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ABSTRACT 
In this paper, we describe the design of high-performance extended burrow wheeler transform based 

weighted sequence comparison algorithm for many core GPUs  taking advantages of the full 

programmability offered by compute unified device architecture (CUDA) and its  standard library  

thrust. Our extended burrow wheeler transform based weighted sequence comparison algorithm with 

thrust library  implementation on CUDA is the fastest implementation of weighted sequence comparison 

algorithm than the our previous implementation of extended burrow wheeler transform based weighted 

sequence algorithm without using thrust library, and it is on average 56.3X times faster. Moreover, our 

present time implementation is also competitive with CPU implementations, being up to 2.9X times faster 

than comparable routine on  2.99 GHz Intel Pentium (R) 4  CPU  with  3 GB RAM. 
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1. INTRODUCTION 

 In bioinformatics and molecular biology research, sequence comparison is one of the most 

important tasks. Biological sequence comparison algorithms usually finds a match between 

nucleotide sequences which allows to determine the differences that occurs  due to 

substitutions, additions and deletions of nucleotides between them [1]. The foundation process 

of identifying new nucleotide sequence is generally done by finding the most similar match of 

an unknown nucleotide sequence to a known biological sequence. The same technique adopted 

to find out mutations that triggers a disease and is also a substantial part of tracing the evolution 

of a certain organism [2]. The dynamic programming based smith–waterman algorithm is 

considered as the only comparison algorithm guaranteed that return an optimal result which is 

suitable for both of protein and DNA sequences [4]. However, this algorithm took considerable 

amount of time even to compare two small length sequences and also not suitable for molecular 

weighted sequences. Thus, we try to alleviate the limitation of this algorithm in terms of its 

execution time by implementing extended burrow wheeler transform based molecular weighted 

sequence comparison algorithm.  
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The implementation of this intuitive idea for large weighted molecular sequence [4] can 

have take enormous amount of computation time and memory. This can be proved by 

considering a practical example of comparing molecular weighted sequence of 300 positions 

with molecular weighted pattern of 10 positions and in each position there is a possibility of 

four characters.  In worst case this weighted sequence gives 4^300 possible sequences and each 

sequence is 300 characters long, and in similar manner a molecular weighted pattern generates 

4^10 possible pattern and each pattern is 10 characters long.  Solving sequence comparison 

problem for such a kind of molecular weighted sequence and pattern requires very large 

memory space and computation time. This are all the main reasons which motivate us to 

perform parallel implementation of extended burrow wheeler transform based molecular 

weighted sequence comparison algorithms on compute unified device architecture� �����. 
Our whole paper is organized into the following sections. Section II gives brief explanations of 

burrow wheeler transform. Section III gives a study on extended burrow wheeler. Section IV 

consists of brief description of parallel architecture that is compute unified device architecture 

CUDA. Section V gives detail of comparing sequence using extended burrow wheeler 

transform. Section VI is dedicated to parallel implementation of weighted sequence comparison 

algorithm using extended burrow wheeler transform. Section VII gives detailed table of our 

findings. Section VIII dictates final conclusion of our experiment performed 

2.  BURROW WHEELER TRANSFORM: Preliminaries 

In the field of lossless textual data compression, burrows-wheeler transform [5] can be 

considered as an extremely useful tool. The main idea of burrow wheeler transform is to 

produce a permutation of an input word �, defined over an alphabet �, so that it becomes easier 

to compress the word. In fact this transformation keeps a group characters collectively so that 

the possibility of finding a character close to another instance of the same character is 

considerably increased. Burrow wheeler transform convert an input word � 	  �
��……�
by 

constructing all � cyclic rotations of �, perform lexicographical sorting and then extracting the 

last character of each rotation. The output of burrow wheeler transform is mainly consists by 

the sequence of these characters. Furthermore this transformation is also computes the index �, 
that is the row that denotes the position of original word in the sorted list of rotations. For 

example, suppose we want to compute burrow wheeler transform of word � 	 banana. In 

(Figure 1) shows the matrix that consists of all cyclic shifts of  �, that are further 

lexicographically sorted. 
 

            

                    F                      L 

                                          

             1     a   b   a   n   a   n 

             2     a   n   a   b   a   n 

             3     a   n   a   n   a   b 

    I   4      b   a   n   a   n   a 

             5     n   a   b   a   n   a 

             6     n   a   n   a   b   a  
 

Figure  1. The matrix contains lexicographic sorted list  of all cyclic rotations of the word   

� 	  banana   
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The last column L of the matrix represents BWT(�) = nnbaaa and  I = 4 because the original 

word banana appears in row 4. The first column F, instead, contains the sequence of the 

characters of � lexicographically sorted. 

