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ABSTRACT 

 
Computing grids must deliver non-trivial qualities of service, in terms of response time, security, reliability, 

and coordination of various grid resources. Grid meta-schedulers play a crucial role into the execution of 

applications, because they match grid application jobs with available grid resources. However, a typical 

grid application is not an isolated single grid job, but a composition of multiple grid jobs. Existing grid 

schedulers provide match making algorithms tailored only for independent grid jobs, with limited support 

for complex workflow submission and management. 

 

This paper presents TSM-SIM, a two-stage metascheduler simulator for grid workflow applications. It 

supports dynamic grid resource and job simulation, and provides a submission interface for workflow grid 

applications as a single unit, rather than as a set of grid jobs. The proposed simulator simplifies complex 

grid workflow applications scheduling, by implementing two-staged metascheduler architecture. It also 

allows the study of performance evaluation in a repeatable and controlled manner. 

 

KEYWORDS 

 
Grid, grid computing, simulation, workflow, scheduling. 

 

 

1. INTRODUCTION 

 
Grid computing has evolved into a novel solution to solve complex computational and data 

processing problems [1]. The driving force for grid model adoption, especially in the scientific 

research community, is the possibility to harness virtual computation and data infrastructures, to 

satisfy unconventional application requirements. A typical scientific grid application is not an 

isolated single grid task, but a composition of multiple grid jobs and services that require 

coordinated scheduling and execution. When submitted for execution on a grid, application 

composing jobs are orchestrated by grid meta-schedulers, matching grid application jobs with 

available resources, in order to achieve optimal execution. To satisfy the scheduling need of 

complex grid applications, a two-stage metascheduling architecture as proposed in [2] decouples 

logical task meta-scheduling from physical task/node matchmaking, while achieving better 

overall performance. A two-stage grid metascheduler (TSM) relies on a workflow engine, 

referred to as a logical metascheduler, which identifies composing flow tasks that can be executed 

in parallel, executes data manipulation and logic associated with job transitions, and selectively 

submits grid task batches (rather than a complete flow) to a physical metascheduler. The physical 

metascheduler associates submitted tasks with grid nodes, manages their execution and provides 

feedback on execution status to the logical metascheduler. The logical/physical metascheduler 
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interface implements Web Services protocols, and provides greater flexibility regarding the 

choice of the grid and metascheduling implementation.  

 

The grid simulation scheme presented in this paper seeks to validate the effectiveness of the TSM 

architecture, through a comprehensive and rigorous testing process. Given its inherent complex 

and dynamic nature, computing grids are hard to evaluate. Setting up grid testbeds that are both 

realistic and adequately sized is an expensive and time consuming process, and therefore 

represent a barrier to meta-scheduler algorithm evaluation. Thus, through simulation the 

efficiency of the TSM architecture is measured by testing targeted metascheduling algorithms in 

diverse and comprehensive set of scenarios. 

 

The rest of this paper illustrates is organized as follows. Section 3 provides an overview of the 

TSM simulator system design. Implementation of the logical metascheduler is introduced in 

Section 4. Following that, Section 5 presents the details physical scheduler, and network 

modelling. Section 6 shows case of a simulation example using TSM-SIM. We then outline the 

sequence diagram of a TSM simulation flow, and how each of TSM components interacts with 

each other in section 4. In section 5, we present both the TSM logical and physical meta-

scheduler algorithms. Finally, section 6 illustrates an example grid workflow execution on a 

modelled grid environment. 

 

2. BACKGROUND AND RELATED WORK 

 
In order to evaluate the efficiency of two-stage metascheduling, it is important to run a number of 

tests, varying different parameters and platform scenarios, with the goal of producing statistically 

significant quantitative results. However, real-world grid platforms are hard to setup, labor-

intensive, and are generally constrained by the available hardware and software infrastructure. In 

order to preserve the security and consistence of valuable grid resources, grid administrators tend 

not to allow users to modify some grid parameters, such us participating nodes, network 

connections, bandwidth, some lower level grid middleware, and operating system configurations. 

For all these reasons, a simpler and reproducible approach to evaluate grid application scheduling 

requires the use of simulators. 

 

Several solutions have been proposed for grid application scheduling simulation. Bricks simulator 

[11] is a JAVA simulation framework used to evaluate the performance of applications and 

scheduling algorithms in Grid environments. It consists of a discrete event simulator, a simulated 

grid computing and data environment, as well as network components. It allows the analysis and 

comparison of various scheduling algorithms on simulated grid settings, taking into consideration 

the effect of network components on the overall performance. However, as it is tailored to support 

only individual jobs submission, it does not allow grid application workflow as an input, with all 

its data and sequence job dependencies. 

