
International Journal of Grid Computing & Applications (IJGCA) Vol.2, No.3, September 2011

DOI: 10.5121/ijgca.2011.2302 13

GRID META BROKER SELECTION

STRATEGIES FOR JOB RESERVATION AND
BIDDING

D. Ramyachitra
#1

, S. Poongodi
#2

#1

 Asst.Prof , Department of Computer Science,

Bharathiar University, Coimbatore- 46.
#1
 jaichitra1@yahoo.co.in

#2

 M.Phil Scholar, Department of Computer Science

Bharathiar University, Coimbatore- 46.
#2 poongodimsc@gmail.com

ABSTRACT

Grid computing is applying the resources of many computers in a network to a single problem at the same

time. In scientific or technical problem it requires a great number of computer processing cycles or access

to large amounts of data. In this paper we depict and evaluate broker selection strategies for job

reservation and bidding. Especially, this paper analyzed two different types of existing algorithms simple

and categorized aggregation algorithm. The first algorithm which aggregates the resource information acts

as input for the categorized aggregation algorithm to assign rank for the resources. Meta broker allocates

the job based on the rank. Form our assessment performed with simulation tool, we proposed advanced job

reservation algorithm for resource allocation. Even though no resources are free to run the job, using this

advanced resource algorithm we can reserve the resource for job allocation. In addition we proposed

bidding technique when more than one users approach same resources. From the simulation results, we

conclude that the proposed system reduces the execution time and generates better revenue for Meta

broker.

KEYWORDS

Grid Computing, Metabroker, Resource data Aggregation, Broker selection, Job allocation, Advance

reservations, Bidding.

1. INTRODUCTION

Grid computing usually consists of one main computer that distributes information and tasks to a

group of networked computers to accomplish a common goal [1].

Grid scheduling is also called super scheduling, Meta scheduling and grid brokering. It is one of

the advanced features of grid middleware. It is defined as the process of scheduling jobs where

resources are distributed over multiple administrative domains. This process can include

searching multiple administrative domains to use a single machine or scheduling a single job to

use multiple resources at a single site or multiple sites.

International Journal of Grid Computing & Applications (IJGCA) Vol.2, No.3, September 2011

14

In a Grid environment, a resource broker, also called meta-scheduler [2], is usually used to
manage user submitted jobs and the scheduling of jobs for execution to the available Grid

resources. A Grid meta-scheduler has its own interfaces for the functionalities it provides and

also has its own job scheduling objectives. Each grid domain is typically managed by a grid

resource broker; the task of scheduling on top of brokers can be called Meta brokering or broker

selection.

The grid resource broker provides pairing services between the service requester and the service

provider. This paring enables the selection the selection of best available resource from the

service provider for the execution of a specific task [3].

In fig.1, different machines can be specified and the different meta brokering policies can be

specified to schedule the jobs [4]. When the brokering system starts, all the different layers of the

model are instantiated, from the local reservation tables which model how the jobs are mapped to

the processors to the brokering component that manages the jobs submitted to the system. In a

grid resource broker usually requires the specification of the job requirements from the user. In

many cases, the meta brokering policies use these requirements to carry out the matchmaking

with the local resources. To allow this, we have extended the Standard Workload Format to

specify the job requirements in the workload to be simulated. Each requirement is composed of an

identifier, an operator and a value. In the brokering system, the following requirements can be

specified for each grid job: memory in MB (e.g., 1024 MB), processor vendor (e.g., Intel, AMD),

processor clock speed in MHZ (e.g., 1200 MHZ), operating system (e.g., Linux, AIX), number of

processors (e.g., 4 processors) and disk size in MB (e.g., 1000 MB).

Local resource manager manages a set of resources. It can include a queuing system with a local

job scheduler that may have its own local policies. Computing resources are the physical

machines where user jobs can be allocated and executed. They are also called Computing

Elements (CE).

International Journal of Grid Computing & Applications (IJGCA) Vol.2, No.3, September 2011

15

Figure 1. Brokering system [4]

2. RELATED WORK

Regarding Grid Meta broker selection strategies for job reservation and bidding the main paper

have been published about Grid broker selection strategies using aggregated resource information

[5].