3. AN EXTENSION OF BURROW WHEELER TRANSFORM FOR 

MULTISET OF WORDS 

In this section a description of an extension of the burrows–wheeler transform to a multi-set 

of words and few of its properties are illustrated. Such an extension is strictly related to a 

bijection, introduced in [6],  between the multisets of words over a finite alphabet � and the 

words of  ��. In  paper [7] it is shown that the burrows wheeler transform is connected to a 

particular case of the bijection given in [6] . This important statement has stimulated the 

definition of the extension burrow wheeler transform denoted by ����  for a multi-set of 

primitive words. In next subsection, some basics of order of relation between words and some 

proposition and definitions are given.  

3.1. Order Relation between Words 

A very deep understanding of an order relation between words that is different from the 

usual lexicographical one is very essential to define the extended burrow wheeler 

transformation. In [10] author describe every word � � ��  as a power of a primitive word, in 

other word it can also be said that there exists a distinctive primitive word � and a distinctive 

integer � such that � 	  ��, where � by ������� and � is denoted by exp���. 
Let suppose   be  a word in A*, then  ! denotes the infinite number of word that are 

obtained by iterating u in infinitely number of times, i.e.  ! = uuuuu . . . The lexicographic 

ordering denoted by "#$% is generally defined on infinite words length.  In order to develop 

much better understanding let us consider two words of infinite length & 	  &�&'…  and 

( 	  (�('… , with &), () � �, then  & "#$%  ( if there exists some  index  * � +  such that 

&) 	 () for , 	 1,2,… , * / 1 and &) 	 () .  it is very important  to note  that if x  =  y, then 

relation <lex is said to be not defined. It is also observing that  ! 	 �!  if and only 

if ����� � 	 �������. In order to support above mentioned  fact some important definition, 

proposition with proof and examples are given below. 

Definition 1. Let us consider two words  , � made up of finite alphabets which are elements 

of �. Then it is said that 

 0! � 1 2  exp� � 0 exp���   ,3 ����� � 	 �������
   ! "#$%  �!    ��4���,5�                    

6          (1) 

 

This order relation shown in “Eq. (1)” is different from the lexicographic one, this can be 

explain by considering following example  7� "#$%  7�7 but 7�7 0! 7�. even though when 

����� �  8 ������� the 9! -order of     and �  is defined by considering word of infinite 

length, the proposition given below shows that it is possible to decide mutual 9!-ordering 

between these words by just extending them up to the length |  | ; |�| /  gcd �| |, |�|�. Such 

a bound is a outcome of a well-known consequence of periodicity on words given in [10, 11].  

Proposition 2 Let us assume two given words as a u and v, with   ����� �  8   ������� , and 

then order of relation is defined by “Eq. (2)”.  
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 then   u 9! � 1  ?��3�� !� "#$%  ?��3���!�, 
                                                                                                      (2) 

 where  � 	 | | ; |�| /  gcd �| |, |�|�    
 

For any given finite or infinite length word �,  ?��3����  denotes the prefix of word � of  

length �.       

 

Example 3. Consider the two words   	 7�7  and � 	 7�7�. After monitoring each character 

of each word one can find that � 9!   and   !  and �! differ for the character in position 6 = 

4+3 − 1. It is also observe that   "#$%  � 

 

    7�7@
A

7�7@
A

7�. . . .BCD
A

  

    7�7�EFG
H

7�7�… .EIFIG
J

 

 

B. The Extended Burrows–Wheeler Transform 

 

This section is basically introducing extended burrow wheeler transform under the assumption 

that the words considered are primitive. In fact this supposition is not very restraining, because 

in practice almost all the textual data processed are primitive and if not then it become primitive 

by adding an end-of-string symbol. 

Let us consider K 	 L �, ……… .  �M be a multiset of primitive words of ��  that are not 

necessarily distinct. Then ||K|| is denoted by   “Eq. (3)”. 

 

||K|| 	  ∑ | )|�)O�                                                (3) 

 

and the value of  H  is given by “Eq. (4)”.   
 

