
International Journal of Grid Computing & Applications (IJGCA) Vol.3, No.3, September 2012

DOI: 10.5121/ijgca.2012.3301 1

ON FAULT TOLERANCE OF RESOURCES IN

COMPUTATIONAL GRIDS

Arindam Das
1
 and Ajanta De Sarkar

2

1
Department of MCA, MCKV Institute of Engineering, Howrah, India

arindamdas.mckv@gmail.com
2
 Department of Computer Science & Engineering, Birla Institute of Technology, Mesra,

Kolkata Campus, Kolkata 700 107
adsarkar@bitmesra.ac.in

ABSTRACT

Grid computing or computational grid is always a vast research field in academic, as well as in industry

also. Computational grid provides resource sharing through multi-institutional virtual organizations for

dynamic problem solving. Various heterogeneous resources of different administrative domain are virtually

distributed through different network in computational grids. Thus any type of failure can occur at any

point of time and job running in grid environment might fail. Hence fault tolerance is an important and

challenging issue in grid computing as the dependability of individual grid resources may not be

guaranteed. In order to make computational grids more effective and reliable fault tolerant system is

necessary. The objective of this paper is to review different existing fault tolerance techniques applicable in

grid computing. This paper presents state of the art of various fault tolerance technique and comparative

study of the existing algorithms.

KEYWORDS

Component, Computational grids, Fault tolerance, Failure, Checkpointing

1. INTRODUCTION

Grid is an association of computer resources from several administrative domains to reach a

mutual goal with an abstraction of service origination to the user. This view is often put to as an

analogy to power grids where consumers get access to electricity through sockets on wall with no

care for where and how that electricity is generated. Similarly, in computational grid the users can

access any resources like, process, storage, data and applications with little or no knowledge of

physical locations of those resources and the underlying technologies used.

Grid computing is special because here the nodes can be purchased as commodity hardware.

These nodes are easily combined to produce a similar computing resource like multiprocessor

supercomputer but at a lower cost. The large number of processors to be managed and lack of

high-speed connections in grid can be complemented well by multiple independent parallel

computations. Grid computing involves the aggregation of large-scale cluster computing based

systems.

As resources in grid are used outside of organizational boundaries, it becomes increasingly

difficult to guarantee that a resource being used is not malicious in some way or failure of

resources is uncertain. Fault tolerance in grid computing is necessary to preserve the delivery of

International Journal of Grid Computing & Applications (IJGCA) Vol.3, No.3, September 2012

2

expected services despite the presence of fault caused errors within the system itself. It aims at the

avoidance of failures in the presence of faults, as availability of grid resources is dynamic.

The objective of this paper is to review a few fault tolerant techniques in grid computing. This

paper presents state of the art of various existing fault tolerance technique and comparative study

of the fault tolerant algorithms. Brief overview of grid computing is discussed in Section 2.

Section 3 explains faults and failure and concepts of fault tolerance in grid computing. Review of

a few algorithms related to fault tolerance is explained in Section 4. Section 5 concludes the paper

with directives of future work.

2. GRID COMPUTING

A grid [3], known to be a large-scale virtual organization, is enabling to solve complex scientific

and compute-intensive problems. The virtual organization is formed with geographically

distributed hardware and software infrastructure of flexible, secure and coordinated shared vast

amounts of heterogeneous resources from multiple administrative domains. Computational grid

environment is shown in Figure 1. Heterogeneous computational nodes have connected to form a

Grid test-bed. In this test-bed registered resource database and Grid resources server is also

shown. Server or database might be accessed during computation of large job. User can submit

job through any node among Node A, Node B, Node C, Node D or Node E in Grid. Job might

necessitate adapting the changed resource scenario in Grid environment. Hence, fault tolerance of

resources is major challenging issue in dynamic virtual computational Grids.

