names and also their classification 
into semantic categories (person, organization, location, artefact, etc.). It is estimated that around 
20% of named entities occur in ambiguous positions. In relation with ambiguous situations 
concerning capitalized words and NERs in [17] is cited the example Daily, Mason and Partners 

lost their court case, where it is clear that Daily, Mason and Partners is the name of a company. 
However in Unfortunately, Mason and Partners lost their court case, the name of the company 
does not include the word Unfortunately, but the word Daily is just as common a word as 
Unfortunately [17]. In [5] the author observes that the process of deriving a new semantic or 
grammatical meaning from a group of words called multi-part words is specific to many written 
languages. This process may imply completely agglutinating the constituents like in Turkish, 
Swahili, or most Altaic languages and common to German (a non-agglutinative language) as well 
(e.g. Nichtraucher, non-smoker) or just grouping the constituents and separating them with 
hyphens in many European languages including English (e.g end-of-line, New York-based), 
French, or Romanian (e.g. bine-crescut (Eng. well behaved), floarea-soarelui (Eng. sunflower). If 
the tokenization algorithm separates the multi-part words by hyphens (as it normally should) 
these tokens must be reconstructed back using a table-lookup strategy. Beside multi-part words 
another multi word compound formation separated by spaces is the multi-word expression that 
although is made of multiple words has a precise meaning sometimes replaceable by a synonym 
and should be treated like one single token, In [5] are given English examples like in spite of 
which is equivalent with despite and expressions borrowed from other languages like au pair, de 

facto, joie de vivre which should again treated as a single token. In this category also belong dates 
that have the month expressed in a word format, dates having the day of the week, some 
numerical expressions (e.g. $2 million), etc. In this case the reconstruction of the token may 
imply a combination of regular expression-based rules and table-lookup strategies and may prove 
to be rather complex. Detecting a multi-word token raises a certain number of technical 
problems. While continuous multi-word tokens can be detected with a table-look-up matching 
algorithm in case of discontinuous multi-word token e.g. keep please in mind or keep for instance 
in mind  that have a generic form of keep [V/NP] in mind algorithms must incorporate syntactic 
analysis, partial parsing and even more sophisticated knowledge processing according to [1]. 
 
2.2.3. The “new wave” ambiguities. 

 
Lately we have all witnessed the large expansion of social networks. Blogs account for a large 
quantity of written text that is of great interest to NLP applications like social intelligence, data-
mining, information retrieval and extraction, sentiment analysis to name just a few. A typical 
English blog is shown in Figure 2. 
 

 

 

 
Figure 2.  Non-standard English text extracted from a blog 

 
This text highlights some tokenization issues: special characters treatment: @, #, & or ♥; 
abbreviation detection and expansion issues related to tokens like U, 2; capitalization issue related 
to SOO PROUD; absence of apostrophe in contracted you’ve; grouping words to emphasize them 
neversaynever. 
 
The Romanian blog text shown below in Figure 3 contains in addition: lack of capitalization at 
the beginning of the sentence; total absence of Romanian diacritics; frequent presence in text of 
foreign words (mostly English) like link, or back. 
 

Great job @justinbieber! Were SOO PROUD of what youve accomplished! U taught us 2 
#neversaynever & you yourself should never give up either♥ 
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Figure 3.  Authentic post from http://www.blog.betforcash.ro/2007/08/analiza-partea1.html 

 
All these issues present more challenges for the tokenization process. In the new types of text 
presented above there are new sources of ambiguities, the most important being generated by lack 
of diacritics in Romanian texts.  
 
2.3. Tokenization - a sense of direction 

 
Tokenization is not a done deal yet, especially when concerned with performance, robustness, 
complex annotations, solving ambiguities in languages other than English. In [7] there are 
mentioned two factors that explain the renewed interest in tokenization: first the scale of NLP 
application has changed. “Toy grammars and lexica belong to the past”.  Very large corpora are 
constantly assembled and the web is processed constantly for indexing purposes. The other factor 
mentioned is the recently interest in glass-box (as opposed to black-box approaches) evaluation of 
text ‘pre-processing’ tasks, tokenization included. Using the elephant in the living room metaphor 
[18] the author states that tokenization “is a problem that is impossible to overlook whenever new 
raw datasets need to be processed or when tokenization conventions are reconsidered” and 
stresses that errors occurring early in the NLP pipeline affect further analysis negatively. While in 
case of Standard English tokenizers usually provide good quality output it is still much to be done 
in the case of social media text analysis. If for instance we try to pass the English blog text for 
translation to Romanian using the Google Translate on-line translation services 
(http://translate.google.com/) the result is shown in Figure 4. 
 
 

 

Figure 4.  Translation in Romanian of the text presented in Figure 2 using the Google Translate on-line 
services 

 
Here the tokenizer performed the splitting by the book but failed to reconstruct and hence 
interpret correctly the tokens for translation purposes (@ was left split from the twitter username, 
emphasized SOO was not replaced with so, U was not understood as you and 2 as to, 
neversaynever was left un-tokenized and unrecognized). Another observed trend is the move 
toward more complex and meaningful annotation schemes, recognizing some limitations in the 
PTB tokenization style. In this paper we propose a more complex annotation mechanism based on 
the concept of token class. 
 