 

 

maxR | )|  ; S TS – VWXY| )|, S TSZ S  ,, * 	 1,… , �M.                             (4) 

 

Consider again the set ��K� that represents all the conjugates of the words in K. Then each 

� � ��K� can associate to the triplet �?��3[��!�, \���, ]^���.where  ?��3[��!�  represents 

the prefix of �! of length  _, \��� denotes the last character of � and ]^represents the 

characteristic function of K, and represented by “Eq. (5)”. 

 

]^��� 	 2 1,   ,3 � � K
  0,   ��4���,5�6                                                                      (5)               

 

Now consider all these triplets set and sort it by taking first field as sorting key and then use  

"#$% relation. According to proposition 5, this "#$% relation applied on the words of ��K� 
produces the same order words as obtained by applying the 9!-order relation on the words 

of ��K�. This sorted list is arrange in (Figure 1). The sequences obtained by concatenating the 

second and the third components triplet �?��3[��!�, \���, ]^��� are denoted by  ab�K� 
and ac�K�. It is important note down that in places where there is no threat of vagueness, then 

the notation a, ab and ac  may use in place of a�K�, ab�K�  and ac�K�, respectively. If ad 
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denotes the sorted list with respect to the 9!-order, of the conjugate words in ��K�, then ab is 

the word obtained from the concatenation of the last characters of elements in ad and ac is the 

characteristic vector which show the  elements in the list that  are coming from S. 

Definition 4. The pair �ab, ac�  denoted by �����K� is the outcome of extended burrows 

wheeler transform for a multi-set of word denoted by K.  

Example  5. Let us take a multi-set of word denoted by  K 	 L7�7W�, W�7W, �W7�, 7W�7M.  
(Figure 2) third column represent  ?��3e,5 component that are obtain after performing 

lexicographic sorting on its rows. For sake of clearness we add also the column (the first one) 

ad containing the 9!-ordered list of all � � ��K�. The second column contains the "#$%-

sorted list of prefixes of length _ 	 6  the third column the word ab and the fourth column the 

characteristic array of K, ac. 

The complexity of the algorithm for computing ���� is upper bounded by the time needed 

to get the sorted list of the conjugates of the words in K, that can be handled by a suitable suffix 

array generalization. A generalized type of the “skew algorithm [8]” for the construction of the 

generalized suffix array, make it possible to obtain such a sorted list in linear time on the total 

size of the set K. Then the algorithm has total complexity Ο�||K||�. 
The proposition given below shows how the two important properties connecting the 

characters of  ab and ah. 

Proposition  6.  Consider  K be a multi-set of that hold primitive words and 

suppose �����K� 	 �ab , ac�. Let ah denotes the sequence of the first characters of the 

sorted list. Then following properties must hold: 

(1) For every , where ac 	 0,, abi,j follows ahi,j in one word in S. 

(2) For a predetermined character  7 � �, its occurrences in ah  appear in the same order as 

in ab, i.e. its klm instance of 7 in ah corresponds to its klm instance of 7  in ab. 

 

Remark 7.  A very important fact of extended burrow wheeler transforms is that, when the set 

S has only one element, and then the extended burrow wheeler transformation works exactly as 

same as the burrows–wheeler transform. In fact, the 9!-ordering of all the conjugates of a 

word is equivalent to the lexicographic ordering, because there is only single word and all the 

possible conjugates of  this single words have the same length. Furthermore, according to 

remark 4, the set of indices holds a single value. Therefore,  if  K 	 L�M  then  �����K� 	
������.  

S. NO    MC Pref5 ML M] M

F 

1 aacb aacba b 0 a 

2 abacb abacb b 1 a 

3 abbc abbc c 0 a 

4 acba acba a 1 a 

5 acbab acbab b 0 a 

6 accb accb b 0 a 

7 bacc baac c 0 b 

8 babac babac c 0 b 

9 bacba bacba a 0 b 

10 bacc bacc c 0 b 

11 bbca bbca a 0 b 
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12 bcab bcab b 1 b 

13 cabb cabb b 0 c 

14 cbaa cbaa a 0 c 

15 cbaba cbaba a 0 c 

16 cbac cbac c 1 c 

17 ccba ccba a 0 c 

 

Figure  2. The Table contains output of   �����K�  that is the pair ( ab , ac) where  ab 	
WW���W7W777��7  and ac 	 10000000100011 

4.  COMPARING SEQUENCES BY USING EBWT 

In this section we apply our extended transformation ebwt in order to introduce a new 

method for comparing sequences. The new distance between words defined here is simple and 

efficient to compute, and it is particularly advantageous in the case of comparison of a set of 

sequences. We remark that our distance is not based on sequence alignment. Several alignment-

free distance measures have recently been introduced [11, 12, 13, 14]   since they better fit with 

the problem of comparing genomic sequences than the methods based on sequence alignment. 