Grid broker selection strategies using aggregated resource information, we have addressed the

problem of broker selection in multiple grid scenarios. We have described and evaluated the

BrokerRank policy and two variant of this policy: using resource information in aggregated form,

and coordinating the scheduling with the underlying scheduling layers. We also have analyzed

two different resource aggregation algorithms that have been used by the broker selection

policies. Before evaluating broker selection policies, we have studied the scalability of Simple

and Categorized resource aggregation algorithms. The results show that the algorithms are

scalable in terms of resource information size, and their aggregation processing time is acceptable

for an interoperable grid environment. However, we did not address the gain in matching time

with aggregated resource information.

Schedulers that allow requesting resources of more than one machine for a single job may

perform load balancing of workloads across multiple systems. Each system would then have its

own local scheduler to determine how its job queue is processed. It requires advance reservation

capability of local schedulers [6].

International Journal of Grid Computing & Applications (IJGCA) Vol.2, No.3, September 2011

16

3. AGGREGATION ALGORITHM

In this section, we analyze two existing aggregation algorithms. The first one is SIMPLE

aggregation algorithm, other one is CATEGORIZED aggregation algorithm.

The SIMPLE AGGREGATION [5] algorithms do the resource data as much as possible looking

for maximum compression for scalability; this algorithm loses more detailed information. We use

the algorithm to reduce the capacity of memory size and aggregate the values.

Algorithm For Simple Aggregation

Input: proc_type, Proc_speed, OS_type, Memory_size, RAM_size

Output: Aggregated Result

 1. Give the input data proc_type, Proc_speed, OS_type, Memory_size, RAM_size

 2. Aggregation result made on the basis of Proc_type and OS_type

 3. The number of resources that have been aggregated under same category (count) and the

sum of all resources values (total) computed.

Simple Aggregation Algorithm Result

 CS_AMD Athlon

 ProcType='{(AMD Athlon, <count=9>)}'

 ProcSpeed='{(2180520,<count=9>,<total=2180520>)}'

 CPUUtil='{(162<count=9>, <total=162>)}'

 Total CPUs='{(189<count=9>, <total=189>)}'

The second algorithm CATEGORIZED [5] tries to find a good balance between the accuracy of

the resource data and the scalability. In addition to the input set of resources, relationships and

fixed categories, it also considers different attributes and threshold values.

In this algorithm we use the percentage of processor load for defining subcategories of

ComputingSystem resources, and the percentage of used physical memory and used disk for

OperatingSystem and FileSystem resources respectively. We also use three different thresholds
values: LOW (0:33), HIGH (0:66) and MEDIUM (between LOW and HIGH) [5]. We can

increase the level of detail by defining more threshold values. Therefore, as we have commented

previously, the main purpose of this algorithm is to avoid the loss of important resource

characteristics but maintaining the benefits of aggregation. For example, when we select a broker

that contains an aggregated resource of Intel processor vendor and CPULoad attribute of

subcategory LOW, we can be sure that some Intel-based computers with low CPU load will be

available. The algorithm first computes the category and subcategory of resources depending on

International Journal of Grid Computing & Applications (IJGCA) Vol.2, No.3, September 2011

17

attributes value given a set of thresholds that define the discrete categories. Afterwards it
computes the information that contains the resource in aggregated form within the resources of

the same category and subcategory. Finally, it establishes the relationships between the

aggregated resources respecting the relationships between the original resources.

Algorithm for Categorized Aggregation

Input: Proc_Speed, Total_memory, AvailRam_size

Output: Ranked Brokers

 1. Take Proc_Speed, Total_memory, AvailRam_size the resource values

 2. Set the threshold value. Ranks are set to the brokers based on the threshold.

 3. IF the resources have high capacity then set Rank as 1, else IF medium capacity set the

Rank as 2, otherwise Rank as 3.

 4. Resources allocate the job if it has Rank 1.

 5. Store the resource values in metabroker database.

Categorized Aggregation Algorithm Result

 CS_AMD Athlon _High

 Proc Type='{(AMD Athlon ,<count=9>)}'

 Proc Speed='{(2180520,<count=9>,<total=2180520>)}'

 CPU Util='{(162<count=9>,<total=162>)}'

 Total CPUs='{(189<count=9>,<total=189>)}'

Ranks are set to the brokers based on the threshold value. The threshold value is calculated using

total memory, RAM size, CPU_speed. The High value is ranked as 1, the Mid value is ranked as

2, and then Low value is ranked as 3. We are using this rank Meta broker to select the high

capacity resource to job allocation.