2.3.1. The concept of token class 

 
While researchers recognized the variety of tokens encountered in the text we express the opinion 
that this fact has not been studied and exploited enough for the benefit of the tokenization 
process. We consider that the concept of token class is intuitive and comes in hand to solve many 
aspects of tokenization. Period, word and multi-word expression are all valid and intuitive 
tokenization classes. The task of tokenization can be further specified as being the process of 
splitting the sentence in meaningful tokens and assigning each token to a certain class. From an 
ambiguities solving perspective the concept of class holds benefits as well paving the way that 
makes the disambiguation process (no matter how complex) clear and manageable. If for instance 
the tokenizer recognizes that for instance the token li is a valid roman numeral (51) belonging to 
this class (roman numeral) and also a valid Romanian pronoun belonging to class word as well, 

cred ca GORAN va fi rescris, sincer ma gandesc si la factorul marketing, doresc sa-l trimit 
catorva situri mari pentru un link back. poate o fi cineva care imi va aprecia balariile. 

Mare de locuri de muncă @ justinbieber! Au fost SOO mândru de ceea ce le-ați realizat! U 
ne-a învățat 2 # neversaynever si te-ai nu ar trebui să renunțe, fie ♥ 
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the tokenizer should mark in annotations the token to both classes, and should recognize an 
ambiguity situation. The decision of handling the ambiguity ‘on the spot’ or deferring it to the 
text analysis pipeline is another matter. We will further analyse the token class concept for 
Romanian and propose an algorithm for handling class-based tokenization in section 3.3. 
 

2.3.2. Inline vs. stand-off annotations 

 
Annotations may be created inline (in the same file) as or can be standoff [19] generating a file 
with pointers to the tokens. In [20] is given an example of inline mark-up for tokenization, shown 
here in Figure 5 containing also class attributes information for words w, numbers n and 
punctuation p. 
 

 

 

Figure 5.  Sample of tokenized sentence reproduced from Mikeev [20] 
 

The space between words (�) in the initial text is preserved in between <W> xml elements. The 
standoff annotation is more complex, is always generated automatically, leaves the text intact 
(which may be very well a read-only source, or for security/copyright issues) and generates 
structures that may contain annotations in multiple layers that contain pointers to the original 
data. Standoff annotation has been successfully used in many projects like NITE [21], GATE 
[22], WHITEBOARD [23], DELPHIN [24, 25], XCES [26, 27] xComForT [28] or BLIS [29] for 
bilingual encoding. 
 
2.3.3. Tokenization design requirements 

 
Besides the obvious requirements for a tokenization algorithm of recognizing unambiguously 
tokens and sentence boundaries, here is an additional list of requirements for tokenization without 
claiming that we have exhausted them: text traceability; flexible text normalization; generating 
the tokenized output in XML format; inline vs. standoff annotation option; flexibility and 
trainability; aligned to popular corpora formats; logging; language detection; character-encoding 
handling/conversion; missing diacritics detection and restoration. It is often desirable (and most 
tokenizers implement this feature) for some text structures to be ‘normalized’ and as such to be 
changed. For instance the tokenizer from the Charniak & Johnson [30] parser makes 
modifications to the text lemmatizing expressions such as won’t as will and n’t. In [31] the author 
expresses the opinion that in this case mostly for inline annotation tokenizers it is critical to 
provide more than just an additional but full traceability from the token objects back to the raw 
text annotation and introduces the concept of characterization to express the character position 
links back to the source. It is important to have the tokenizer capable to work in three 
normalization contexts:  without normalization, with (forced) normalization, and with tokenizer-
driven text normalization, for each type of text normalization option (including abbreviation and 
acronym expansion, apostrophe marked genitive and marked contracted forms, etc.). Let’s notice 
here that abbreviations and acronyms expansion may cause ambiguities. Generating the 

tokenized output in XML format requirement has not acquired the deserved attention in the 
research community and unfortunately there is no standard for the tokenization process output by 
itself and in this situation the role of de facto standard has been taken by the Penn Treebank (or 
PTB) [32]. While the PTB has a rich set of tags for POS tagging and further syntax analysis at 
the tokenizer level itself the format is rather Spartan. The GENIA corpus and project [33] states 
that following the PTB tokenization scheme GENIA uses one XML tag for both words and 
punctuation marks. It should be clear that in order to support abbreviation expansion, traceability, 
information about tokenization rule applied or ambiguity situations to be transferred to the 
syntactical analysis level a more elaborated xml structure must be elaborated. Flexibility is a 

