
International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

DOI : 10.5121/ijdps.2011.2102 12

PARALLELIZATION OF WEIGHTED

SEQUENCE COMPARISION BY USING

EBWT

Binay Kumar Pandey
1
, Rajdeep Niyogi

1
, and Ankush Mittal

2

1
Electronics and Computer Engineering Department,

Indian Institute of Technology Roorkee,

Roorkee, India
(binaydec, rajdpfec)@iitr.ernet.in

2
Computer Science and Engineering Department,

College of Engineering Roorkee

Roorkee, India
dr.ankush.mittal@gmail.com

ABSTRACT
In this paper, we describe the design of high-performance extended burrow wheeler transform based

weighted sequence comparison algorithm for many core GPUs taking advantages of the full

programmability offered by compute unified device architecture (CUDA) and its standard library

thrust. Our extended burrow wheeler transform based weighted sequence comparison algorithm with

thrust library implementation on CUDA is the fastest implementation of weighted sequence comparison

algorithm than the our previous implementation of extended burrow wheeler transform based weighted

sequence algorithm without using thrust library, and it is on average 56.3X times faster. Moreover, our

present time implementation is also competitive with CPU implementations, being up to 2.9X times faster

than comparable routine on 2.99 GHz Intel Pentium (R) 4 CPU with 3 GB RAM.

 KEYWORDS

Extended Burrow Wheeler Transform, CUDA, Molecular Weighted Sequence

1. INTRODUCTION

 In bioinformatics and molecular biology research, sequence comparison is one of the most

important tasks. Biological sequence comparison algorithms usually finds a match between

nucleotide sequences which allows to determine the differences that occurs due to

substitutions, additions and deletions of nucleotides between them [1]. The foundation process

of identifying new nucleotide sequence is generally done by finding the most similar match of

an unknown nucleotide sequence to a known biological sequence. The same technique adopted

to find out mutations that triggers a disease and is also a substantial part of tracing the evolution

of a certain organism [2]. The dynamic programming based smith–waterman algorithm is

considered as the only comparison algorithm guaranteed that return an optimal result which is

suitable for both of protein and DNA sequences [4]. However, this algorithm took considerable

amount of time even to compare two small length sequences and also not suitable for molecular

weighted sequences. Thus, we try to alleviate the limitation of this algorithm in terms of its

execution time by implementing extended burrow wheeler transform based molecular weighted

sequence comparison algorithm.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

13

The implementation of this intuitive idea for large weighted molecular sequence [4] can

have take enormous amount of computation time and memory. This can be proved by

considering a practical example of comparing molecular weighted sequence of 300 positions

with molecular weighted pattern of 10 positions and in each position there is a possibility of

four characters. In worst case this weighted sequence gives 4^300 possible sequences and each

sequence is 300 characters long, and in similar manner a molecular weighted pattern generates

4^10 possible pattern and each pattern is 10 characters long. Solving sequence comparison

problem for such a kind of molecular weighted sequence and pattern requires very large

memory space and computation time. This are all the main reasons which motivate us to

perform parallel implementation of extended burrow wheeler transform based molecular

weighted sequence comparison algorithms on compute unified device architecture� �����.
Our whole paper is organized into the following sections. Section II gives brief explanations of

burrow wheeler transform. Section III gives a study on extended burrow wheeler. Section IV

consists of brief description of parallel architecture that is compute unified device architecture

CUDA. Section V gives detail of comparing sequence using extended burrow wheeler

transform. Section VI is dedicated to parallel implementation of weighted sequence comparison

algorithm using extended burrow wheeler transform. Section VII gives detailed table of our

findings. Section VIII dictates final conclusion of our experiment performed

2. BURROW WHEELER TRANSFORM: Preliminaries

In the field of lossless textual data compression, burrows-wheeler transform [5] can be

considered as an extremely useful tool. The main idea of burrow wheeler transform is to

produce a permutation of an input word �, defined over an alphabet �, so that it becomes easier

to compress the word. In fact this transformation keeps a group characters collectively so that

the possibility of finding a character close to another instance of the same character is

considerably increased. Burrow wheeler transform convert an input word � 	 �
��……�
by

constructing all � cyclic rotations of �, perform lexicographical sorting and then extracting the

last character of each rotation. The output of burrow wheeler transform is mainly consists by

the sequence of these characters. Furthermore this transformation is also computes the index �,
that is the row that denotes the position of original word in the sorted list of rotations. For

example, suppose we want to compute burrow wheeler transform of word � 	 banana. In

(Figure 1) shows the matrix that consists of all cyclic shifts of �, that are further

lexicographically sorted.

 F L

 1 a b a n a n

 2 a n a b a n

 3 a n a n a b

 I 4 b a n a n a

 5 n a b a n a

 6 n a n a b a

Figure 1. The matrix contains lexicographic sorted list of all cyclic rotations of the word

� 	 banana

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

14

The last column L of the matrix represents BWT(�) = nnbaaa and I = 4 because the original

word banana appears in row 4. The first column F, instead, contains the sequence of the

characters of � lexicographically sorted.