International Journal of Grid Computing & Applications (IJGCA) Vol.2, No.3, September 2011

18

Figure 2. Flow Diagram of the aggregation resource

4. META BROKER ALLOCATES THE JOB TO THE USERS

Algorithm for Job Allocation

Input: Job_Length, File_size, Output_size

Output: Job execution Result

1.Users send the resource request

2. Meta broker match the request with the brokers based on Rank. If the request

matches then the meta broker reply to the user. To submit your Job.

 3.When the users receive the acknowledgement from the metabroker, users submit the

 job details for execution.

 4. IF the job arrived for execution, metabroker add Job Submitted Queue and allocate

the resource.

 5. Update finished jobs and send result to the users.

 6. After the execution, set the status of resource as FREE. Remove finished job from

the Execution Set and add to Finished Set.

 7. We use the First Come First Serve Policy to allocate the job

Input Broker Resource

Proc_Type, Proc_Speed, OS_Type, RAM_Size,

Memory_Size

Aggregate the resources

using Simple Aggregation

Algorithm

Ranks are set to the Broker using

Categorized Aggregation Algorithm

Store resources in

Meta Broker DB

International Journal of Grid Computing & Applications (IJGCA) Vol.2, No.3, September 2011

19

User

Meta Broker

Receive Message if resources match send

Job description

Resources

User sends resource Requirement

Matching Process

Receive job description

Execute the job and send the result

Figure 3. Flow diagram of the job allocation

5. ADVANCED JOB RESERVATION ALGORITHM

The advanced reservation feature makes it possible to obtain a guaranteed start time in advance. A

guaranteed start time brings two advantages [7]. It makes it possible to coordinate the job with

other activities, and resource selection can be improved as the resource comparison is based on a

guaranteed start time rather than on an estimate. The reservation protocol developed supports two

operations: requesting a reservation and releasing a reservation. A reservation request contains the

start time and the requested length of the reservation, the requested number of CPUs, and

optionally, an account to be charged for the job.

Proposed Algorithm for Advanced reservation

Input: Proc_type, Proc_Speed, OS_Type, Total_memory, AvailRam_size

Output: Reservation ID

1.User sends the resource request to Metabroker.

2.Metabroker matches the user request with the broker based on the Rank.

3.IF the user request match with available resource of the Metabroker then it accept

the request

4.IF a resource in Metabroker is busy then it send the resource reservation ID to the

user.

Using this advanced job reservation algorithm the matching time done by metabroker is reduced.

So the execution time also reduces.

International Journal of Grid Computing & Applications (IJGCA) Vol.2, No.3, September 2011

20

Figure 4. Flow diagram of the Proposed System

6. BIDDING ON USER JOB ALLOCATION

When more than one users approach the same resource request for job execution, Metabroker

match the resource request and find the resource availability where as the resources availability

will be sufficient for only one user then resource will be allocated based on bidding. Bidding

process will be carried as follow as

 Let us consider 4 users want same resource

1. Meta broker select the user who have bided for higher amount.

2. Remaining users will get advanced reservation ID.

3. Reservation ID is provided based on descending order (High to low) on bidding amount.

According to this assumption the main goal of the resources is to increase their own profits

without considering the amount of time during which the resource is busy. The Bidding process

generate the revenue to the Meta broker.

International Journal of Grid Computing & Applications (IJGCA) Vol.2, No.3, September 2011

21

7. SIMULATION RESULTS

7.1 Performance Comparison of Original Memory size with Aggregated Memory

size

The original Data got from the brokers takes more memory space. So the Meta broker use Simple

aggregation algorithm to reduce the memory space and aggregate the resource information. This

result is used to reduce the matching time of resource and reduce the memory space.

Table 1: Memory Size of Aggregated Data

No of resources Original Data (KB) Simple Aggregation Data (KB)

50 16 8

100 32 16

150 32 16

200 40 24

250 40 24

300 48 32

Figure 5. Memory Size of Aggregated Data

Meta broker uses Simple Aggregation algorithm and there is a reduction in the memory space

from 50% to 67% compared to the storage of original data.