<W c=w>It</W>�<W c=w>was</W>�<W c=p>‘</W><W c=n>3</W><W 
c=p>’</W><W c=p>.</W> 
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requirement that concerns mostly rule-based tokenizer. It is important when faced with new texts 
to be able to quickly add new rules or change their execution. For statistical-based tokenizers this 
requirement is expressed by the trainability feature. Aligning the output format to popular 

corpora formats (but mostly with PTB) enables further processing to be performed with the 
corpora- related NLP toolkits. Although adding logging to the tokenization process may look like 
an unnecessary overhead, sometimes we might wonder about the tokenizer’s decisions in 
classifying the tokens or in choosing the disambiguation strategy. This detailed information 
should be logged in standoff annotation and should be used in for text tokenization analysis and in 
tokenization debugging and development. Language detection is an important issue in 
tokenization for two reasons. We need to understand the language context of the sentence to be 
able to extract the proper language-specific rules from the database and to point to the proper 
dictionaries/lists of abbreviations, acronyms, multi-part-words, etc. A second reason for language 
detection within a sentence context lies in the fact that both formal and informal may often 
contain expressions and words from other languages (like French or Latin) than the text language. 
Romanian blogs are filled with English words like shown in Figure 3. Issues related with Natural 

Language Diagnosis, and language identification are studied in [34] and [35]. Although 
character encoding detection and handling is an important issue for some languages and 
definitely is a valuable feature added to the tokenization process we need to say that this operation 
can also be seen as a pre-processing or pre-tokenization step and can be treated separately. For 
certain languages like French, German, Arabic or Romanian that all have diacritic characters in 
their alphabets the ability for tokenizers to recognize and restore the correct word with 

diacritics from the form without diacritics is important and not trivial. At least for Romanian the 
diacritic characters have semantic implications and their absence increases artificially the number 
of homographs on which the disambiguation analysis must be performed. Lately the social web is 
the major source of text without diacritics and this situation will not change any time soon. 
 
2.3.4. Tokenization algorithms, principles and trends 

 
From a practical side according to [1] there are two aspects of tokenizing: 1) automatic 
segmentation (using dictionaries for example) and 2) strategies for disambiguation. Automatic 
segmentation algorithms can be divided in two main classes: rule-based and statistical based 
usually on HMM models. Both these classes may use lexicon resources to correct and validate 
tokenization. Overview of tokenization algorithms is beyond the scope of this paper and as well is 
algorithms for un-segmented languages like Chinese. In [10] the author introduces critical 

tokenization a precise formal way to define and discover various types of ambiguities, following 
the principle of maximum tokenization, defines critical and hidden ambiguities (blueprint vs. blue 

print) and proves that the principle of maximum tokenization [11] would not be effective in 
resolving the critical ambiguity in tokenization. In [12] Guo reports on the principle of one 

tokenization per source that states that if a text contains more sentences having the same 
ambiguity this must be resolved in the same manner along the whole text. In [9] it is proposed a 
rule-based extended tokenization process that interprets and groups isolated tokens to create 
higher level tokens including all sorts of linguistic knowledge (e.g., grammar rules, dictionaries). 
We agree we this approach and believe that it is the tokenizer’s task to provide meaningful tokens 
and if needed even semantic analysis no matter how complex must be employed at this stage. In 
[17] the author claims a Document-Centered Approach that states that capitalized words and 
abbreviations occur at least once in an unambiguous context inside a document and that these 
values can be used further for the same tokens when these tokens appear in ambiguous contexts.  
 
2.3.5. Strategies for disambiguation 

 
Strategies for tokenization disambiguation can be grouped in two main categories: deferred and 
solved in situ. A first approach for handling complex ambiguities is to defer them to the 
downstream processes that will eventually solve them through lexical or syntactical analysis. An 
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example of inline treatment of ambiguities is cited from [7] where is shown that in the Intex 
system [36] these ambiguities are treated like linearized graphs in Figure 6. 
 
 

 
Figure 6.  Intex system inline tokenized senetence for “Luc a travaillé pour la Ministère de l’intérieur” [7] 

 
In [24] the author defines a lattice for token ambiguities representation in standoff annotation and 
promotes the idea of passing the ambiguities for downstream processing. Regarding ambiguities 
we hold the opinion that these must be solved in situ. At this point we are not thrilled to use 
statistics and give a final verdict but rather invoke a complex mechanism for semantic 

tokenization described later in this paper in section 4. 
 
2.3.5. Tokenizers evaluation 

 
There are two important aspects to this topic. One regards the case when a certain tokenization 
process is designed to serve later in a pipeline for a specific NLP application. In this case it is 
important to measure the progress in the tokenization development process. Usually in this case 
the tokenization process is regarded as a classification algorithm where various tokens must be 
assigned to tokenization classes as discussed above in 2.3.1. In this case we can use the precision, 
recall, F1-measure and coverage set of indicators. Precision (or accuracy) is defined as the 
percentage of tokens returned by the algorithm that occurred in the hand segmented text (the Gold 
standard) in the same position and having the same class as the corresponding hand segmented 
token (1). 
 

(1) P =       

Let us mention here that close related with precision is also the error rate defined by the 
percentage of incorrect assigned tokens from the total number of tokens offered by the tokenizer  
in (2). 