3. AN EXTENSION OF BURROW WHEELER TRANSFORM FOR

MULTISET OF WORDS

In this section a description of an extension of the burrows–wheeler transform to a multi-set

of words and few of its properties are illustrated. Such an extension is strictly related to a

bijection, introduced in [6], between the multisets of words over a finite alphabet � and the

words of ��. In paper [7] it is shown that the burrows wheeler transform is connected to a

particular case of the bijection given in [6] . This important statement has stimulated the

definition of the extension burrow wheeler transform denoted by ���� for a multi-set of

primitive words. In next subsection, some basics of order of relation between words and some

proposition and definitions are given.

3.1. Order Relation between Words

A very deep understanding of an order relation between words that is different from the

usual lexicographical one is very essential to define the extended burrow wheeler

transformation. In [10] author describe every word � � �� as a power of a primitive word, in

other word it can also be said that there exists a distinctive primitive word � and a distinctive

integer � such that � 	 ��, where � by ������� and � is denoted by exp���.
Let suppose be a word in A*, then ! denotes the infinite number of word that are

obtained by iterating u in infinitely number of times, i.e. ! = uuuuu . . . The lexicographic

ordering denoted by "#$% is generally defined on infinite words length. In order to develop

much better understanding let us consider two words of infinite length & 	 &�&'… and

((�('… , with &), () � �, then & "#$% (if there exists some index * � + such that

&) 	 () for , 	 1,2,… , * / 1 and &) 	 () . it is very important to note that if x = y, then

relation <lex is said to be not defined. It is also observing that ! 	 �! if and only

if ����� � 	 �������. In order to support above mentioned fact some important definition,

proposition with proof and examples are given below.

Definition 1. Let us consider two words , � made up of finite alphabets which are elements

of �. Then it is said that

 0! � 1 2 exp� � 0 exp��� ,3 ����� � 	 �������
 ! "#$% �! ��4���,5�

6 (1)

This order relation shown in “Eq. (1)” is different from the lexicographic one, this can be

explain by considering following example 7� "#$% 7�7 but 7�7 0! 7�. even though when

����� � 8 ������� the 9! -order of and � is defined by considering word of infinite

length, the proposition given below shows that it is possible to decide mutual 9!-ordering

between these words by just extending them up to the length | | ; |�| / gcd �| |, |�|�. Such

a bound is a outcome of a well-known consequence of periodicity on words given in [10, 11].

Proposition 2 Let us assume two given words as a u and v, with ����� � 8 ������� , and

then order of relation is defined by “Eq. (2)”.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

15

 then u 9! � 1 ?��3�� !� "#$% ?��3���!�,
 (2)

 where � 	 | | ; |�| / gcd �| |, |�|�

For any given finite or infinite length word �, ?��3���� denotes the prefix of word � of

length �.

Example 3. Consider the two words 	 7�7 and � 	 7�7�. After monitoring each character

of each word one can find that � 9! and ! and �! differ for the character in position 6 =

4+3 − 1. It is also observe that "#$% �

 7�7@
A

7�7@
A

7�. . . .BCD
A

 7�7�EFG
H

7�7�… .EIFIG
J

B. The Extended Burrows–Wheeler Transform

This section is basically introducing extended burrow wheeler transform under the assumption

that the words considered are primitive. In fact this supposition is not very restraining, because

in practice almost all the textual data processed are primitive and if not then it become primitive

by adding an end-of-string symbol.

Let us consider K 	 L �, ……… . �M be a multiset of primitive words of �� that are not

necessarily distinct. Then ||K|| is denoted by “Eq. (3)”.

||K|| 	 ∑ |)|�)O� (3)

and the value of H is given by “Eq. (4)”.

maxR |)| ; S TS – VWXY|)|, S TSZ S ,, * 	 1,… , �M. (4)

Consider again the set ��K� that represents all the conjugates of the words in K. Then each

� � ��K� can associate to the triplet �?��3[��!�, \���,]^���.where ?��3[��!� represents

the prefix of �! of length _, \��� denotes the last character of � and]^represents the

characteristic function of K, and represented by “Eq. (5)”.

]^��� 	 2 1, ,3 � � K
 0, ��4���,5�6 (5)

Now consider all these triplets set and sort it by taking first field as sorting key and then use

"#$% relation. According to proposition 5, this "#$% relation applied on the words of ��K�
produces the same order words as obtained by applying the 9!-order relation on the words

of ��K�. This sorted list is arrange in (Figure 1). The sequences obtained by concatenating the

second and the third components triplet �?��3[��!�, \���,]^��� are denoted by ab�K�
and ac�K�. It is important note down that in places where there is no threat of vagueness, then

the notation a, ab and ac may use in place of a�K�, ab�K� and ac�K�, respectively. If ad

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

16

denotes the sorted list with respect to the 9!-order, of the conjugate words in ��K�, then ab is

the word obtained from the concatenation of the last characters of elements in ad and ac is the

characteristic vector which show the elements in the list that are coming from S.

Definition 4. The pair �ab, ac� denoted by �����K� is the outcome of extended burrows

wheeler transform for a multi-set of word denoted by K.

Example 5. Let us take a multi-set of word denoted by K 	 L7�7W�, W�7W, �W7�, 7W�7M.
(Figure 2) third column represent ?��3e,5 component that are obtain after performing

lexicographic sorting on its rows. For sake of clearness we add also the column (the first one)

ad containing the 9!-ordered list of all � � ��K�. The second column contains the "#$%-

sorted list of prefixes of length _ 	 6 the third column the word ab and the fourth column the

characteristic array of K, ac.

