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ABSTRACT 

This paper investigates the hybrid chaos synchronization of identical 4-D hyperchaotic Qi systems, 4-D 

identical hyperchaotic Jia systems and hybrid synchronization of 4-D hyperchaotic Qi and Jia systems. 

The hyperchaotic Qi system (2008) and hyperchaotic Jia system (2007) are important models of 

hyperchaotic systems. Hybrid synchronization of the 4-dimensional hyperchaotic systems addressed in 

this paper is achieved through complete synchronization of two pairs of states and anti-synchronization 

of the other two pairs of states of the underlying systems. Active nonlinear control is the method used for 

the hybrid synchronization of identical and different hyperchaotic Qi and Jia systems and the stability 

results have been established using Lyapunov stability theory. Since the Lyapunov exponents are not 

required for these calculations, the proposed nonlinear control method is effective and convenient to 

achieve hybrid synchronization of the hyperchaotic Qi and Jia systems. Numerical simulations are 

presented to demonstrate the effectiveness of the proposed chaos synchronization schemes. 
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1. INTRODUCTION 

Chaotic systems are dynamical systems that are highly sensitive to initial conditions. The 

sensitive nature of chaotic systems is commonly called as the butterfly effect [1]. Chaos is an 

interesting nonlinear phenomenon and has been extensively and intensively studied in the last 

two decades [1-23]. Chaos theory has been applied in many scientific disciplines such as 

Mathematics, Computer Science, Microbiology, Biology, Ecology, Economics, Population 

Dynamics and Robotics. 

In 1990, Pecora and Carroll [2] introduced a method to synchronize two identical chaotic 

systems and showed that it was possible for some chaotic systems to be completely 

synchronized. From then on, chaos synchronization has been widely explored in a variety of 

fields including physical [3], chemical [4], ecological [5] systems, secure communications [6-7], 

etc. 

In most of the chaos synchronization approaches, the master-slave or drive-response formalism 

has been used. If a particular chaotic system is called the master or drive system and another 

chaotic system is called the slave or response system, then the idea of synchronization is to use 
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the output of the master system to control the slave system so that the output of the slave system 

tracks the output of the master system asymptotically.  

Since the seminal work by Pecora and Carroll [2], a variety of impressive approaches have been 

proposed for the synchronization of chaotic systems such as the sampled-data feedback 

synchronization method [8], OGY method [9], time-delay feedback method [10], backstepping 

method [11], adaptive design method [12], sliding mode control method [13], etc.  

So far, many types of synchronization phenomenon have been presented such as complete 

synchronization [2], phase synchronization [5, 14], generalized synchronization [7, 15], anti-

synchronization [16, 17], projective synchronization [18], generalized projective 

synchronization [19, 20], etc. 

Complete synchronization (CS) is characterized by the equality of state variables evolving in 

time, while anti-synchronization (AS) is characterized by the disappearance of the sum of 

relevant variables evolving in time. Projective synchronization (PS) is characterized by the fact 

that the master and slave systems could be synchronized up to a scaling factor, whereas in 

generalized projective synchronization (GPS), the responses of the synchronized dynamical 

states synchronize up to a constant scaling matrix .α It is easy to see that the complete 

synchronization (CS) and anti-synchronization (AS) are special cases of the generalized 

projective synchronization (GPS) where the scaling matrix Iα = and ,Iα = −  respectively. 

In hybrid synchronization of chaotic systems [20], one part of the system is synchronized and 

the other part is anti-synchronized so that the complete synchronization (CS) and anti-

synchronization (AS) coexist in the system. The coexistence of CS and AS is highly useful in 

secure communication and chaotic encryptation schemes. 

This paper is organized as follows. In Section 2, we derive results for the hybrid 

synchronization of identical hyperchaotic Qi systems ([22], 2008). In Section 3, we derive 

results for the hybrid synchronization of identical hyperchaotic Jia systems ([23], 2007). In 

Section 4, we derive results for the hybrid synchronization of non-identical hyperchaotic Qi and 

Jia systems. The nonlinear controllers are derived using Lyapunov stability theory for the hybrid 

synchronization of the two hyperchaotic systems. The proposed nonlinear control method is 

simple, effective and easy to implement in practical applications. Conclusions are contained in 

the final section. 

2. HYBRID SYNCHRONIZATION OF IDENTICAL QI SYSTEMS 

In this section, we consider the hybrid synchronization of identical hyperchaotic Qi systems 

[22]. Thus, we consider the master system as the hyperchaotic Qi dynamics described by 

                     

1 2 1 2 3

2 1 2 1 3

3 3 4 1 2

4 4 3 1 2

( )

( )

x a x x x x

x b x x x x

x cx x x x

x dx fx x x

ε

= − +

= + −

= − − +

= − + +

&

&

&

&

                                                                             (1) 

where  ( 1, 2,3, 4)ix i = are the state variables and , , , , ,a b c d fε are positive constants.  