(2) Error rate = 1 – P 

Recall is the percentage of tokens and classes in the manually segmented text (the Gold standard) 
identified by the segmentation algorithm (3). 
 

(3) R =  

The F1-measure is the harmonic average of the measures (1) and (3) above, defined by the 
formula (4). 

(4) F1-measure =   

Also useful can be the coverage indicator (5) defined as the percentage of tokens generated by the 
tokenizer from the total number of tokens from the hand segmented text (the Gold standard). 
 

(5) C =  

From a methodological perspective a hand-segmented file/corpus is created and is set as a Gold 
standard file/corpus. This file is compared then with the tokenized file generated by the 
segmentation algorithm. An annotation guideline can be provided to the human annotator to bring 
consistency to the process. 
 

Luc a travaillé pour la [1 Ministère [2 de l’intérieur 2] 1] 
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A second aspect corresponds to the situation when multiple tokenizers are compared for the result 
of their output. In [7] it is shown the need for evaluation, and the difficulty of the endeavor. By 
analyzing 18 tokenizers within project GRACE [37] the significant discrepancies in the number 
of words and sentences detected is partially explained by the structural differences amongst 
tokenizers and also by the lack of standards starting with the concept of token. In [31] 
tokenization results from different tokenizers have been compared with a Gold tokenization but 
here the comparison has been facilitated by the common PTB output format standard that all 
tokenizers observed.  The author introduced yet another measure, the total Levenshtein distance 
calculated over the sentences tokenized differently than in the Gold standard. 
 

3. THE TORO TOKENIZER SYSTEM 

 
3.1. Overview and architecture 

 
The decision for building TORO (TOkenizer for ROmanian) was made upon several 
considerations.  There are several generic tokenizers that have been used for tokenization of 
Romanian like MtSeg [38] used in [39], GATE [22], or RO-Balie [40] and specialized tokenizers 
like the tokenization web service hosted by RACAI (Research  Institute for Artificial Intelligence 
of the Romanian Academy) web site [41]. Although some of these tools obtained good results in 
practice we felt the need to develop a more robust specialized tokenizer for Romanian. A second 
requirement was to be able to use this tokenizer in a complete Romanian-oriented NL text 
processing pipe-line in a context which is both stable and controllable. From a software design 
perspective the TORO System has been built in a modular structure as part of a more generic 
NLP framework - PERSEUS that contains also modules for lemmatization, POS-tagging, Word-
Sense Disambiguation, and Diacritics Restoration. The main components of the tokenization 
system are shown in Figure 7: the TORO tokenization module; Tokenization Class 
Disambiguation Module; tokenization resources management system; the MRDEX lexicon; 
evaluation utilities; conversions utilities; external services access interface. 
 

 
Figure 7.  PERSEUS framework – TORO System components 

 
3.2. The tokenization module. Word-entities 

 
The tokenization module is responsible with the actual tokenization process. TORO uses a rules-
based approach, generates inline annotation in the xml format, permits reconstruction of the initial 
text, uses lexicon resources (MRDEX) and lists for abbreviations, acronyms, named entities, and 
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clitics. The tokenizer employs the concept of tokenization class and when ambiguous situations 
occur, it invokes the Tokenization Class Disambiguation Module for the task (section 4). The 
TORO algorithm works based upon a set of presumptions regarding the input text. The input text 
is a bitext (Rou-Eng), in the sense that there are two sentence-level aligned corresponding text 
files: one for Romanian and one for English. The files are sentence-level segmented. Each line 
contains one sentence/segment (both for English and Romanian). 
 
The Romanian text contains diacritic characters. For disambiguation purposes there is access to: 
English tokenization services; on-line access to RACAI/Ro-WordNet; on-line translation services. 
While at a first look these requirements seem quite restrictive and limiting the usefulness of the 
tokenizer, in reality these presumptions are not hard to meet as we will prove in the paper. The 
main tokenization algorithm is a complex and acts in four stages. Each segment Sj for the source 
language (Romanian) is analyzed and split into entities. The stage I of the algorithm is presented  
 
in Figure 8. 

 

 

 

 

 

Figure 8.  TORO tokenization algorithm – stage I 
 

3.3. Tokenization classes 

 
At this point we introduce the concept of tokenization class. We are not satisfied with the 
reduced set of {word, number, punctuation} set encountered so far and propose a reach set shown 
in Table 2. 
 

Table 2.  Main TORO tokenization classes. 
 

Class 
symbol 

Class name Class detection strategy Additional notes 

AC Acronym Table lookup+expansion Includes POS-tagging info. 
D Dates Regular expression Standardization 
E Email address Regular expression Includes POS-tagging info. 
NE Named entity Table lookup Includes POS-tagging info. 
P Punctuation  Regular expression Retains the character code  
RN Roman numeral Regular expression + 

Table lookup 
Some tokens like li, ci, mi, vi, vii 
are also tokenized at class W 

U Url address Regular expression Includes POS-tagging info. 
W word Regular expression  

 
The strategies for classifying the word entities according to these classes use regular expressions 
matching, lists and table-lookups and combination of these two.  
 