 

SimGrid [13] is a widely used toolkit for the simulation of parallel and grid application 

scheduling. It supports out-of-the-box the creation of time-shared grid and cluster resources. It 

also supports varying resource loads statically and dynamically. It also provides an extensibility 

programming layer for adding or customizing grid jobs and resources creation based on various 

parameters. Its programming interface provides several mechanisms to implement resource 

scheduling policy to be simulated. However, it suffers from some inherent limitations, such as the 

lack of time-shared resource modelling, and the difficulty to simulate background load needed to 

simulate real grid environments. 

 

GridSim [5] is also a popular simulation framework for grid and parallel applications. It supports 

different resource schedulers, including time-shared and space-shared resources. It contains a 
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network simulation component, used for simulating network topologies, links and switches. It 

also allows incorporating resource failure into grid application simulation. Like previous 

solutions, it does not offer a submission mechanism for entire grid application flows that manages 

dependencies automatically. However, the proposed TSM simulator in this paper will extend 

some of GridSim components to implement these missing functionalities. 

 

OptorSim [12] is a java based grid simulator focusing on data grids. It can simulate grid resources 

of different storage or computing elements, and allows the testing of data replication strategies. 

Its scheduling simulation is achieved through a resource broker, which implement scheduling 

schemes. It treats computing and data facility sites network nodes and routers. For data 

replication, it features a replica manager and optimizer that handle advanced data manipulation 

and management. Since it is a data grid oriented simulation, it lacks advanced resource 

scheduling, and does not offer support for grid workflow application execution. 

 

Virtual Grid Simulator (ViGs) [10] is a grid environment simulator that analyses performance and 

scalability of grid applications. It differs from other tools by supporting simulation of real 

applications. It can model different grid environment components, such as computing resources 

and networking elements. However, it accepts only single grid job submission, and thus cannot 

execute a grid application workflow and schedule its composing tasks accordingly. 

 

The motivation for TSM-SIM is the lack of some or all the following features in existing grid 

simulators: 

 

• Support for grid workflow application submission as a single unit: A grid application 

is generally written as a workflow of atomic jobs, where dependencies can be a complicated mix 

of data and control flow. None of the workflow grid application elements (programs, data, and 

control flow) is dependent on a physical resource on the executing grid environment. Discovery 

of grid resources (data sets, computing nodes, and network links) is often done by querying 

various grid catalogues. As a consequence, the workflow execution time is challenging to predict, 

and cannot be simply just the sum of times spent executing all its tasks. 

 

• Support for real time scheduling: In a workflow of tasks, critical tasks are those whose 

execution should have their earliest start times, in order to achieve the best workflow execution 

time. The sum of the execution times of critical tasks, their data input and output network transfer 

time, and their scheduling time, is the time spent for workflow task execution. In reality, this gets 

complicated as the workflow execution progresses. This critical path is changing, because the 

availability of grid resources, including computing nodes, network connections, and external load 

changes as the execution progresses. This particular grid workflow scheduling requirement is 

addressed by new adaptive scheduling approaches, where considerable consideration is given to 

both the instantaneous status of grid elements, as well as the critical path execution of grid flows 

[4]. The TSM simulator is designed to analyze scheduling workflow applications, and collect grid 

performance data in response to different grid scheduling algorithms. It models all active 

elements of a computing grid, including logical and physical metascheduler, grid resources, and 

network elements. It simulates resource contention caused by network resources and background 

load when generating grid workflow schedules. It supports dynamic scheduling schemes, where 

match-making decisions are made at each step, based on the execution status of previous steps. 

 

3. TSM SIMULATOR SYSTEM OVERVIEW 

 
The main objective of the TSM-SIM is to study and characterize workflow scheduling algorithms 

performance in grid environments. TSM-SIM allows comprehensive study of the dynamic 

interaction of multiple grid components, including grid users, resources, networks and various 
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scheduling algorithms. It provides a transparent virtualization and modelling of such key 

components, allowing the direct study of complex grid workflow, whose internal dynamics are 

difficult to model accurately. In short, TSM SIM provides a virtual grid infrastructure that enables 

grid workflow application experimentation with dynamic meta-scheduling algorithms, supporting 

controllable, repeatable, and observable experiments.  