The complexity of the algorithm for computing ���� is upper bounded by the time needed

to get the sorted list of the conjugates of the words in K, that can be handled by a suitable suffix

array generalization. A generalized type of the “skew algorithm [8]” for the construction of the

generalized suffix array, make it possible to obtain such a sorted list in linear time on the total

size of the set K. Then the algorithm has total complexity Ο�||K||�.
The proposition given below shows how the two important properties connecting the

characters of ab and ah.

Proposition 6. Consider K be a multi-set of that hold primitive words and

suppose �����K� 	 �ab , ac�. Let ah denotes the sequence of the first characters of the

sorted list. Then following properties must hold:

(1) For every , where ac 	 0,, abi,j follows ahi,j in one word in S.

(2) For a predetermined character 7 � �, its occurrences in ah appear in the same order as

in ab, i.e. its klm instance of 7 in ah corresponds to its klm instance of 7 in ab.

Remark 7. A very important fact of extended burrow wheeler transforms is that, when the set

S has only one element, and then the extended burrow wheeler transformation works exactly as

same as the burrows–wheeler transform. In fact, the 9!-ordering of all the conjugates of a

word is equivalent to the lexicographic ordering, because there is only single word and all the

possible conjugates of this single words have the same length. Furthermore, according to

remark 4, the set of indices holds a single value. Therefore, if K 	 L�M then �����K� 	
������.

S. NO MC Pref5 ML M] M

F

1 aacb aacba b 0 a

2 abacb abacb b 1 a

3 abbc abbc c 0 a

4 acba acba a 1 a

5 acbab acbab b 0 a

6 accb accb b 0 a

7 bacc baac c 0 b

8 babac babac c 0 b

9 bacba bacba a 0 b

10 bacc bacc c 0 b

11 bbca bbca a 0 b

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

17

12 bcab bcab b 1 b

13 cabb cabb b 0 c

14 cbaa cbaa a 0 c

15 cbaba cbaba a 0 c

16 cbac cbac c 1 c

17 ccba ccba a 0 c

Figure 2. The Table contains output of �����K� that is the pair (ab , ac) where ab 	
WW���W7W777��7 and ac 	 10000000100011

4. COMPARING SEQUENCES BY USING EBWT

In this section we apply our extended transformation ebwt in order to introduce a new

method for comparing sequences. The new distance between words defined here is simple and

efficient to compute, and it is particularly advantageous in the case of comparison of a set of

sequences. We remark that our distance is not based on sequence alignment. Several alignment-

free distance measures have recently been introduced [11, 12, 13, 14] since they better fit with

the problem of comparing genomic sequences than the methods based on sequence alignment.

In fact, alignment-based methods compare sequences by considering only local edit operations

on their fragments. Instead, the recent developments in genome sequences technologies have

allowed to handle the complete genome of many different species, and have highlighted that, in

order to capture evolutionary and functional mechanisms of different species, we need to

consider a new set of sequence modifications that involve recombination or shuffling of

segments of genome. The distance we define takes into account such kind of modifications and

therefore it can be successfully applied to compare genomic sequences.

The new notion used to measure distance between two sequences is based on the following

intuitive idea: when ���� is applied to the set K 	 L , �M, if the same segment 5 occurs both in

 and �, then the conjugates of and � starting by 5 are likely to be close in the 9!-sorted list

of conjugates. This implies that the greater is the number of segments shared by and �, the

greater is the mixing of the conjugates of and � in the sorted list. The comparison method

based on transformation ���� will measure how similar and � are, by taking into account

how much their conjugates are mixed. In this section, in order to show an application of the

extended burrow wheeler transformation, a distance measure is define that computes the

number of alternations in the above list between the conjugates of and those of �. A more

detailed study of the class of distance measures based on ���� can be found in [15], where

other different formalizations of distance measures based on ebwt are given. Formally, let

K 	 L �, ', … , � M be a multiset of primitive words in��, let k 	 ∑ |)|�)O� and let

an 	 o�,o', …… ,op be the sorted list of the conjugates of the elements of K obtained

during the computation of �����K� .
Consider the new alphabet ∑ 	 L��, �', �q, … . . , �rM. The coloring of �����K� is the map

: L1, 2, … . . , kM t ∑ defined, for as:

u�,� 	 �T if o) is a conjugate of T.

We denote by avi,j the word over ∑� such that avi,j 	 u�,�. .

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

18

The following example describes the coloring of����, by adding the sequence av as a

column to the table a associated to the computation of ����, as shown in (Figure 3).

S. No ad ab av ac

1 aabb b U 1

2 aabb b V 0

3 abba a U 0

4 abba a V 1

5 abab b Z 1

6 abab b Z 0

7 baab b U 0

8 baab b V 0

9 baba a Z 0

10 baba a Z 0

11 bbaa a U 0

12 bbaa a V 0

Figure 3. Shows extended burrow wheeler transform of mutiset S in which column avof the

coloring is added.

Example 8. Let K 	 L , �, wM, where 	 77��, � 	 7��7 and w 	 7�7�. Let �, x, y are

the colors associated, by the map u, to , �, w, respectively. As one can see in (Figure 3),

av 	 �x�xyy�xyy�x.
The definition of coloring allows us to introduce a new notion of distance measure between

two sequences that takes into account the alternation of the symbols coming from different

sequences in the output of the transformation ����.