In the second stage of the algorithm  presented in Figure 9 for each word entity wei we apply in 
order all the regular expressions-based class detection rules from the rules database and obtain a 
possible set of overlapping class tags Cwei. 
 

Each segment Sj is considered a string of characters containing spaces (or tab characters).  
1. Sj is segmented by space and a first list of entities L0j is obtained. Each entity ei from L1j is 
considered to have the format: 

ei = lci+lpi+wei+rpi+rci where lci – left special chars; lpi – left punctuation; rpi – right 
punctuation; rci – right special characters; wei – the word entity; lci,lpi,rpi,rci can be eventually the null 
strings; the ‚+’ is the string concatenation operation. 
2. In step 2 we build a list L1j that has all the lci,lpi,rpi,rci and wei tokens. 
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Figure 9.  TORO tokenization algorithm – stage II – regex class allocation 
 

Some examples of regular expressions for token class detection are presented in Table 3. 
 

Table 3.  Regular expressions for class detection 
 

Class 
symbol 

Regular expression Additional notes 

D ^(0[1-9]|1[012])[- /.](0[1-9]|[12][0-9]|3[01])[- /.](19|20)\d\d$ Dates in 
mm/dd/yy format 

E \b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b Email address 
N ([0-9]+[,])*[0-9]([.][0-9]+)? English number  

 
Number detection is subject to regular expression matching with the observation that English, 
French, or Romanian for that matter, all require different regex formulae and therefore detecting 
or sending as parameter the language of the text is crucial. Emoticon and other Twitter-related 
tokens are examined on the site http://sentiment.christopherpotts.net/tokenizing.html. It is 
considered that emoticons are not only extremely common in social media but they are reliable 
carriers of sentiment and therefore important. Usually at this stage there are no class ambiguities 
with one noticeable exception. Some roman numerals like li, ci, mi, vi, vii are also valid 
Romanian words. In these particular cases Cwei = {RN, W}. A similar, ambiguous situation for 
English should arise from tokens like 2 and 4 which are usually numbers but in informal texts 
these tokens can stand for the words to and for. Obviously this is an ambiguous tokenization that 
can only be solved by invoking the semantic analysis algorithm mentioned in the fifth stage of the 
algorithm and described in details in section 4. 
 
3.4. Word class tokens refinements. Periods, hyphens, apostrophes  

 
In the third stage (Figure 10) the tokenizer analyses all the word entities assigned to the generic 
class W that contains periods (.), hyphens (-) and apostrophes (‘). Periods are sure signs of 
abbreviations. Hyphens and apostrophes are markers for clitics, and multi-word tokens. The 
separator role of hyphens inside the tokens is determined using lists and table-lookup strategies.  
 
 

 

 

 

Figure 10.  TORO tokenization algorithm – stage III – periods and hyphens 
 

This process is also prone to generate ambiguities if multiple ways to expand the abbreviations 
are possible. In addition another ambiguity is presented by the last word in a period ending 
sentence: is it just a normal word or is it also an abbreviation? Examples of abbreviations are 
shown in Table 4, and we notice here that the abbreviation abr. stands for both abreviere noun 

for each wei from L1j  
1. we apply all detection rules for dates, email addresses, IP addresses, numbers, etc and obtain a 
set of classes Cwei  
2. if Cwei= Ø then Cwei = {W} 
3. if Card(Cwei)=1 and Cwei ≠ {W} the token is final. 
4. word entities are copied in L2j. 
end for 

for each wei from L2j in class W and not final:  
1. if wei ends with period then processAbbrev(wei) and  
2. if wei  contains hyphens or apostroph processHyphen(wei) 
3. expanded abbreviations and hyphenated word entities are copied to L3j. 
end for 
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and abreviat adjective generating expansion ambiguity. Examples of Romanian clitics are listed 
in Table 5 and multi-word tokens are presented in Table 6. 
 

Table 4.  Romanian abbreviation expansion list 
 

Abbreviation Expansion English translation 

Adj. Adjectiv Adjective 
Anat. Anatomie Anatomy 
Cont. Contabilitate Accountancy 
Min. Mineralogie, minerit Mineralogy, mining 

 

Beside the list lookup strategy for abbreviation expansion when a certain presumable abbreviation 
is not found in the list the algorithm employs a lookup in the MRDEX lexicon and returns a 
ranked list with possible candidate words for the given abbreviation. 
 

Table 5.  Common Romanian clitics 
 

Clitic particle Description 

într- Preposition in prefix position in într-un (in) 
le- Pronoun in prefix position in le-ar or le-a (vb. construct) 
ne- Pronoun in prefix position in ne-ar or ne-a (vb. construct) 
s- Pronoun in prefix position in s-ar or s-a (vb. construct) 
-o Pronoun in suffix position in într-o, or dintr-o (in) 
-mi Pronoun in prefix position in să-mi (vb. construct) 

 
According to the Romanian orthography the hyphen (Romanian cratima) plays a complex role, 
one of them being a separator in compound words not completely welded. 
 