 

3.1. Simulator Organization 

 
The TSM Simulator software organization consists of three main layers: TSM Virtual Messaging 

Bus, TSM GridSim Services, and TSM Custom Workflow Services, as shown in Figure 1. It uses 

an inter-process discrete event based system for communication. Each layer exposes functions for 

reuse with other services. The following section provides a detailed description of each layer 

components.  

 

 
Figure 1: TSM Simulator System View 

 

3.1.1. Virtual Messaging Bus 

 
At the core of the simulator is a virtual messaging bus implemented using the Simjava 

framework, inherited from GridSim [5]. Simjava is a inter thread messaging framework that 

allows sending tagged event from one entity to another within the same java process. Simjava 

entities are connected to each other using ports and can inter communicate by sending and 

receiving tagged event objects. A separate thread controls the lifecycle of the entity threads, by 

synchronizes their execution [9]. 

Figure 2 illustrates the main components of Simjava messaging system. It shows that "entity 1" is 

sending an event to "entity 3" through the virtual bus. TSM Simulator virtual bus simulates the 

network and communication links that connects real computing grid components. Simjava 

component of GridSim was extended with new defined messages and message types [8], in order 

to accommodate the requirements of TSM logical and physical metascheduler defined later in this 

paper. 
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Figure 2: TSM Virtual Messaging Bus 

 

 

3.1.2. GridSim Services 

 
TSM uses GridSim services [6] to abstract core grid entities. It supports the creation of the main 

entities for users, brokers, resources, information service, statistics, and network based I/O. The 

following describes the functionality that each GridSim entity encapsulates. 

 

• User Entity: Each instance of the user entity represents a grid user. The user entity is 

connected to the virtual grid simulation bus with a network link. Each user entity defines the user 

grid connection bandwidth, its network delay, and its network link Maximum Network Unit 

(MTU). For workflow scheduling, the user entity will keep track for the jobs execution set, and 

will update it as the workflow execution progresses. 

 

• Grid Resource Entity: grid resource entities represent computing and data storage units 

that perform the computing task. Grid resource entities can simulate any physical resources, 

including homogeneous clusters, heterogeneous grid resources, or even on a single computer. 

Each grid resource entity is characterized by its the number of processing elements (CPUs), its 

processing power in Million Instructions Per Second (MIPS), its internal allocation strategy, its 

running operating system and architecture. It can also be assigned some dynamic properties, such 

as current load.  

 

Grid resource will advertise both its static and dynamic properties to the Grid Information Service 

(GIS), but also on demand if requested by other TSM components. For example, in case of 

auction based scheduling, the auction broker will request the grid resource dynamic load, in order 

to assign resources to jobs efficiently. 

 

• Grid Information Service: Grid Information Service is the central repository entity that 

maintains a set of static and dynamic grid characteristics. It maintains an update copy of all 

available registered resources, so other entities can query the Grid Information Service for which 

resources are available at a certain time, and retrieve the instant load of active resources.  

 

3.1.3. Custom Workflow Services 

 
GridSim framework is intended to execute grid application simulation, where jobs are not 

connected in a workflow. In order to simulate the behaviour of a complex grid workflow 

processing, and evaluate TSM algorithms, new structures and functionalities were implemented 

beyond the existing GridSim components. This section describes the functionality implemented 

within each workflow related component. 

 

• Job Entity: The job entity extends the basic GridSim gridlet entity, which encapsulate a 

grid single job. It contains a linked list that points to each job parents and children, in order to 

capture job dependencies. Job entity contains, in addition to standard job attributes such as job 
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size in Million of Instructions Per Second (MIPS), job input and output data, two job lists for the 

job parents and children. These dependencies are captured, because it is used by the logical 

metascheduler to build the execution set at each logical metascheduling iteration. 

 

• Logical Metascheduler Entity: This entity implements the logic and algorithms for the 

logical metascheduler. It takes a grid application workflow as input, and then builds execution 

sets to be sent to the physical metascheduler at discrete intervals. Elements are added to the 

submission set only if its predecessors have been executed successfully. The discrete interval can 

be configured so that the execution set update is done more or less regularly. 