Definition 9. Let , � � �� be two sequences and let us

consider av� , �� 	 �
zx
{�
| … x
}. We define the measure ~� , �� as follows:

~� , �� 	 � ��) / 1�
�

)O�,
��

A description of the computation of distance ~ is given in the Example 11. The following

proposition provides some properties of the measure.

Proposition 10. The following statements hold:

• ~� , �� 	 ~��, �, i.e. the measure ~ is symmetric.

If and � are conjugate, then ~� , �� 	 0.

• If � is a conjugate of and �� is a conjugate of �, then ~� , �� 	 ~� �, ���. Therefore, ~

is a distance measure for conjugacy classes.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

19

a� av

abbc V

acb U

bac U

bbca V

bcab V

cabb V

cba U

Figure 4. The 9!-sorted list of conjugates of acb and bcab with coloring

Example 11. Let us consider the sequences 	 7W� and � 	 �W7�. In (Figure 4) the sorted

list of conjugates of and � and the coloring of ����� , �� are shown. In this case av� ,
�� 	 x�'xq�, so according to definition 24, the net computed distance between and � is

~� , �� 	 3.
5. A MULTI-CORE ARCHITECTURE: CUDA

The architecture benefits of both CPU and GPU for general purpose non graphics GPU

computing are obtained by developing a unified architecture of GPU and CPU called compute

unified device architecture. The programs which are usually created for CUDA hardware [9],

executes on the both CPU and GPU. A parallel component of program is called kernel that runs

parallel on the GPU. The kernel cannot access the data from CPU’s main memory directly, but

before launching kernel it’s require input data must be copied to the GPU’s memory, and

output data is also first be written to the GPU’s memory and then copied to CPU memory.

The architecture of CUDA and how data flow occurs between GPU and CPU is shown in

(Figures 5-6). The necessary amount of memory required by the kernel must be pre-allocated,

and the kernel is not able to use recursion or other similar operation that requires a stack, but

conditionals and loops are allowed. Additionally, the number of registers present in each

multiprocessor is limited and if the number of registers used by kernel is too high then

multiprocessor schedules less stream processors [10] to perform computation simultaneously.

This causes, a high-performance kernel code to be very careful in order to reduce the number

of registers used and put limit on the amount of branching. The better flexibility of CUDA still

not able to solve the very basic problems of small cache and associated high memory latency

for memory intensive programs present in GPU card G80’s.

Figure 5. Architecture of CUDA

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

20

Figure 6. Typical GPGPU application flow

6. PARALLEL IMPLEMENTATION OF WEIGHTED SEQUENCE

COMPARISION ALGORITHM USING EBWT

This section basically gives the detail of the implementation steps, that we carried out for

parallelization of extended burrow wheeler transform based weighted sequence comparison

algorithm on CUDA without Thrust library and with Thrust library.

6.1. Profiling

The most time consuming portion of the sequential code is determine by using Gnu profiling

technique. In this technique we obtained a flat profile of sequential code by using gprof utility

available in Gnu compiler. The generated flat file contains a set of information. For instance

percentage of time required finishing the execution of particular function, number of call made

for the function, self millisecond per call, and total milliseconds per call. In addition to this,

gprof sort this information according to the functions that uses greater percentage of time. The

utility gprof gives fast and simplest way to do function level profiling of the code.

Our main objective behind the use of gprof utility is to determine the expensive functions

with respect to time and then parallelize the sequential code accordingly. So that these time

consuming functions takes less time and we can gain a significant improvement on sequential

code. In order to perform the profiling of sequential code, we compile the code with –pg option

and then execute the code as usual.

After the execution of code is completed, an output file named gmon.out is created and this

file can studied for parallelization purpose of sequential code. The profiling detail of our

sequential implementation of extended burrow wheeler transform based weighted sequence

comparison algorithm is shown in “Table 1” and as per our analysis performed on this

profiling table, we found that calculate_distances and sort_data are the function that takes

maximum percentage of time during their execution. So we parallelized these two functions by

exploiting the parallelization features available in CUDA.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

21

Table 1. Profiling results

Each sample counts as 0.01 seconds.

% time Cumulative seconds Self seconds calls Self s/call Total s/call Function name

99.31 40.36 40.36 1 40.36 40.36 calculate_

distances(

 conjugate*,

 unsigned int,

 unsigned int,

unsigned int, bool)

0.12 40.41 0.05 1 0.05 0.24 sort_data

(conjugate*,

 unsigned int,

conjugate*)

0.12 40.46 0.05 main

0.10 40.50 0.04 1693856 0.00 0.00 std::vector<std::stri

ng,

std::allocator<std::s

tring

>>::operator[](unsi

gned int)

 0.05 40.52 0.02 5297631 0.00 0.00 __gnu_cxx::__nor

mal

_iterator<std::strin

g*,

std::vector<std::stri

ng, std

::allocator<std::stri

ng> >

 ::operator*() const

0.05 0.02 40.54 1703906 0.00 0.00

__gnu_cxx::__nor

mal

iterator<std::string

*,

std::vector<std::stri

ng,

std::allocator<std::s

tring> >

0.05 40.58 0.02 10046 0.00 0.00 gnu_cxx::__normal

_iterator

<std::string*,

std::vector<

std::string, std::

allocator<std::strin

g> > >

6.2. Parallelization Techniques

Our implementation of parallel extended burrow wheeler transform based weighted sequence

comparison on CUDA and CUDA with thrust library is divided into four phases that are :

finding possible sequence and pattern from weighted sequence and weighted pattern, generating

conjugate for each of the possible sequences and patterns, sorting of conjugates, and

computation of distance between possible sequences and possible pattern. Each of these phases

is handled by either CPU or GPU processor available in CUDA. The selection of CPU and

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

22

GPU processor for the execution of above mentioned phases are based on the parallelization

feasibility of that phase.