Considering multiple administrative domains owned by multiple individuals/organizations the

intension of participation or volunteering might not always be trustworthy. Besides, the duration

of participation might also not be consistent. As in grid, all the resources are connected through

heterogeneous network. There might be no guarantee that the nodes would not be dropped out of

the network at random times. The impacts of trust and availability on performance and

development difficulty can influence the choice of whether to deploy on to a dedicated computer

cluster in the developing organizations or to an open external network of contractors.

Figure 1 : Computational Grid Environment [15]

International Journal of Grid Computing & Applications (IJGCA) Vol.3, No.3, September 2012

3

On the other side, with many languages in place, there has been a tradeoff between investment in

software development and the number of platforms that can be supported. Cross-platform

languages can reduce the need to make this tradeoff. Various middleware based projects have

created genuine infrastructure to allow diverse scientific and commercial projects to harness a

particular associated grid or for the purpose of setting up new grids. Middleware can be seen as a

layer between the hardware and software. SLA management, License management, portals and

data management are major research issues in grid middleware.

Due to unavailability of network or development difficulty or faulty resources, fault may occur in

the results or performance may be degraded. Fault tolerance is the ability to preserve the delivery

of expected services despite the presence of fault caused errors within the system itself. It aims at

the avoidance of failures in the presence of faults. A fault tolerant service detects errors and

recovers them without participation of any external agents, such as humans. Errors are detected

and corrected and permanent faults are located and removed while the system continues to deliver

acceptable services.

Faults and failure in grid are explained in the next section.

3. FAULTS AND FAILURES IN GRID

Fault tolerance is an important property in grid computing as the dependability of individual grid

resources may not be guaranteed. In many cases, an organization may send out jobs for remote

execution on resources upon which no trust can be placed; for example, the resources may be

outside of its organizational boundaries, or may be shared by different users at the same time. A

fault tolerant approach may therefore be useful in order to potentially prevent a malicious node

affecting the overall performance of the application. As applications scale to take advantage of

Grid resources, their size and complexity will increase dramatically.

A major challenge in a dynamic grid with thousands of nodes connected to each other is fault

tolerance. The more resources and components involved the more complicated and error-prone

becomes the system. To comprehend fault tolerance mechanisms, it is important to point out the

difference between faults, errors and failures.

Fault: A fault is a violation of a system’s underlying assumptions.

Error: An error is an internal data state that reflects a fault.

Failure: A failure is an externally visible deviation from specifications.

In reality, a fault need not result in an error, or an error in a failure.

Different types of faults, classified based on several factors, are mentioned in the following:

• Physical faults: faulty storage, faulty CPUs, faulty memory.

• Unconditional termination: Mostly, user pressed Ctrl+c.

• Network faults: packet corruption, faults due to network partition, packet loss.

• Lifecycle faults: Legacy or versioning faults.

• Processor faults: Machine or operating system crashes.

• Media faults: Disk head crashes.

• Service expiry fault: The service time of a resource may expire while application is using

the resources in grid.

• Process faults: software bug, resource shortage.

• Interaction faults: timing overhead, protocol incompatibilities, security incompatibilities,

policy problems.

International Journal of Grid Computing & Applications (IJGCA) Vol.3, No.3, September 2012

4

A failure, irrespective of its cause (either error or fault), is observed or reported first in a grid

system. Three types of failures such as, Permanent, Intermittent and Transient, which can occur in

computer systems with respect to time. Due to these failures system may behave in different

ways. Three types of behaviors are possible in systems after a failure:

• Failstop system: The system does not output any data once it has failed. It immediately

stops sending any events or messages and does not respond to any messages.

• Failfast system: The system behaves like a Byzantine system for some time but moves

into a failstop mode after a short period of time. It does not matter what type of fault or

failure has caused this behavior but it is necessary that the system does not perform any

operation once it has failed.

• Byzantine system: The system does not stop after a failure, instead behaves in a

inconsistent way. It may send out wrong results of the application.