 

• Physical Metascheduler Entity: The physical metascheduler allocates the grid resources 

to each execution set components. TSM Physical Metascheduler performs resource discovery and 

evaluation searches in grid information services for resources that match the resource 

specification of a workflow task. The resources discovered by this step are those that match the 

requirements of hardware architecture and software configuration of the workflow task, for 

example, the CPU architecture, the operating system and version, the total processing units and 

the software installed on the resource. This initial resource selection step is only preliminary, and 

does not evaluate the performance a resource can provide for the task execution. It only finds the 

resources that are able to "execute" the task. Following this initial selection, TSM Physical 

Metascheduler will apply a predefined algorithm to elect the best matching resource for each grid 

job. Section5.3 outlines the algorithm proposed part of TSM-SIM. 

 

• Background Load Generator Entity: The background load generator generates external 

traffic, and submits it to the simulated grid components, the same way real applications do. It 

generates network traffic, as well as grid resource load. Background traffic data will travel the 

network elements (routers and nodes) from the user entity to the resource entity and back. In 

order to simulate real load situations, it uses Poisson and normal distribution algorithms to 

generate its data size and inter-arrival parameters. 

 

4. SIMULATION USER SCENARIOS 

 
To use the simulator, a user traces the following steps:  

 

1. Define a workflow application, specifying the properties of every composing job. The 

user should also specify each job set of parents and children. 

2. Define a set of physical grid resources, with their computing properties. 

3. Define the complete network map: this includes all the network links and routers between 

all the computing resources, as well as between the resources and the grid user submitting 

the grid workflow application. The TSM simulator supports various network topologies, 

and allows the creation of diverse network elements such as routers and network links. 

The simulator also supports defining link capacity and link latency for network elements. 

4. Define logical and physical metascheduler algorithms, 

5. Start the simulator, which triggers the grid application submission to the simulation 

engine. 

6. Observe the execution of the application, and collect results and performance data. 

 

Once the simulator starts, it creates one or more grid users. Each grid user will create a separate 

instance of a logical and physical metascheduler. The simulator creates a single processing thread 

for each participating element that run independently of other elements. These elements 

communicate with each other through a discrete event communication bus. For example, for a 

logical simulator to send a job to the physical simulator, it creates a logical simulation event; 

populate it with the grid job properties such as its input data and processing requirements. It will 
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then tag such event to indicate that it is a job submission and intended to be consumed by the 

physical simulator. It will then place it in the simulation communication bus, pending that the 

physical simulator entity will retrieve it for consumption. Such single logical bus, with tagged 

events constitutes the core inter-thread messaging framework that implements a fire-and-forget 

messaging paradigm. The logical metascheduler obtains the list of grid resources associated with 

the virtual grid environment from the Grid information service. The information service acts as a 

central collector to the grid element state, including available grid resources and their properties.  

 

The scheduling sequence of events is outlined in Figure 3. The user entity will build an execution 

set, based on the grid jobs that have their dependencies resolved. Such execution set is then 

submitted to the workflow broker, which will check enough resources are available to execute all 

the submission set. Note that this initial check does not map one-to-one a grid job to a grid 

resource, but rather verifies that enough resources with the minimum requirement are available at 

that stage. If the number of resources available are not enough for all the grid jobs, some jobs will 

be put in the next execution set, and will be submitted again to the workflow broker in the next 

simulation tick. Otherwise, the set will be marked as ready for logical physical scheduling, and 

will be submitted to the auction broker. This broker will create a workflow weight scheduler for 

each execution set, and will initiate an auction. The purpose of the auction is to let all the 

available resources to "bid" for the execution of this job. The selection process follows the 

algorithm defined later in section 5.2. Once the winners are selected, each job is submitted to each 

selected grid resource. Upon completion, the workflow broker is notified, which triggers the user 

entity to mark such job as executed, and rebuilds a new execution set. When no job is left, the 

simulation is marked as complete. 

 

Figure 3: Simulation Sequence Diagram in TSM-SIM 

 

 

5. SCHEDULING ALGORITHMS 

 
In this section, both logical and physical metaschedulers are presented and different algorithms 

are presented.  
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5.1. Logical Metascheduler Algorithms 

 
The simulator accepts the grid application flow as a digraph (directed graph). It processes the 

flow composing tasks (graph nodes), data and control flow (edges), and produces a set of task 

pools, called Execution Set (E) that are submitted to the physical metascheduler in order. None of 

the task of certain set can be submitted to a physical scheduler unless all the jobs of the preceding 

set have been submitted. However, the composing tasks of each pool can be submitted in any 

order. The execution set is updated after each execution success notification. 

 

The following sections define the basic and modified logical metascheduler algorithms.  