 The finding of possible sequences and pattern from weighted sequences and pattern is one of

the typical exponential problems and it is not feasible for parallelization because a brute force

computation is required to enumerate all possible sequences and patterns. However, it is further

possible to improve this brute force computation by applying some heuristics, in which we

replace the exponential method for finding possible sequence and pattern into a three subparts

that are: coloring of weighted sequence, tree construction of weighted sequence and finally tree

traversal.

 The coloring of each character positions in a weighted sequence is performed according to

some set of rules. A character position is colored with white if one of the possible characters at

that position has a probability of appearance equal to 1. A character position is colored gray if

only one of the possible characters has probability of appearance greater than the presumed

threshold value denoted by θ and if more than one character has probability of appearance

greater than the threshold value θ, then that particular position is colored with black.

 As soon as coloring is over, a tree is constructed for molecular weighted sequence by

scanning it from left to right and if white or gray color appears then corresponding characters is

simply added as a one of the node of tree. If a black color is encounter, then branching occurs

in the tree.

 Once the construction of tree is over we traverse the tree from leaves to root and a weight of

each character at each node is multiplied up to root. All the sequence which are generated

during tree traversal contains total weighted of appearances that are obtained by multiplying

weight of each character is greater than presumed threshold value θ.

 The possible sequences and pattern generation operation is followed by their conjugate

generation. The conjugate generations of possible sequences or possible patterns were

performed in parallel. Every possible sequence or pattern was assigned to a block, wherein,

each thread presents in per block was responsible for the generation of one conjugate. For better

understanding, let us taken example in which it was shown that how the fifth conjugate of first

sequence or first pattern having length 10 characters was formed. The thread which would be

responsible for the generation of fifth conjugate would be the fifth thread in the block to which

first possible sequence or pattern was assigned.

 This fifth thread would simply copy the content of the first sequence or pattern from indices

6 to 10 into a temporary memory location and then copying the content from indices 0 to 5 of

first sequence and pattern into the same temporary memory location and concatenate them to

form required conjugate. It is found from our deep observation that, the number of conjugate

generated for each possible sequence or pattern is equal to the number of characters contained

in it. Thus, the maximum number of threads required for conjugate generation would be equal

to total number of possible sequence and pattern generated multiplied by maximum width of

possible sequence or a pattern.

 As the conjugate generation of a sequence is over, the sorting of these generated conjugates

is begins. To perform sorting of conjugates in parallel on CUDA is a quite challenging task,

because of some strict constraints imposed by underlying CUDA architecture. Our parallel

implementation of traditional Bitonic sort [16] on CUDA has a large number of scatter read

write operations that are performed on global memory, make it inefficient than sequential

sorting algorithms . Therefore we looks towards some more improved sorting scheme which

gives remarkable results on its parallel implementation on CUDA and we found that, thrust [17]

is a set of library providing standard library functionality in CUDA framework for performing

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

23

various operations. In thrust, the sorting library makes use of an optimum parallel

implementation of radix sort [18].

 Once the sorting of conjugate is over, the distance between each weighted sequence and

weighted pattern is computed. The sequential distance calculation method between possible

sequence and pattern is given in definition 9. During our study on distance calculation

algorithms using extended burrow wheeler transform. We found that there is very less number

of inter communication required between the distance calculation of each possible sequences

and patterns. So, we parallelize this operation by using one thread of each block for distance

calculation between each possible sequence and patterns generated from weighted sequence

and pattern. Therefore the total numbers of threads running in parallel are able to accurately

calculate the distances.

7. RESULT AND DISCUSSION

We evaluate the performance of the implementation of the algorithm for weighted sequence

comparison using extended burrow wheeler transform on parallel processing architectures that

are CUDA without thrust library and CUDA with thrust library used for sorting the conjugate

of sequences. Our experimental setup were consists of a personal computer and CUDA cards

having the following configurations: Intel Pentium(R) 4 CPU, 2.99 GHz, with 2.49 GB RAM

running and CUDA card of NVIDIA Quadro FX 3700 graphics card (512MB global memory,

16KB shared memory, 1.2 GHZ clock), Compiling environment used is Microsoft Visual

Studio 2005, enabled with NVCC, available through CUDA 3.0 SDK

We designed an experimental scheme to measure the execution time of the algorithm for

various lengths of weighted sequences that are generated randomly with threshold value are

�=0.2.

The biological weighted sequences are generated randomly. In the parallel implementation

of weighted sequence comparison algorithm using extended burrow wheeler transform. We

found that Sorting is the main performance improvement bottle-neck. Since the result shown

in “Table 2 “reveals that sorting on uni-processor is significantly better then compute unified

device architectures. We use bitonic sort for our implementation on NVIDIA multicore

architecture that is compute unified device architecture. The main reasons for such

performance degradation of bitonic sorting performs on compute unified device architecture

are given below:

• In the device of Compute unified device architecture, each thread is assigned to handle two

ptr_d[]
*
 that points two element of array that need to sort. In accessing these two elements, the

threads create an un-coalesced gather operation from the global memory of the device, thereby,

it enormously decrease capable memory bandwidth and increasing the access time by a few

hundred clock cycles.