When 50,a = 24,b = 13,c = 8,d = 33ε = and 30,f = the Qi system (1) is hyperchaotic (see 

Figure 1).  
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Figure 1. State Orbits of the Hyperchaotic Qi System (1) 

We consider the hyperchaotic Qi dynamics also as the slave system, which is described by   

                  

1 2 1 2 3 1

2 1 2 1 3 2

3 3 4 1 2 3

4 4 3 1 2 4

( )

( )

y a y y y y u

y b y y y y u

y cy y y y u

y dy fy y y u

ε

= − + +

= + − +

= − − + +

= − + + +

&

&

&

&

                                                                      (2) 

where  ( 1, 2,3, 4)iy i = are the state variables and  ( 1, 2,3, 4)iu i = are the active controls. 

For the hybrid synchronization of the identical hyperchaotic Qi systems (1) and (2), the 

synchronization errors are defined as  

                  1 1 1 2 2 2 3 3 3 4 4 4,   ,  ,   e y x e y x e y x e y x= − = + = − = +                                (3) 

From the error equations (3), it is clear that one part of the two hyperchaotic systems is 

completely synchronized (first and third states), while the other part is completely anti-

synchronized  (second and fourth states) so that complete synchronization (CS) and 

anti-synchronization (AS) coexist in the synchronization process of the two 

hyperchaotic systems (1) and (2). 

A simple calculation yields the error dynamics as 

                 

1 1 2 2 2 3 2 3 1

2 2 1 1 1 3 1 3 2

3 3 4 4 1 2 1 2 3

4 4 3 3 1 2 1 2 4

( )

( ) ( )

( )

( )

e ae a y x y y x x u

e be b y x y y x x u

e ce y x y y x x u

e de f y x y y x x u

ε

= − + − + − +

= + + − + +

= − − − + − +

= − + + + + +

&

&

&

&

                                                 (4) 
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We consider the nonlinear controller defined by 

        

1 2 2 2 3 2 3

2 2 1 1 1 3 1 3

3 4 4 1 2 1 2

4 3 3 1 2 1 2

( )

2 ( )

( )

( ) ( )

u a y x y y x x

u be b y x y y x x

u y x y y x x

u f y x y y x x

ε

= − − − +

= − − + + +

= − − +

= − + − +

                                                                    (5) 

Substitution of (5) into (4) yields the linear error dynamics 

       
1 1 2 2 3 3 4 4,  ,  ,  e ae e be e ce e de= − = − = − = −& & & &                                                            (6) 

We consider the candidate Lyapunov function defined by 

       ( )2 2 2 2

1 2 3 4

1 1
( )

2 2

T
V e e e e e e e= = + + +                                                                      (7) 

Differentiating (7) along the trajectories of the system (6), we get 

       2 2 2 2

1 2 3 4( )V e ae be ce de= − − − −&  

which is a negative definite function on 4
R since , ,a b c and d are positive constants. 

Thus, by Lyapunov stability theory [24], the error dynamics (6) is globally 

exponentially stable. Hence, we obtain the following result. 

Theorem 1. The identical hyperchaotic Qi systems (1) and (2) are globally and 

exponentially hybrid synchronized with the active nonlinear controller (5).    � 

Numerical Simulations 

For the numerical simulations, the fourth order Runge-Kutta method is used to solve the 

two systems of differential equations (1) and (2) with the nonlinear controller (5). 

The parameters of the identical hyperchaotic Qi systems (1) and (2) are selected as 

           50,  24,  13,  8,   33,   30a b c d fε= = = = = =  

so that the systems (1) and (2) exhibit hyperchaotic behaviour. 

The initial values for the master system (1) are taken as 

       
1 2 3 4(0) 10,   (0) 15,   (0) 20,   (0) 25x x x x= = = =  

and the initial values for the slave system (2) are taken as 

      1 2 3 4(0) 30,   (0) 25,   (0) 10,   (0) 8y y y y= = = =  
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Figure 2 exhibits the hybrid synchronization of the hyperchaotic systems (1) and (2).   

 

Figure 2. Hybrid Synchronization of the Identical Qi Systems 

3. HYBRID SYNCHRONIZATION OF IDENTICAL JIA SYSTEMS 

In this section, we consider the hybrid synchronization of identical hyperchaotic Jia systems 

[23]. Thus, we consider the master system as the hyperchaotic Jia dynamics described by 

                     

1 2 1 4

2 1 3 1 2

3 1 2 3

4 1 3 4

( )x x x x

x x x x x

x x x x

x x x x

α

β

γ

δ

= − +

= − + −

= −

= − +

&

&

&

&

                                                                             (8) 

where  ( 1, 2,3, 4)ix i = are the state variables and , , ,α β γ δ are positive constants.  