 

5.1.1. Base Logical Algorithm 

 
The base logical scheduling algorithm is defined by the algorithm shown in Figure 4. It outlines 

the process of building the execution set E. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Base TSM Logical Scheduling Algorithm 

 

5.1.2. Logical Algorithm Variants 

 
Two variants of the base TSM algorithms are considered. The goal is to introduce additional 

tuning factors specific to certain grid applications and test bed layouts. 

 

• Submission Delay Variant (TSM-SDV): this variant introduces of a delay between the 

receipt of the first notification, and the submission of the next execution set. A delay will allow 

for potentially more execution notifications, therefore a bigger execution set. This variant will be 

studied with various delay times, in order to analyze its impact on grid utilization of the grid, and 

total grid application execution time. 
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• Block Notification Variant (TSM-BTV): In this TSM, the next algorithm execution set 

will not be updated immediately after the first successful job notification. Instead the algorithm 

will wait for a certain k numbers of notification, where k is directly correlated with the size of E. 

As for the previous variant, a delay will allow for potential addition execution notifications, 

therefore a bigger execution set. This variant will be studied with various values of k, in order to 

analyze its impact on grid utilization of the grid, and total grid application execution time. 

 

5.2. Physical Metascheduler Algorithms 

 
Different grid job/grid resource algorithms are used in grid environments. They can be classified 

into three main categories: time-shared, space-shared and backfill algorithms. Time-shared grid 

scheduling algorithm allocates grid resources in a round robin scheme, and exclusively allocated 

a grid resource to a grid job until it is completed. Space shared grid scheduling algorithm 

allocates grid resources in a First Come First Serve (FCFS) and executes more than one 

processing element (PE) to a grid job. Backfill algorithms attempts to reorder jobs queued to be 

executed, by moving small jobs ahead of big ones in the scheduling queue. The purpose of job 

prioritization is to fill in holes in the schedule without delaying the first job in the queue. Two 

variants of this class of algorithms exist. The first is called aggressive backfilling, where short 

jobs will automatically carry higher priority over long jobs. The second is called conservative 

backfilling, where the acceleration of short jobs happens only of such reorder does not delay any 

job in the schedule queues. 

 

For TSM-SIM physical scheduler, we define an algorithm we call Workflow Weight Algorithm 

(WWA). It is a time shared, first-come-first-served class algorithm that captures the instant load 

of each grid resource using an auction style election process. The following section describes the 

auction model WWA implements. 

 

Each grid resource (Ri 1 < i < m) is characterized by its number of machines Rmi (where Rmi=1 

for a non-cluster resource), the number of its processing units Rpui, its processing power Rppi in 

Million Instructions Per Seconds (MIPS), its available memory Rmemi, and its network 

connection speed Rni. Each grid job/task (Tj , 1 < j < n ) defines the number of processor units 

Tpuj and memory requirement that need to be satisfied at a single grid resource, in order to be 

considered in the match-making process. Each grid job will advertise its computing power needs 

Tppj, its memory requirement Tmemj, its total data input size Tinj, its total output size Toutj, its 

height in the workflow tree Thij, and its offspring count Toffj. The offspring count corresponds to 

the number of leaves in the grid workflow tree, while the workflow high corresponds to the 

longest path from the tree root to its leaves. 

 

The algorithms works as follow: In the physical metascheduler, a discrete scheduling interval ∆τ 

will be defined (for example a 10 second interval). At the beginning of each interval, the 

metascheduler will calculate a scalar value referred to as grid task weight Tweightj. This is a 

quantifying value of all the computing characteristics of a grid job/task, and is defined as follows:  
 

                      Tweightj=CT × Tpuj × Tppj × Tmemj × Tinj × Toutj × Thij × Toffj                    (1) 
 

where CT  is a constant at each scheduling iteration. 

Simultaneously, a similar weight, referred to as the Resource Weight Rweighti, will be calculated. 

The logical scheduler will request from each grid resource site to submit some dynamic 

computing data. Only grid resources that are free can submit their data, indicating that they are 

willing to participate in the current scheduling round. The metascheduler will then calculate the 

Resource Weight Rweighti defined by the following equation: 
 

                                 Rweighti=CR × Rmii × Rpui × Rppi × Rmemi × Rni        (2) 
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The next step sorts all Tweight and Rweight values in a descending order. A height Rweight value 

indicates a fast grid resource, while a high Tweight value indicates a demanding grid job/task. The 

algorithm assigns the grid job/task of highest Tweight value to the grid resource of the highest 

Rweight value, with the condition that the following hard requirements of processing units and 

required memory are satisfied: 
 

Tpuj < Rpui 

Tmemj < Rmemj 

 

Note that the number of grid tasks "n" is generally different from the number of grid resources 

"m" (being equal is a special case). In case of n < m, only the available fast grid resources of the 

grid are being used. In the case of n > m, a resource starvation is happening, and only a portion of 

the execution set is actually assigned a grid resource. Grid tasks that are not scheduled will be 

part of the next scheduling round.  