4. REVIEW OF FAULT TOLERANCE TECHNIQUES

The main objective of grid computing is to maintain the workflows or services in presence of

faults so that no failure stage is reached. This section presents a few fault tolerant techniques in

the following:

4.1. Job and Data Replication

The term, replication implies making copies or replicas of an existing entity. In grid environment,

job/task or data are replicated to tackle the faults. Workflows can be executed with a rule-based

system with a framework operating dynamically taking an appropriate fault tolerance technique.

The framework considers [2] the user’s preferences and the grid resource allocation situation to

decide, using a binary tree, the most appropriate fault tolerant technique to be used for each task

that can compose a workflow.

Besides, most of the existing replication-based algorithms use a fixed number of replications for

each job which consumes more grid resources. To overcome this, Adaptive Job Replication (AJR)

algorithm is proposed to adaptively determine the number of job replicas [10] according to the

grid failure history followed by Backup Resources Selection (BRS) algorithm to schedule these

replicas.

Moreover, Fault Tolerance using Adaptive Replication in Grid Computing (FTARG) [14] is an

adaptive replication middleware which addresses the fault tolerance of grid based applications by

providing data replication at different sites. FTARG is an Aneka based grid middleware designed

for high-performance grid based applications. FTARG enables data synchronization between

multiple heterogeneous databases located in the grid by supporting a variety of synchronization

modes. However, it can delay the job execution if the number of replicas [11] to be generated is

not reasonably determined for data or task replication.

Resubmission Impact, a heuristic, for fault tolerance in workflow executions [8] is a new

technique applicable for distributed environment. This heuristic is based on a combination of task

replication and task resubmission using a resubmission impact metric which measures the impact

of repeated task resubmission on the execution time of a workflow. The metric used in the

heuristic is to define the number of replications generated for each workflow task. In contrast to

related approaches, this method can be used effectively on systems even in the absence of historic

failure trace data.

International Journal of Grid Computing & Applications (IJGCA) Vol.3, No.3, September 2012

5

So, in a replication based fault recovery, availability of replicated data at different sites of

computing increases the fault tolerance adaptability. Data synchronization among cross vendor

databases should also be addressed. In case of job/task replication, heuristic method based on task

resubmission impact measures can be better than the traditional approach with little or no

dependency on failure of historic data. However, in both data and job replication, determination

of the appropriate number of replicas plays a significant role.

4.2. Checkpointing

Checkpointing [14] is the process of saving the state of an application in execution to a stable

storage for future utilization. In case of any fault, this saved state is to be referred to resume

execution of the application from the point in the computation where it was last checkpointed.

In addition to the traditional fault tolerance techniques, specific checkpoint-recovery schemes are

needed in grid workflow management systems of present time to address the new reliability

challenges. A Fault Tolerance and Recovery component that extends the ActiveBPEL workflow

engine [2] has been proposed to develop mechanisms for building an autonomic workflow

management system that effectively detects, diagnoses, notifies, reacts and recovers automatically

from failures during workflow execution. The detection mechanism inspects the messages

exchanged between the workflow and the synchronized Web Service components for the search

of faults. The default behavior of ActiveBPEL can be modified in order to recover a process from

a faulty state, using a non-intrusive checkpointing mechanism.

Further, a new strategy named Resource Fault Occurrence History (RFOH) [9] for fault tolerant

job scheduling in computational grid is proposed. This strategy maintains the history of fault

occurrence of resources in Grid Information Server (GIS). A resource broker with jobs to

schedule, it uses this GIS information in Genetic Algorithm and looks for a near optimal solution

for the problem. Next, it raises the percentage of jobs executed within specified deadline. Using

checkpoint techniques, the proposed strategy can make grid scheduling more reliable and

efficient.

A proposition is also there to present an experience to endow with fault tolerance support parallel

executions on grids through the integration of ComPiler for Portable Checkpointing (CPPC) [1], a

checkpointing tool for parallel applications, and GridWay: a meta-scheduler provided with the

Globus Toolkit. One of the strengths of this proposal is, transparency and ease of use i.e. the

CPPC-GW infrastructure will take care of all viz. automatically submitting and monitoring the

application, making remote backups of checkpoint files, detecting faults and migrating and

restarting failed executions.