• Once the values of ptr_d[i] and ptr_d[i+1] are obtained by a thread, then the characters

pointed to by these two pointers are accessed through a global-memory access. Since this

gather operation is more scattered than the previous operation, there exists a further inefficiency

in the bandwidth utilization, thereby costing a few hundred more clock cycles for the operation.

• Now as the characters from the sequences are read and compared, then appropriate changes

to their positions' is required and this change is reflected onto ptr_d[] by making a global-

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

24

write. Because these writes too are scattered in nature, no attempt are made to utilize the full-

bandwidth.

 In addition to this reasons, the number of kernel calls generated by the CPU for bitonic

sort too high and it is �(tot_length
*
). In a typical run, tot_length ≈ 10

6
. Hence, the CPU

overhead of launching these many kernels is also high.

 After finding above, we conceived an idea to optimize lexicographic sorting on CUDA by

using thrust library. Thrust is nothing but a library which provides an STL interface to coding

in CUDA, along with a user-friendly library data structures. It also provides highly-optimized

implementation of standard algorithms, such as sorting and searching. Thrust does not provide

any ready-made implementation of lexicographic sorting.

 In order to achieve this, an intermediate class had to be written, the objects of which

imitated the list of solid words. The objects were then passed to the library defined sorting

functions, keeping in regard the syntax and data-structure requirements of these functions. This

helped achieve a significant improvement in our performance which is shown in “Table 3”. The

library sort functions use the ideas discussed in [18]. The executions timed against the CPU

performance along with the user-defined class are tabulated below and it is observed from

“Table 4” that CUDA with thrust library on average outperforms the CPU through a 2.9 X

times. However, the total time is not only the sum of the times taken to sort the conjugates and

calculate the distances between them, but also it includes the card’s overhead of moving data to

and from the main memory. In the similar manner “Table 5” shows CUDA with thrust library

on average out performs CUDA without thrust library through 56.3X times. Moreover, “Table

6” shows the distance score between varies length of weighted sequence and weighted pattern.

This score helps to determine the weighted sequence which is closest to weighted pattern. The

pictorial representation of above mentioned results is also shown in (Figures. 7-9).

Table 2. Comparisons of execution time taken by performing sorting on CPU and CUDA for

threshold � =0 .2

Number of

positions in

weighted

sequences

Number of

position in

weighted

pattern

Time taken to perform

Bitonic Sort (in s)

CUDA CPU

50 6 0.235 0.2500

 60 6 0.341 0.3750

70 6 0.473 0.3280

80 6 3.226 2.188

90 6 27.148 25.172

100 6 171.97 120.468

110 6 235.184 155.690

120 6 314.291 199.469

130 6 411.521 269.570

140 6 513.339 298.2797

150 6 639.562 384.219

160 6 782.565 421.141

170 6 904.870 512.000

180 6 1600.89 598.370

190 6 1242.66 678.969

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

25

200 6 1433.84 729.078

210 6 1648.09 883.219

220 6 1882.68 974.359

230 6 2134.47 1043.281

240 6 2422.18 1179.797

250 6 2442.58 1310.688

260 6 4086.38 1452.141

Table. 3 A comparison of execution time taken by performing sorting on CPU and CUDA

using thrust library for threshold � =0 .2

Number of

positions in

weighted

sequences

Number of position

in weighted pattern

Time taken to perform

Bitonic Sort (in s)

CUDA CPU

50 6 0.016 0.2500

60 6 0.016 0.3750

70 6 0.031 0.3280

80 6 0.046 2.188

90 6 0.140 25.172

100 6 0.360 120.46

110 6 0.422 155.69

120 6 0.531 199.46

130 6 0.593 269.57

140 6 0.719 298.27

150 6 0.812 384.21

160 6 0.921 421.14

170 6 1.079 512.00

180 6 1.265 598.37

190 6 1.375 678.96

200 6 1.531 729.07

210 6 1.688 883.21

220 6 1.906 974.35

230 6 2.047 1043.2

240 6 2.250 1179.7

250 6 2.422 1310.6

260 6 2.703 1452.1

Table. 4 A comparison of execution time taken by performing sorting, distance calculation and

total time including communication cost on CPU and CUDA using thrust library for threshold