We consider the hyperchaotic Jia dynamics also as the slave system, which is described by 

                  

1 2 1 4 1

2 1 3 1 2 2

3 1 2 3 3

4 1 3 4 4

( )y y y y u

y y y y y u

y y y y u

y y y y u

α

β

γ

δ

= − + +

= − + − +

= − +

= − + +

&

&

&

&

                                                                         (9) 

where  ( 1, 2,3, 4)iy i = are the state variables and  ( 1, 2,3,4)iu i = are the active controls. 

When 10,α =  28,β =  8 / 3γ = and 1.3,δ = the Jia system (8) is hyperchaotic (see Figure 3).  
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Figure 3. State Orbits of the Hyperchaotic Jia System (8) 

For the hybrid synchronization of the identical hyperchaotic Jia systems (8) and (9), the 

synchronization errors are defined as  

                  1 1 1 2 2 2 3 3 3 4 4 4,   ,  ,   e y x e y x e y x e y x= − = + = − = +                                 (10) 

From the error equations (10), it is clear that one part of the two hyperchaotic systems is 

completely synchronized (first and third states), while the other part is completely anti-

synchronized  (second and fourth states) so that complete synchronization (CS) and 

anti-synchronization (AS) coexist in the synchronization process of the two 

hyperchaotic systems (8) and (9). 

A simple calculation yields the error dynamics as 

                 

1 2 1 4 2 4 1

2 2 1 1 1 3 1 3 2

3 3 1 2 1 2 3

4 4 1 3 1 3 4

( ) 2 2

2

e e e e x x u

e e e x y y x x u

e e y y x x u

e e y y x x u

α α

β β

γ

δ

= − + − − +

= − + + − − +

= − + − +

= − − +

&

&

&

&

                                                     (11) 

We consider the nonlinear controller defined by 

               

( )

1 2 4 4 2

2 1 1 1 3 1 3

3 1 2 1 2

4 4 1 3 1 3

2 2

2

1

u e e x x

u e x y y x x

u y y x x

u e y y x x

α α

β β

δ

= − − + +

= − − + +

= − +

= − + + +

                                                                    (12) 
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Substitution of (12) into (11) yields the linear error dynamics 

       

1 1

2 2

3 3

4 4

e e

e e

e e

e e

α

β

γ

δ

= −

= −

= −

= −

&

&

&

&

                                                                                                           (13) 

We consider the candidate Lyapunov function defined by 

       ( )2 2 2 2

1 2 3 4

1 1
( )

2 2

T
V e e e e e e e= = + + +                                                                      (14) 

Differentiating (14) along the trajectories of the system (13), we get 

       2 2 2 2

1 2 3 4( )V e e e e eα β γ δ= − − − −&  

which is a negative definite function on 4
R since , ,α β γ and  δ are positive constants. 

Thus, by Lyapunov stability theory [24], the error dynamics (13) is globally 

exponentially stable. Hence, we obtain the following result. 

Theorem 2. The identical hyperchaotic Jia systems (8) and (9) are globally and 

exponentially hybrid synchronized with the active nonlinear controller (12).    � 

Numerical Simulations 

For the numerical simulations, the fourth order Runge-Kutta method is used to solve the 

two systems of differential equations (8) and (9) with the nonlinear controller (12). 

The parameters of the identical hyperchaotic Jia systems (8) and (9) are selected as 

           10,  28,  8 / 3,  1.3α β γ δ= = = =  

so that the systems (8) and (9) exhibit hyperchaotic behaviour. 

The initial values for the master system (8) are taken as 

       1 2 3 4(0) 8,   (0) 20,   (0) 10,   (0) 15x x x x= = = =  

and the initial values for the slave system (9) are taken as 

      1 2 3 4(0) 16,   (0) 10,  (0) 20,   (0) 22y y y y= = = =  

Figure 4 exhibits the hybrid synchronization of the hyperchaotic systems (8) and (9).   
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Figure 4. Hybrid Synchronization of the Identical Jia Systems 

4. HYBRID SYNCHRONIZATION OF QI AND JIA SYSTEMS 

In this section, we consider the hybrid synchronization of non-identical hyperchaotic Qi [22] 

and Jia [23] systems.  

Thus, we consider the master system as the hyperchaotic Qi dynamics described by 

                     

1 2 1 2 3

2 1 2 1 3

3 3 4 1 2

4 4 3 1 2

( )

( )

x a x x x x

x b x x x x

x cx x x x

x dx fx x x

ε

= − +

= + −

= − − +

= − + +

&

&

&

&

                                                                              (15) 

where  ( 1, 2,3, 4)ix i = are the state variables and , , , , ,a b c d fε are positive constants.  