Periodic job checkpointing, being very robust, it can detain job execution if checkpointing

intervals are inappropriately chosen. Moreover, fault tolerance poses an important problem in the

scope of grid computing environments. The heuristics have been evaluated in Dynamic

Scheduling in Distributed Environments (DSiDE) grid simulator under changing system load and

availability. In [11] the results have shown that the runtime overhead characteristic to periodic

checkpointing can significantly be reduced when the checkpointing frequency is dynamically

adapted in function of resource stability and remaining job execution time.

Reducing the number of crashed node can cut down the number of faulty tasks by efficient node

allocation. To improve fault tolerance and decrease price cost of a job with an acceptable

completion time [1], a predictive method to select the best nodes and sites is proposed.

International Journal of Grid Computing & Applications (IJGCA) Vol.3, No.3, September 2012

6

4.3. Scheduling/Agent based migration

To overcome the drawbacks present with checkpointing and replication mechanisms, fault

tolerance is factored into grid scheduling. Scheduling policies for grid systems can be classified

into space sharing and time sharing [14] policies. It is also possible to combine these two types of

policies into a hybrid policy.

Security-aware and fault-tolerant job scheduling is crucial to achieve high performance in an open

grid computing environment. On the contrary, the fixed fault-tolerant strategy in job scheduling

may improperly exploit excessive resources. A cloud model is proposed [13] to manage the

fuzziness and uncertainties of task scheduling while deciding the kind of fault-tolerance strategy

to be selected, at the same time, for each individual job to ensure more reliability of computation

and shorter makespan.

In fault-tolerant scheduling, primary-backup approach is a practiced methodology used for fault

tolerance where each task holds a primary copy and a backup copy submitted to two different

processors. For independent tasks, a backup copy can be overloaded with other backup copies on

the same processor while for dependent tasks, precedence constraint among tasks must be

considered during scheduling of backup copies and overloading backups. Two algorithms: the

Minimum Replication Cost with Early Completion Time (MRC-ECT) algorithm and the

Minimum Completion Time with Less Replication Cost (MCT-LRC) algorithm has been

proposed to schedule backups of independent jobs and dependent jobs, respectively [13].

Algorithm MRC-ECT is observed guarantee an optimal backup schedule in terms of replication

cost for an independent task, while MCT-LRC can schedule a backup of a dependent task with

minimum completion time and less replication cost.

4.4. Load balancing

In general, the P2P system has similar objective to that of the grid system since both of them

coordinate the large sets of distributed resources. Therefore, many projects keep on integrating

these two complementary technologies i.e. P2P grid to perform as an ideal distributed computing

system.

Besides, despite many load-balancing approaches has been proposed for real-time applications in

parallel and distributed systems, there are very less work found on the impact of fault tolerance

policies for load balancing mechanisms. A fault tolerant policy has been proposed to balance

loads dynamically in the P2P grid system, named the Fault Tolerant policy on Dynamic Load

Balancing (FTDLB) [17]. In order to minimize the job turnaround time, mostly, is the primary the

goal of load balancing and FTDLB could adaptively adjust the load of real-time applications to

achieve the job’s minimal turnaround time.

FTDLB policy can tolerate the node’s permanent failures while balancing load of real-time

applications on P2P grids. It calculates the job turnaround time in each node and dynamically

allocates job to the befitting node for execution as per the evaluation. The existing job migration

time estimation has been improved here. The policy can tolerate the node’s permanent failures

while balancing load of real-time applications on P2P grids. For improving the system reliability,

FTDLB duplicates jobs (copy approach) into different sites to tolerate failures by keeping a high

availability rate at the increase of error rate. Experimental results reveal that FTDLB policy

indeed improves the job completion rate.

Load balancing strategies are classified as dynamic and static. In general, the static load balancing

strategy [19] needs the prior information to make decisions, such as the execution rate of each

node, for load distribution.