Table 6.  Romanian multi-word tokens 
 

Compound words English translation 

câine-lup Wolfhound, wolf dog 
dus-întors round trip 
floarea-soarelui sunflower 
româno-american Romanian-American 
nou-născut new-born 

3.5. Word class tokens refinements. Capital letters, acronyms, named entities (NE)  

 
In the fourth stage (Figure 11) the tokenizer analyses all the word entities that begin or are formed 
entirely with capital letters. This category contains important classes like acronyms, named 
entities (or NEs, e.g. name of persons, places, artifacts, etc.) and also presents an interesting 
ambiguity problem: is the first word in the sentence (starting with a capital letter) an ordinary 
word or is it a NE? 
 
 

 

 

 

Figure 11.  TORO tokenization algorithm – stage IV – acronyms and NEs 

for each wei from L3j in class W and not final:  
1. if wei contains all caps then processAcronyms(wei). Identified acronyms are marked final.  
2. if wei contains only the first letter cap. processNE(wei,i) 
3. word entities are copied to L4j. 
end for 
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Acronyms fall in two categories. A first category contains English-origin internationally 
recognized acronyms used as such in every language (e.g. CPU, RAM, CD, DVD, ADA). A 
second category of acronyms are language and country specific. These types of acronyms should 
provide a translation. In both cases acronyms are just identified and pointers to the list should be 
copied in L4j. Examples of acronyms are listed in Table 7. 
 

Table 7.  Acronyms encountered in Romanian texts 
 

Acronym Description 

CPU Central Processing Unit 
CJ Cluj County (Romania) 
SRI, S.R.I. Romanian Information Service 
UTCN, U.T.C.N. Technical University of Cluj-Napoca, Romania 

 

Acronyms are highly ambiguous (like shown in section 2.2.3 Table 1) many of them designating 
tens of different concepts. General ontology domain information can be attached to acronyms but 
this is useful only when there are domain indicators for the tokenized text as well. Named Entity 
recognition (NER), a task specific to information retrieval domain is solved in TORO through 
lookup strategies. A sample list of NEs for Romanian space is shown in Table 8. 
 

Table 8.  Romanian named entities from Romanian Constitution corpus 
 

NE Description 

1 Decembrie December 1st , Romanian national day 
Avocatul Poporului Ombudsman 
București Bucharest, Romania’s Capital 
Camera Deputaților Chamber of Deputies 
Consiliul Superior al Magistraturii The Superior Council of Magistracy 
Consiliul Suprem de Apărare a Țării Supreme Council of National Defence 
Curtea Supremă de Justiție Supreme Court 

 

TORO uses a list of over ten thousands named entities including names of persons, geographical 
places, names of organizations, famous literary and artistic work, etc. all related with the 
Romanian cultural space. A phenomenon typical for NER is token formation based on the 
maximum expansion principle. Let’s examine the construct from Figure 12: 
 
 

 

Figure 12.  Romanian NE construct Curtea Suprema de Justiție a României 

 
This named entity word formation can generate multiple sensible tokenizations like the ones 
shown in Figure 13. 
 
 

 

 

Figure 13.  Possible tokenizations for Romanian NE Curtea Suprema de Justiție a României 
From all the possible tokenizations only the last one is really the one we want. The maximum 

tokenization principle calls for creating the token with the maximum number of words while the 

Curtea Supremă de Justiție a României 

Supreme Court of Romania (Eng.) 

 

<Curtea Supremă><de><Justiție><a><României> 

<Curtea Supremă de Justiție><a><României> 

<Curtea Supremă de Justiție a României> 
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construction refers to one single named entity.  The lookup strategy starts looking for the whole 
chain of proper names and dropping gradually words from right to left until a match is found.  
 
3.6. Word class tokens processing. Looking for multi-word expressions 

 
In the fifth stage (Figure 14) the tokenizer analyses all the word entities that are not final and tries 
to identify multi-word expressions with database-lookup strategies. A new list L5 is compiled 
containing multi-word expressions assigned to class M. Some rules for detecting these 
expressions include the equivalence with one-word synonym (câte o dată , synonym uneori engl. 
sometime, de bunăvoie, synonym benevol engl. voluntarily), numerals (douăzeci și unu = 21) or 
in compound words constructions where the sense is somehow different from the sense derived 
from constituents (Anul Nou engl. New Year, Evul Mediu engl. Middle Ages). 

 

 

 

 

Figure 14.  TORO tokenization algorithm – stage V – Looking for multi-word expressions 
 

For each detection of a multi-word expression a new tokenization is created and such a new 
ambiguity is inserted in L5 list. The last stage (VI) of the tokenization process is reserved for the 
disambiguation process described in details in the next section. 
 