 

6. SIMULATION EXAMPLE 

 
To illustrate the simulation process a sample grid workflow application is used. The sample 

consists of a 10-job grid workflow defined by its graph defined in Figure 5. 

 

 
 

 

 

 

 

 

 

Figure 5: A 10-job workflow Grid Application 

 

6.1. Workflow Application Definition 

 
The simulator accepts a workflow application specification as an ASCII text file. The input 

definition file has a pre-determined format that contains the total number of workflow jobs, as 

well as the following grid job properties: 

 

• Job number. 

• Job computing requirement in MIPS. 

• Job total data input size.  

• Job total data output size.  

• List of parent jobs.  
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Figure 6 shows a listing of the grid application workflow definition file given in Figure 5. 

 

Figure 6: Grid Application Workflow Definition File 

6.2. Grid Resource Definition 

 
Similar to the grid workflow application definition, the simulator accepts the grid resource 

definition as an input file. The grid resources description file is an ASCII text file that contains 

the following information: 

 

• Resource name. 

• Resource link bandwidth in bits/second. 

• Resource link propagation delay in seconds. 

• Resource link maximum transmission units (MTU) in bits. 

• Resource architecture.  

• Resource operating system.  

• Resource number of machines. 

• Resource number of processing units/CPUs. 

• Processing unit million instructions per second (MIPS). 

• Resource allocation strategy. 
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 Figure 7 shows a listing of the grid resource definition file. 

 

Figure 7: Grid Resources Definition File 

6.3. Network Map Definition 

 
The simulator uses a network map definition file to initialize its network entities and their 

properties. The input network description file is a text file that lists the number of routers, their 

speed, as well as all the network links that connects grid resources to routers, as well as inter-

router links. 

 

An example of a network map description file is shown in Figure8. 

 

Figure 8: Grid Network Map Definition File 
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6.4. Simulator Output 

 
The simulator tracks different execution performance values. Each job is tracked from the time it 

is submitted to the logical metascheduler, to the end of its execution. This includes the duration of 

its logical scheduling, its physical scheduling, its input data transfer, its execution time, and its 

output data transfer. 

 

Before each simulation execution, various execution parameters are set. This includes the logical 

metascheduler variant (none, TSM-SDV, TSM-BTV), the logical metascheduler constants 

(duration constant for TSM-SDV, correlation constant for TSM-BTV), the background load 

factor (no load, light load, high load). 

 

Figure 9 shows a summary execution report, listing job execution order, start and end times, as 

well as the grid resource selected for each job. 

 

 
 

Figure 9: TSM-SIM Execution Report Summary 

 

Figure 10 shows a section of a verbose version of the execution report, listing other key data such 

as simulation time for data transfer beginning as end, scheduler time per job. The report shows 

only the output relevant to job 1, 5, and 2, for clarity purposes. 
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Figure 10: Per Job TSM-SIM Detailed Execution Report 

 

7. CONCLUSIONS AND FUTURE WORK 

 
This paper outlines the details of TSM-SIM, a two-stage grid metascheduling simulator aimed at 

grid workflow applications. It is primarily intended to test the TSM architecture on a simulated 

environment by building on existing GridSim services to build customized two-stage scheduling 

services. TSM-SIM provides a realistic simulation of grid workflow application in a dynamic grid 

environment, taking into consideration grid resources load and background network traffic. TSM 

adaptive framework is well suited to analyse complex grid application workflows and execution 

environments, such us grids and computing clouds [3].  

 

Future work will focus on identifying grid workflow applications that will benefit from the two-

stage metascheduler. With this purpose in mind, we are currently testing TSM-SIM with a set of 

NAS Grid benchmarks, a grid reference benchmark suite will be used to identify a specific class 

of grid workflow applications that might perform better under the proposed TSM scheduler. 

Future simulations will model the Texas Tech University computing grid. The impact of other 

factors, such as grid load metrics, and scheduling overhead will be explored. 
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