We consider the hyperchaotic Jia as the slave system, which is described by   

                     

1 2 1 4 1

2 1 3 1 2 2

3 1 2 3 3

4 1 3 4 4

( )y y y y u

y y y y y u

y y y y u

y y y y u

α

β

γ

δ

= − + +

= − + − +

= − +

= − + +

&

&

&

&

                                                                               (16) 

where  ( 1, 2,3, 4)iy i = are the state variables, , , ,α β γ δ are positive constants and 

 ( 1, 2,3, 4)iu i = are the active controls. 
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For the hybrid synchronization of the hyperchaotic systems (15) and (16), the synchronization 

errors are defined as  

                  1 1 1 2 2 2 3 3 3 4 4 4,   ,  ,   e y x e y x e y x e y x= − = + = − = +                                  (17) 

From the error equations (17), it is clear that one part of the two hyperchaotic systems is 

completely synchronized (first and third states), while the other part is completely anti-

synchronized  (second and fourth states) so that complete synchronization (CS) and anti-

synchronization (AS) coexist in the synchronization process of the two hyperchaotic systems  

(15) and (16). 

A simple calculation yields the error dynamics as 

               

1 2 1 1 2 4 2 3 1

2 1 2 1 2 1 3 1 3 2

3 3 3 4 1 2 1 2 3

4 4 4 3 1 2 1 3 4

( ) ( ) ( )

( ) ( 1)

( )

( )

e e e a x a x y x x u

e e e b x b x y y x x u

e e c x x x x y y u

e e d x fx x x y y u

α α α

β β

γ γ ε

δ δ

= − + − − + + − +

= − + + + + − − +

= − + − + − + +

= − + + + − +

&

&

&

&

                                      (18) 

We consider the nonlinear controller defined by 

              

1 2 1 2 4 2 3

2 1 1 2 1 3 1 3

3 3 4 1 2 1 2

4 4 4 3 1 2 1 3

( ) ( )

( ) ( 1)

( )

( 1) ( )

u e a x a x y x x

u e b x b x y y x x

u c x x x x y y

u e d x fx x x y y

α α α

β β

γ ε

δ δ

= − + − + + − +

= − − + − + + +

= − − + −

= − + + + − − +

                                                    (19) 

Substitution of (19) into (18) yields the linear error dynamics 

       1 1 2 2 3 3 4 4,  ,  ,  e ae e be e ce e de= − = − = − = −& & & &                                                            (20) 

We consider the candidate Lyapunov function defined by 

       ( )2 2 2 2

1 2 3 4

1 1
( )

2 2

T
V e e e e e e e= = + + +                                                                             (21) 

Differentiating (21) along the trajectories of the system (20), we get 

       
2 2 2 2

1 2 3 4( )V e ae be ce de= − − − −&  

which is a negative definite function on 
4

R since , ,a b c and d are positive constants. 

Thus, by Lyapunov stability theory [24], the error dynamics (20) is globally exponentially 

stable. Hence, we obtain the following result. 

Theorem 3. The non-identical hyperchaotic Qi system (15) and hyperchaotic Jia system (16) 

are globally and exponentially hybrid synchronized with the active nonlinear controller (19).    
� 
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Numerical Simulations 

For the numerical simulations, the fourth order Runge-Kutta method is used to solve the 

two systems of differential equations (15) and (16) with the nonlinear controller (19). 

The initial values for the master system (15) are taken as 

       1 2 3 4(0) 20,   (0) 25,   (0) 10,   (0) 15x x x x= = = =  

and the initial values for the slave system (16) are taken as 

      1 2 3 4(0) 10,   (0) 12,   (0) 30,   (0) 26y y y y= = = =  

The parameters of the master system (15) and slave system (16) are selected as 

   50, 24, 13, 8,  33,  30, 10,  28,  8 / 3,  1.3a b c d fε α β γ δ= = = = = = = = = =  

so that the systems (15) and (16) undergo hyperchaotic behaviour. 

Figure 5 exhibits the hybrid synchronization of the hyperchaotic systems (15) and (16).   

 

Figure 5. Hybrid Synchronization of Hyperchaotic Qi and Jia Systems 
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3. CONCLUSIONS 

In this paper, nonlinear control method based on Lyapunov stability theory has been deployed to 

globally and exponentially hybrid synchronize the following hyperchaotic systems: 

(A) Two identical hyperchaotic Qi systems (2008) 

(B) Two identical hyperchaotic Jia systems (2007) 

(C) Non-identical hyperchaotic Qi and Jia systems. 

The stability results were established using Lyapunov stability theory.  Numerical simulations 

have been given to demonstrate the effectiveness of the proposed hybrid synchronization 

schemes. Since Lyapunov exponents are not required for these calculations, the proposed 

nonlinear control method is effective and convenient to achieve hybrid synchronization of the 

hyperchaotic systems as mentioned in the three cases, (A)-(C).  
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