4. THE TOKENIZATION CLASS DISAMBIGUATION MODULE 

 
The ambiguities discovered so far by the tokenization process are forwarded for resolution to the 
Tokenization Class Disambiguation procedure that provides deep semantic analysis for this 
purpose. One of the most employed methods when semantic is involved is based on the Lesk 
algorithm which keeps the resolution paradigm in a monolingual context. In this paper we 
describe method based on parallel texts processing. It has been mentioned that a presumption for 
this algorithm is to have a parallel text. The idea of this algorithm presented in Figure 15 is to use 
lexicon resources (MRDEX for Romanian text), off-line or on-line translation services and 
eventually the Ro-WordNet service (hosted by RACAI institute) to create translated tokenizations 
of the ambiguous situations and then detect from this set the one that matches the tokenization of 
the target parallel segment. The MRDEX lexicon is a resource created and maintained in-house 
and is based initially upon the DEX dictionary offered in a GNU-GPL license on the DEX-
ONLINE website (http://dexonline.ro).  
 
 

 

 

 

 

 

 

 

Figure 15.  TORO tokenization algorithm – stage VI – Class Disambiguation Module 

for each wei from L4j in class W and not final: 
1. processMultiWorddExpression(wei) 
2. multi-word expressions found and left word entities are copied to L5j. 
end for 

if segment Sj contains ambiguous tokenizations then 
1. extract corresponding segment Tj  from the parallel text: 
2. for each weik that is ambiguous (there are k alternatives) 

2.1 get the lemma and POS from MRDEX: wiek= getMRDEXInfo(weik) 
2.2 translate lemma using on-line translation services (Google)/RACAIWdNet: 
twek=getTranslatedLemma(wiek) 
2.3 tokenize the target segment Tj using RACAItoken on-line service. 
2.4 scan through twek tokens and identify the one that is also in Tj tokenization. 
end for 

end if 
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The MRDEX (Machine Readable DEX) lexicon contains a changed table structure; it contains 
POS tagging information for each word-form using a tagset aligned to the MULTEXT standard 
for Romanian. The MUTEXT project initiative is presented in [42], and the POS tagset 
specifications are described in [43] and [44].We used in this algorithm the linguistic services 
hosted on the web services portal of the RACAI site - www.racai.ro. The web services are also 
described in [41]. We wish to thank this institution for the access to these services. In essence 
these services are: tokenization services for both Romanian and English texts, Romanian 
WordNet services, and Ro-En translation services. We have also experimented with other off-line 
and on-line translation services including Google Translate and Microsoft Bing. Let us reconsider 
a few ambiguities mentioned so far in this paper and see how the algorithm handles them. We 
have mentioned at the end of the paragraph 3.3 that a word like li is both a roman numeral (51) 
tokenized at class RN and also pronoun tokenized at class W. In case li has the sense of roman 
numeral the parallel text would also contain the word li which is not translated. In case when the 
li word is a pronoun the parallel text should contain one of the translated tokens for li: they, their. 
An example of text containing the word li is extracted from the 1991 Romanian Constitution 
document published also in English and French on the Romanian Deputies’ Chamber website 
hosted   on (www.cdep.ro) and shown in Table 9. 
 

Table 9.  Text disambiguation example – Roman numeral or pronoun? 
 

No Source Text with ambiguous token li 

1 Romanian Constitution - Article 110, 
paragraph 4, Romanian text 

Dacă li se solicită prezența , participarea lor 
este obligatorie . 

2 Romanian Constitution - Article 110, 
paragraph 4, English text 

If they are requested to be present , 
participation shall be compulsory . 

3 Romanian Constitution - Article 110, 
paragraph 4, Microsoft Bing translation 

If you are requesting their presence, 
participation is mandatory. 

4 Romanian Constitution - Article 110, 
paragraph 4, Google Translate 

If requested, and their presence is mandatory. 

 

The Romanian text is presented in the first row. The English parallel text shown in the second 
row contains the word they that solves the ambiguity to class W. It is here the moment to 
comment on the parallel text existence presumption. We know that this is hardly the case. What 
rows three and four from Table 9 above show is the fact that for tokenization purposes we can 
rely on the translation output given by these first-class on-line translation services: Bing and 
Google Translate. Although both translations are not accurate they are good enough to serve the 
purpose. Let’s illustrate this assumption with one more example. Another ambiguous situation is 
presented in the Romanian text shown in Table 10 first row.  Here the word Continental is 
capitalized because it starts the sentence. This word can be tokenized as both normal adjective 
word to class W but can also be interpreted as the airline company Continental and tokenized at 
class NE (named entity).  By invoking the Google Translate services we got the word Continental 
in a context that matches semantically the named entity which again solves the ambiguity to class 
NE. 
 

Table 10.  Text disambiguation example – Capitalized word – Normal word or Named entity? 
 

No Source Text with ambiguous token Continental 

1 Romanian text - informal Continental și-a amânat zborurile. 
2 Google Translate Continental has delayed flights. 
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A comparison between the TORO tokenizer and the similar service offered by RACAI is difficult 
to produce due to differences in NE lists used by the tokenizers. However on the Romanian 
Constitution corpus containing 10219 tokens, tokenized by hand and used like Gold standard for 
TORO development we measured a precision of  98.87% for TORO and below 80% for RACAI 
web service. 
 