International Journal of Grid Computing & Applications (IJGCA) Vol.2, No.3, September 2011

22

7.2 Performance Comparison of Job Execution Time with Reserved Job Execution

Time

Using this Advanced Job Reservation Algorithm the matching time done by meta broker is

reduced. So the Execution Time of a job also reduces. This Proposed system is used to reduce the

Time.

Table 2: Job Execution Time

No of

Jobs

Job Execution time

(ms)

Reserved Job Execution time

(ms)

50 150.804598 20.014128

100 251.954023 131.857782

150 217.931034 55.333176

200 251.034483 154.815164

250 57.931034 55.921827

300 253.793103 17.070874

Figure 6. Job Execution Time

International Journal of Grid Computing & Applications (IJGCA) Vol.2, No.3, September 2011

23

The proposed Advanced Job Reservation Algorithm reduces the Execution time from 10 % to
75% compared to the existing one.

7.3 Performance Comparison of Matching Resources with Reserved Matching

Resources

During resource reservation process the resource availability status is high whereas before

reservation resource availability status is low.

Table 3: Matching Resources

User Request Without Reservation Reservation

5 8 10

10 18 20

15 17 18

20 24 26

25 28 30

Figure 7. Matching Resources

Meta broker use Reservation process to increase the resource availability status from 80% to

93%.

8. CONCLUSION

In this thesis we use aggregation algorithms for aggregating the data. In the proposed system use

of advanced job reservation algorithm reduces execution time compared to the existing one. The

International Journal of Grid Computing & Applications (IJGCA) Vol.2, No.3, September 2011

24

usage of advanced job reservation algorithm reduces the matching time which in turn reduces the
execution time of the user jobs. Also revenue generation is satisfactory in the proposed method of

bidding algorithm.

9. FUTURE ENHANCEMENT

In future we can use brokering scheduling polices for allocating jobs. Brokering scheduling

policies are RealTime, Earliest Deadline First, or Job Rank (JR)-backfilling policies for the job

scheduling, and resource selection can be based on the matchmaking approach. We can also use

dynamic reservation method for job reservation.

REFERENCES

[1] I. Foster, C. Kesselman, “Computational Grids, the Grid: Blueprint for a New Computing

Infrastructure”, Morgan aufmann, 1998. pp. 15-52.

[2] Rodero, F. Guim, J. Corbalan, L. Fong, Y. Liu, S. Sadjadi, “Looking for an evolution of grid

scheduling: Meta-brokering”, Grid Middleware and Services: Challenges and Solutions

(2008) 105_119.

[3] Joshy Joseph, Craig Fellenstein (2004) Grid Computing, IBM press.

[4] Ivan Rodero, Francesc Guimb, Julita Corbalan, Liana Fong, S. Masoud Sadjadi,

“Interoperable Grid Scheduling Strategies”, Barcelona Supercomputing Center (BSC-CNS),

Spain.

[5] Ivan Rodero, Francesc Guimb, Julita Corbalan, Liana Fong, S. Masoud Sadjadi, “Grid broker

selection strategies using aggregated resource information”, Barcelona Supercomputing

Center (BSC-CNS), Spain

[6] Peter Gradwell, “Overview of Grid Scheduling Systems”, Department of Computer Science,

University of Bath.

[7] Erik Elmroth and Johan Tordsson, “A Grid Resource Broker Supporting Advance

Reservations and Benchmark-Based Resource Selection”, Dept. of Computing Science and

HPC2N, Ume University, SE-901 87 Umea, Sweden.

International Journal of Grid Computing & Applications (IJGCA) Vol.2, No.3, September 2011

25

Author’s profile

Mrs. S. Poongodi has completed M.Sc., in Computer Science. She is

currently pursuing her M.Phil., in Computer Science in the School of

Computer Science and Engineering, Bharathiar University, Coimbatore. She

has published a paper in national conference and a paper in international

journal. Her field of interest is Grid Computing.

Mrs.D. Ramyachitra has completed M.C.A., M.Phil in Computer Science.

She is working as Assistant Professor in the School of Computer Science and

Engineering, Bharathiar University, Coimbatore. She is also pursuing Ph.D.,

She has published 9 papers in national & international conferences and 6

papers in national & international journals. Her field of research interest is

Grid Computing.