International Journal of Grid Computing & Applications (IJGCA) Vol.3, No.3, September 2012

7

On the other hand, the dynamic load balancing strategy [6] exploits the system information to

make decisions at run time. Load balancing strategies could also be categorised as centralized or

decentralized [12]. The centralized strategy selects a single processor to handle load scheduling,

while the distributed strategy welcomes each participating node to handle load balancing.

4.5. Global behaviour modelling

One of the most confusing aspects of grid systems is that theoretically they are considered as

single elements but, when it comes to practice, especially in management related issues, they are

considered as a set of independent, loosely related elements.

To illustrate this idea, it is interesting first to analyze the case of a single desktop computer. It

apparently looks a much simpler system and is commonly regarded as a single device but, in fact,

it is composed of a large set of sophisticated elements that cooperate themselves. Elements like

CPUs, memory and its controllers, video cards, hard drives; network interfaces etc. have

distinctive functionalities and are technologically complex. Still, they are seen as parts of a single

entity, instead of a set of heterogeneous resources. This change of perspective is due to the use of

high-level software tools (basically the Operating System) that provide an abstraction layer

between the real, heterogeneous and complex hardware range and the user. Several generic

parameters are defined, such as CPU load or network usage, in order to express the system state

in a standard manner. Even though this abstraction carries some loss of information, it allows the

managing techniques to be standardized, regarding all desktop computers by the same parameters.

Considering fault tolerance, generic procedures are developed in the same way.

Distinguished by its point of view, fault tolerance techniques in grid systems can be split into two

categories: resource-level (focused on every machine) and service-level (focused on global

behavior). In order to optimize performance and increase system dependability the correct

combination of these two types of techniques should be applied.

However, some important aspects must be considered. The resource-level fault tolerance involves

the application of standard fault tolerance techniques in each and every one of the resources in the

system. This might seem very straightforward, but careful consideration reveals that most of

typical grid characteristics could limit its efficiency. The heterogeneous and non-dedicated nature

of the system increase complexity, but it is the non-centralized aspect the one that becomes the

great difficulty.

In many cases, the global management system has so limited control of each resource that the

only suitable solution seems to increase redundancy.

The service-level fault tolerance, on the other hand, deals with system-wide policies aiming to

increase dependability of the services provided. This is particularly important in utility computing

systems, where the quality-of-service (QoS) is the key factor. However, as the fault tolerance

policies have to deal with the whole system, it is important to find ways to efficiently manage this

complexity. It is also important to understand that, as the nature of the system is different from

resource-level fault tolerance, the terms in which this fault tolerance is expressed certainly differ.

In resource-level fault tolerance basic concepts such as fault or failure are directly inherited from

traditional distributed systems. Events such as a machine turning unexpectedly off or the

temporary loss of a network link are clearly regarded as faults. But in a non-dedicated, non-

centralized distributed system like a grid, each partner that shares resources keeps full control

over its property (computing nodes, storage elements, network links, etc). Resource providers can

change the state of its own resources, without consent from the grid global management. For

instance, some machines could be turned off, originating an event that would be probably

International Journal of Grid Computing & Applications (IJGCA) Vol.3, No.3, September 2012

8

considered a fault in traditional distributed systems fault tolerance. But in grid systems these

events are by no means considered as undesirable or unexpected. They are more likely accepted

situations that not only may, but will occur as part of the natural evolution of the grid. Therefore,

service-level fault tolerance can never regard them as faults.

The service-level fault tolerance should focus on QoS issues and global behavior. It can benefit

from a representation of the grid global state in a service oriented form. This would become a

behavior model based on globally service-relevant states instead of the multiple specifics of each

resource. This representation not only seems ideal for service-level fault tolerance, but also

provides the abstraction layer mentioned in the previous subsection. With such a model, grid

management tools could finally have the previously mentioned single entity perspective,

incorporating the system’s complexity without being overwhelmed by it. This could also take

service-level fault tolerance a step further, better understanding and improving the systems

behaviour and dependability.