� =0 .2

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

26

Number

of

positions

in

weighted

sequence

s

Number

of

position

in

weighte

d

pattern

CUDA with thrust library CPU

Sorting

time in

millise

conds

Distance

calculation

time in

millisecond

s

Total

Time taken

by

algorithm

in

millisecond

s

Sorting

time in

milliseco

nds

Distance

Calculation

time in

millisecond

s

Total

Time taken in

milliseconds

50 6 0.01 0.01 0.594 .0.25 0.4 0.73

60 6 0.01 0.01 0.625 0.37 0.03 0.4

70 6 0.03 0.01 0.735 0.32 0.4 0.8

80 6 0.04 0.07 1.562 2.18 0.3 2.6

90 6 0.14 0.77 4.016 25.1 2.7 28.1

100 6 0.36 5.50 13.07 120.4 23.8 144.5

110 6 0.42 6.00 14.82 155.6 25.7 181.6

120 6 0.53 6.56 15.92 199.4 28.3 228.1

130 6 0.59 7.09 16.65 269.5 30.5 300.3

140 6 0.71 7.62 18.20 298.2 33.0 331.7

150 6 0.81 8.18 19.36 384.2 35.4 420.0

160 6 0.92 8.79 20.71 421.1 37.8 459.4

170 6 1.07 9.21 22.0 512.0 40.3 552.8

180 6 1.26 9.78 23.48 598.3 42 640.9

190 6 1.37 10.3 25.67 678.9 44.9 724.4

200 6 1.53 12.95 26.50 729.0 47.2 776.9

210 6 1.68 11.45 28.00 883.2 49.6 933.8

220 6 1.90 11.97 29.35 974.3 51.9 1027.5

230 6 2.04 12.57 30.93 1043 53.8 1097.8

240 6 2.25 13.09 32.67 1179 57.1 1237.6

250 6 2.42 13.61 33.62 1310 59.5 1371.9

260 6 2.70 14.14 35.20 1452 61.5 1514.7

Table. 5 A comparison of execution time taken by performing sorting, distance calculation and

total time including communication cost on CUDA using Thrust Library and CUDA without

using thrust library for threshold � =0 .2

Number

of

position

s in

weighte

d

sequenc

es

Number

of

position

in

weighte

d

pattern

CUDA with Thrust Library CUDA without Thrust Library

Sorting

time in

millise

conds

Distance

calculation

time in

millisecond

s

Total

Time

taken im

millisecon

dsl

Sorting

time in

millisecon

ds

Distance

calculation

time in

millisecond

s

Total

Time taken

im

milliseconds

50 6 0.016 0.016 0.594 0.235 0.016 0.4

60 6 0.016 0.015 0.625 0.341 0.015 0.4

70 6 0.031 0.016 0.735 0.473 0.016 0.6

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

27

80 6 0.046 0.078 1.562 3.226 0.078 3.4

90 6 0.140 0.772 4.016 27.148 0.772 28.2

100 6 0.360 5.50 13.07 171.97 5.50 177.8

110 6 0.422 6.00 14.82 235.184 6.00 241.5

120 6 0.531 6.563 15.92 314.291 6.563 321.3

130 6 0.593 7.093 16.65 411.521 7.093 419

140 6 0.71 7.625 18.20 513.339 7.625 521.5

150 6 0.81 8.188 19.36 639.562 8.188 648.2

160 6 0.92 8.797 20.71 782.565 8.797 791.9

170 6 1.07 9.219 22.0 909.870 9.219 919.6

180 6 1.26 9.783 23.48 1600.89 9.783 1611.3

190 6 1.37 10.34 25.67 1242.66 10.34 1253.6

200 6 1.53 2.953 26.50 1433.84 2.953 1437.5

210 6 1.68 11.45 28.00 1648.09 11.45 1660.5

220 6 1.90 11.97 29.35 1882.68 11.97 1896.0

230 6 2.04 12.57 30.93 2134.47 12.57 2148.0

240 6 2.25 13.09 32.67 2422.18 13.09 2436.8

250 6 2.42 13.61 33.62 2442.58 13.61 2458.6

260 6 2.70 14.14 35.20 4086.38 14.14 4101.7

Table 6. shows the distance between each sequence generated from weighted sequence with

net probability of occurrence greater then threshold value = 1/5 to the pattern generated from

weighted pattern with net probability of occurrence is greater than threshold value = 1/5

weighted sequence weighted pattern Average distance

between weighted

sequences with

weighted pattern

weighted sequence 1

weighted pattern 45

weighted sequence 2

weighted pattern 55.4

weighted sequence 3

weighted pattern 65.4

weighted sequence 4

weighted pattern 75.5

Weighted sequence 5

weighted pattern 85.9

Weighted sequence 6

weighted pattern 94.5

Weighted sequence 7

weighted pattern 104.5

Weighted sequence 8

weighted pattern 114.4

Weighted sequence 9

weighted pattern 124.8

Weighted sequence 10

weighted pattern 134.4

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

28

Weighted sequence 11

weighted pattern 144.4

Weighted Sequence 12

weighted pattern 154.4

Weighted sequence 13

weighted pattern 164.4

Weighted sequence 14

weighted pattern 174.4

Weighted sequence 15

weighted pattern 184.4

Weighted sequence 16

weighted pattern 194.4

Weighted sequence 17

weighted pattern 204.4

Weighted sequence 18

weighted pattern 214.4

Weighted sequence 19

weighted pattern 224.4

Weighted sequence 20

weighted pattern 234.4

Weighted sequence 21

weighted pattern 244.4

Weighted sequence 22

weighted pattern 254.4

Figure 7. A comparision of execution time of sorting performed on CPU, CUDA without thrust

library, and CUDA with thrust library

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

29

Figure 8. A comparison of execution time of distance calculation performed on on CPU,

CUDA without thrust library, and CUDA with thrust library

Figure 9. A comparison of total execution time of algorithm on CPU, CUDA without thrust

library, and CUDA with thrust library

8. CONCLUSION

We have presented the implementation of extended burrow wheeler transform based weighted

sequence comparison algorithm on many core NVIDIA compute unified device architecture

(CUDA). Our experimental results shows that our parallel extended burrow wheeler transform

based weighted sequence algorithm with thrust library is the fastest published weighted

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

30

sequence comparison algorithm for modern many core CUDA processors and is up to 2.9X

times more efficient than the techniques that maps weighted sequence comparison onto the

CPU. In addition to being the only and fastest CUDA weighted sequence comparison

techniques, it is also faster than our previous extended burrow wheeler transform based

weighted sequence comparison algorithm implemented on CUDA without using thrust library.