5. ROMANIAN-ENGLISH MACHINE TRANSLATION QUALITY EVALUATION 

CRITERIA BASED ON TORO 

 
The TORO algorithm presented in this paper suggests itself as a mechanism to be used in a setup 
for comparing machine translation services (MT) – translation quality. From the very beginning 
we must specify that this comparison is valid only for the Romanian-English language pair. The 
algorithm is presented in Figure 16. 
 
 

 

 

 

 

 

Figure 16.  TORO – based setup for machine-translation quality evaluation 
 

There are two levels of assessment for on-line translation services. The first and direct level is 
when the translation forces the disambiguation mechanism to create a different tokenization class 
for the ambiguous word/token than the class found in the gold standard file. A good example of 
this situation is related with interpreting roman numerals vs. pronouns as shown already in Table 
9. Situation that might generate different tokenization. 
 
A second level where the translation services may generate differences for the tokenization 
process is when the services return the same word class but with different POS or word sense 
information that is further needed to disambiguate other tokens in the sentence. The following 
examples analyse several homonymy situations encountered in Romanian language. A first 
example takes into account the homonymy presented by the Romanian word broască that has 
multiple meanings like frog/turtle or lock. The Romanian text in Table 11 line 1 is rather 
ambiguous and both frog and lock can be valid interpretations if no further context is provided. 
Both on-line services Bing and Google Translate had no doubts and translated to frog. If however 
we want to point that the lock was broken in line 4, only Google feels the different sense of the 
word broască and changes the translation to the correct one. 
 

Table 11.  Text disambiguation example based on homonymy of word broască/frog vs. lock  
 

No Source Text with ambiguous word broască 

1 Romanian text El văzu broasca și plecă. 
2 Bing translation He saw turtle and went away. 
3 Google Translate He saw the frog and left. 
4 Romanian text El văzu broasca stricată și plecă. 
5 Bing translation He saw the wanton and frog went away. 
6 Google Translate He saw the broken lock and left. 

1. A text T containing as many ambiguities as possible is first compiled for Romanian language. 
2. This text is hand-tokenized to become the Gold standard G. 
3. Then TORO is used for tokenization connected to the machine translation A service to handle 

ambiguities. The output is MTA. 
4. Calculate precision, recall, F1 metrics comparing MTA with G and build a global index IA(P,R,F). 
5. Connect TORO to the machine translation B and repeat steps 3 and 4. 
6. Compare Indexes IA(P,R,F) and IB(P,R,F).   
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Another interesting homonymy situation that can generate ultimately differences in tokenization 
class and therefore in the precision index is shown in Table 12, where the ambiguous word nouă 

has both the sense of new (adjective-word class) and nine (numeral- number tokenization class).   
 

Table 12.  Text disambiguation example based on homonymy of word nouă/new vs.nine  
 

No Source Text with ambiguous token nouă 

1 Romanian text Du-te la poarta nouă. 
2 Bing translation Go to the new gate. 
3 Google Translate Go to the new gate. 
4 Romanian text Du-te la poarta nouă, nu la zece. 
5 Bing translation Go to the new gate, not ten. 
6 Google Translate Go to gate nine, not ten. 

 

The Romanian text is ambiguous but both translation services return the translation based on the 
new meaning. In Line 4 though the text emphasized the sense of nine vs. ten and this situation has 
only been captured by the Google Translation. In the end if we decide to normalize nine to a 
number class token, Google Translation precision index would be higher. Based on a limited 
number of samples we cannot draw a clear conclusion but we showed the way in which TORO 
can be used to generate indexes for the translation services. The real issue we see with this 
approach is the fact that in order to draw a meaningful conclusion we need to build a large-
enough and equilibrated corpus to act as Gold standard.  
 

6. CONCLUSION AND FUTURE WORKS 

 
In this paper we have presented the TORO tokenizer build for tokenizing Romanian texts. This 
tokenizer is robust, has a very high precision and can provide quality tokenization for next text 
processing steps in the pipeline. This tokenizer uses token class concepts, uses semantics and 
parallel texts to solve the tokenization ambiguities. In the absence of these parallel resources we 
proved that by invoking first-class on-line translation services for the disambiguation task we get 
almost the same information like the one retrieved from the parallel text. In addition we provided 
a setup based on TORO that can serve for quality translation comparison between various 
machine translation systems or services. Future work is required to test the impact of missing 
diacritics in the source text, and also for including the sentence boundary detection in the 
algorithm. Another area for continuous improvements with direct impact in the tokenizer’s 
robustness regards feeding the tokenizer with a larger variety of text inputs mostly from the social 
media resources and continuously expanding the Named Entities, abbreviations and the acronyms 
lists. The experiments presented in this paper may be carried out for English-Romanian language-
pair direction as well and based upon the experimental results using the on-line MT services 
(instead of parallel text resources) additional MT translation quality indexes can be produced. 
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