5. CONCLUSION AND FUTURE WORK

This paper presents a comparative survey of fault tolerance in grid environment. The accepted

techniques of fault-tolerance in grid environment with their importance, combinations and

variations have been discussed.Replication of job/data is necessary in order to increase the

resource availability to the computing nodes. An application of checkpointing is important to

formulate organized policies to recover from a system under errors or faults. It effectively

prevents system from being led to a failure state. Security aware scheduling of grid jobs migrated

through agents improves grid performance significantly. A newer concept, service level behavior

or global behavior on understanding the grid services representing a one unified service system

has changed the whole understanding perspective of fault scenario in grid computing.

Additionally, grid resource management in terms of deploying load balancing techniques

enhances grid performance, too.

However, accepting the importance of all the aforesaid areas, to put forward a future direction of

work, this research would next focus on checkpointing technique for better performance of

applications running in grid. It would address the following issues as next course of work:

• Checkpoint fixation level: either at system level (i.e. at OS or middleware level) or at

application level.

• In-transit and Orphan message management with checkpoint: latency and resources held up

for this reason would be freed if applied with a suitable policy.

• Scope of Checkpoint: local – for each process instance or global – for each parallel program in

execution.

• Storage space requirement for checkpointing: light – only the first/top level assignment is

stored thereby less storage and communication overhead and heavy – in addition to light,

newly learnt clauses saved atop the decision stack.

• Granularity of checkpointing: full – entire state of application saved and incremental –

application state saved from previous checkpoints only.

International Journal of Grid Computing & Applications (IJGCA) Vol.3, No.3, September 2012

9

REFERENCES

[1] Asgarali Bouyer, Abdul Hanan Abdullah, Hasan Ebrahimpour and Firouz Nasrollahi," Fault-

Tolerance Scheduling by Using Rough Set based Multi-Checkpointing on Economic Grids",

International Conference on Computational Science and Engineering, 2009, IEEE Computer Society,

pp.103-109.

[2] Elvin Sindrilaru, Alexandru Costan and Valentin Cristea, "Fault Tolerance and Recovery in Grid

Workflow Management Systems," International Conference on Complex, Intelligent and Software

Intensive Systems, 2010, IEEE Computer Society, pp.475-480.

[3] Felipe Pontes Guimaraes and Alba Cristina Magalhaes Alves de Melo, “User-Defined Adaptive Fault-

Tolerant Execution of Workflows in the Grid,” 11th IEEE International Conference on Computer and

Information Technology, 2011, IEEE Computer Society, pp.356-362.

[4] Ian Foster, “What is the Grid? A Three Point Checklist”, Argonne National Laboratory & University

of Chicago, July 20, 2002.

[5] Ivan Cores, Gabriel Rodriguez, Maria J. Martin and Patricia Gonzalez,"Achieving Fault Tolerance on

Grids with the CPPC Framework and the GridWay Metascheduler", 22nd International Symposium

on Computer Architecture and High Performance Computing, 2010, IEEE Computer Society, pp.119-

126.

[6] J. Chen, B. Lu, “Load Balancing Oriented Economic Grid Resource Scheduling”, IEEE Pacific-Asia

Workshop on Computational Intelligence and Industrial Application, 2008, pp.813-817.

[7] Jesus Montes, Alberto Sanchez and Maria S. Perez, "Improving grid fault tolerance by means of

global behavior modeling", Ninth International Symposium on Parallel and Distributed Computing,

2010, IEEE Computer Society, pp.101-108.

[8] Kassian Plankensteiner, Radu Prodan and Thomas Fahringer, "A New Fault Tolerance Heuristic for

Scientific Workflows in Highly Distributed Environments based on Resubmission Impact," Fifth

IEEE International Conference on e-Science,2009, IEEE Computer Society, pp.313-320.