We are able to achieve this algorithmic efficiency by deploying as much as our working the fast

on chip memory provided by the NVIDIA CUDA architecture and by exposing as much as

possible fine grained parallelism, in order to take the advantage of the thousand of parallel

threads supported by this architecture. In general we also believe that once we make transition

towards fine grained parallelism of manycore chips, the structure of algorithm is also moves

towards data –parallel structure. The implicit cached or explicit managed memory spaces also

play important for improving efficiency on modern processors, therefore we believe that

techniques that we apply on CUDA will also applicable for the implementation of this

algorithm on other manycore processors and distributed computing like cell broadband engine,

cluster computing, cloud computing . There are obviously a number of possible directions for

future work in weighted sequence comparison problem. For instance, in case of weighted

sequence greater 300 positions. An efficient algorithm might formulate somewhat different

efficiency trade-offs than ours.

References

[1] D. Gusfield, “Algorithm on strings, tree, and sequences: computer science and computational

biology”, Cambridge University Press, New York, NY, 1997.

[2] P. Baldi, and S. Brunak, “The machine learning approach“, Bioinformatics:, 2nd ed. MIT Press,

Cambridge, MA, 2001.

[3] T. F. Smith,, and M. S. Waterman, “Identification of Common Molecular Subsequences”, J. .Mol

.Biol., vol. 147, pp.195-197, 1981.

[4] C. Iliopoulos, K. Perdikuri, E. Theodoridis, A. Tsakalidis and K. Tsichlas, “Algorithms for

extracting motifs from biological weighted sequences”, Journal of Discrete Algorithms, vol.5, pp.

229-242, 2007

[5] M. Burrows and D.J. Wheeler, “A block sorting data compression algorithm”, Technical Report,

DIGITAL System Research Center, 1994

[6] M. Gessel and C. Reutenauer, “Counting permutations with given cycle structure and descent

set”, J. Combin. Theory, vol. 64(2), pp. 189–215, 1993.

[7] M. Crochemore, J. D�́sarm�́nien, and D. Perrin, “A note on the burrows-wheeler transformation”,

Theoret. Comput. Sci, vol. 332(1-3), pp.567-572, February 2005.

[8] J. K7�rkk7� inen, and P. Sanders, “Simple linear work suffix array construction”, In Proceedings of

the 30th International Conference on Automata, Languages and Programming, pp.943-955 , 2003,

[9] M. Gokhale, J. Cohen, A. Yoo, W. M. Miller, A. Jacob, C. Ulmer, R. Pearce, Hardware

Technologies for High Performance Data Intensive Computing, In Computer Magazine of IEEE

Computer Society, vol. 41(4), pp.60–68, 2008.

[10] L. Ligowski, W. Rudnicki, An Efficient Implementation of Smith Waterman Algorithm on GPU,

In IEEE International Symposium on Parallel and Distributed Processing, Rome, pp.1-8, 2009.

[11] F. Ergun, S. Muthukrishnan, and C. Sahinalp. “Comparing sequences with segment

rearrangements”. Lecture Notes in Comput. Sci, In the proceedings of Foundations of Software

Technology and Theoretical Computer Science, pp.183–194, 2003, Bombay, India.

[12] M. Li, X. Chen, X. Li, B. Ma, and P. Vit́anyi, “The similarity metric”. IEEE transaction on

Information Theory, vol. 12(5), pp.3250–3264, 2004.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

31

[13] H.H. Out, and K. Sayood, “ A new sequence distance measure for phylogenetic tree

construction”, Bioinformatics, vol.19(16), pp.2122–2130, 2003.

[14] S. Vinga, and J. Almeida, “Alignment-free sequence comparison – a review”, Bioinformatics,

vol.19 (4), pp.513–523, 2003.

[15] S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino, “A new combinatorial approach to sequence

comparison”, Theoretical Computer Science, Lecture Notes in Computer Science, vol.3701,

pp.348-359, 2005.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction to Algorithms”, MIT

Press, Second edition, Sept. 2001.

[17] J. Hoberock, and N. Bell, “Thrust: A Parallel Template Library”, version 1.2,

http://www.meganewtons.com/, 2009.

[18] N. Satish, M. Harris, and M. Garland, “Designing Efficient Sorting Algorithms for Manycore

GPUs”, In Proceedings of the 23rd IEEE International Parallel and Distributed Processing

Symposium, Rome, Italy, 23-29 May 2009.

Binay Kumar Pandey received the B. Tech. (Information Technology) and M. Tech in
(Bio-Informatics) degrees from the Institute of Engineering and Technology Lucknow,
Maulana Azad National Institute of Technology Bhopal in 2005 and 2008 respectively.
He was third topper during graduate studies and was awarded Prime Minister
scholarship for meritorious ward of defence personnel for his excellent performance.
After completing his M. Tech programme,
He proceeds towards to complete his PhD degree from Electronics and Computer Engg,

Indian Institute of Technology Roorkee.