[9] Leili Mohammad Khanli,Maryam Etminan Far,Amir Masoud Rahmani, "RFOH: A New Fault

Tolerant Job Scheduler in Grid Computing," Second International Conference on Computer

Engineering and Applications, 2010, IEEE Computer Society, pp.422-425.

[10] M. Amoon, “Design of a Fault-Tolerant Scheduling System for Grid Computing,” Second

International Conference on Networking and Distributed Computing, 2011, IEEE Computer Society,

pp. 104-108.

[11] Maria Chtepen, Filip H.A. Claeys, Bart Dhoedt, Filip De Turck, Piet Demeester and Peter A.

Vanrolleghem, "Adaptive Task Checkpointing and Replication: Toward Efficient Fault-Tolerant

Grids," IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO.

2, FEBRUARY 2009. IEEE Computer Society, pp.180-190.

[12] P. Krueger, M. Livny, “A Comparison of Preemptive and Non-Preemptive Load Balancing,” 8th

International Conference on Distributes Computing Systems, Jun 1988, pp 123-130.

[13] Qin Zheng, Bharadwaj Veeravalli and Chen-Khong Tham, "On the Design of Fault-Tolerant

Scheduling Strategies Using Primary-Backup Approach for Computational Grids with Low

Replication Costs," IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 3, MARCH 2009,

IEEE Computer Society, pp.380-393.

[14] S. Siva Sathya, K. Syam Babu, "Survey of fault tolerant techniques for grid," ELSEVIER

ScienceDirect, COMPUTER SCIENCE REVIEW 4(2010) pp.101 -120.

International Journal of Grid Computing & Applications (IJGCA) Vol.3, No.3, September 2012

10

[15] Shen et al, “System design and implementation of digital-image processing using computational

grids”, Computers & Geosciences, volume 31, Issue 5, pp: 619-630

[16] Srinivasa K G, Siddesh G M and Sijo Cherian, "Fault-Tolerant middleware for Grid Computing,"

12th IEEE International Conference on High Performance Computing and Communications, 2010,

IEEE Computer Society, pp.635-640.

[17] Tian-Liang Huang, Tian-An Hsieh, Kuan-Chou Lai, Kuan-Ching Li, Ching-Hsien Hsu and Hsi-Ya

Chang,"Fault Tolerance Policy on Dynamic Load Balancing in P2P Grids," International Joint

Conference of IEEE TrustCom-11/IEEE ICESS-11/FCST-11, 2011, IEEE Computer Society,

pp.1413-1420.

[18] Yi Hu, Bin Gong and Fengyu Wang, "Cloud Model-Based Security-aware and Fault-Tolerant Job

Scheduling for Computing Grid,",The Fifth Annual ChinaGrid Conference, IEEE Computer Society,

pp.25-30.

[19] Y. Pan, W. Lu, Y. Zhang, K. Chiu, “A Static Load-Balancing Scheme for Parallel XML Parsing on

Multicore CPUs”, Seventh IEEE International Symposium on Cluster Computing and the Grid

(CCGrid '07), 2007, pp.351-362.

Authors

Arindam Das is presently working as Assistant Professor in MCKV Institute of

Engineering, Howrah, India. After graduating in Science from Calcutta University in

1997, he started his career as Laboratory Instructor in a leading Engineering Institution.

Later, he completed his MCA from Indira Gandhi National Open University in 2004. He

completed his MTech in Information Technology from Bengal Engineering and Science

University in 2009. Currently he is pursuing PhD in the field of Grid Computing.

Ajanta De Sarkar is working as Associate Professor in the department of CSE in Birla

Institute of Technology, Mesra. She is having altogether 16 years of experience

including 6 years of Industry experience. Having graduated from Bethune College,

University of Calcutta in B.Sc. (Mathematics) in 1993, and obtained MCA degree in

1996 from Jadavpur University. She has been awarded PhD in Engg. from Jadavpur

University in 2009. Her field of Specialization is Distributed Computing, specifically

Grid Computing. Her focused research area includes Grid Computing, Cloud Computing and Wireless

Sensor Network.