In fact, alignment-based methods compare sequences by considering only local edit operations 

on their fragments. Instead, the recent developments in genome sequences technologies have 

allowed to handle the complete genome of many different species, and have highlighted that, in 

order to capture evolutionary and functional mechanisms of different species, we need to 

consider a new set of sequence modifications that involve recombination or shuffling of 

segments of genome. The distance we define takes into account such kind of modifications and 

therefore it can be successfully applied to compare genomic sequences. 

The new notion used to measure distance between two sequences is based on the following 

intuitive idea: when ���� is applied to the set K 	 L , �M, if the same segment 5 occurs both in 

  and �, then the conjugates of   and � starting by 5 are likely to be close in the 9!-sorted list 

of conjugates. This implies that the greater is the number of segments shared by   and �, the 

greater is the mixing of the conjugates of   and  � in the sorted list. The comparison method 

based on transformation ����  will measure how similar   and � are, by taking into account 

how much their conjugates are mixed. In this section, in order to show an application of the 

extended burrow wheeler transformation,  a distance measure is define that computes the 

number of alternations in the above list between the conjugates of   and those of  �. A more 

detailed study of the class of distance measures based on ���� can be found in [15], where 

other different formalizations of distance measures based on ebwt are given. Formally, let 

 

K 	 L �,  ', … ,  �   M be a multiset of primitive words in��, let  k 	  ∑ | )|�)O�   and let 

an  	  o�,o', …… ,op be the sorted list of the conjugates of the elements of K obtained 

during the computation of �����K� . 
Consider the new alphabet ∑ 	 L��, �', �q, … . . , �rM. The coloring of �����K�  is the map 

: L1, 2, … . . , kM t  ∑  defined, for as: 

 

u�,� 	  �T   if  o) is a conjugate of   T. 
 

We denote by avi,j the word over ∑� such that  avi,j 	  u�,�. . 
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The following example describes the coloring of����, by adding the sequence av as a 

column to the table a  associated to the computation of ����, as shown in ( Figure 3). 

 
S. No ad ab av ac 

1 aabb b U 1 

2 aabb b V 0 

3 abba a U 0 

4 abba a V 1 

5 abab b Z 1 

6 abab b Z 0 

7 baab b U 0 

8 baab b V 0 

9 baba a Z 0 

10 baba a Z 0 

11 bbaa a U 0 

12 bbaa a V 0 

 

Figure  3. Shows extended burrow wheeler transform of mutiset S in which  column avof the 

coloring is added. 

 

Example  8.  Let K 	 L , �, wM, where  	 77��, � 	 7��7  and w 	 7�7�.  Let  �, x, y  are 

the colors associated, by the map   u, to  , �, w, respectively. As one can see in (Figure  3), 

av 	  �x�xyy�xyy�x.  
The definition of coloring allows us to introduce a new notion of distance measure between 

two sequences that takes into account the alternation of the symbols coming from different 

sequences in the output of the transformation ����. 
 

Definition 9. Let  , � �  ��  be two sequences and let us 

consider av� , �� 	  �
zx
{�
| … x
}.  We define the measure ~� , ��  as follows: 

 

~� , ��  	 � ��) /  1�
�

)O�,   
��

 

 

A description of the computation of distance ~ is given in the Example 11. The following 

proposition provides some properties of the measure. 

 
Proposition  10. The following statements hold: 

 

• ~� , �� 	  ~��,  �,  i.e. the measure ~  is symmetric. 

 

If    and �  are conjugate, then ~� , �� 	 0. 

 

• If  � is a conjugate of   and �� is a conjugate of �, then  ~� , �� 	  ~� �, ���. Therefore, ~ 

is a distance measure for conjugacy classes. 
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a� av 

abbc V 

acb U 

bac U 

bbca V 

bcab V 

cabb V 

cba U 

 

Figure 4.  The 9!-sorted list of conjugates of acb  and bcab  with coloring 

 

Example  11. Let us consider the sequences  	 7W� and � 	 �W7�.  In (Figure  4)  the sorted 

list of conjugates of    and � and the coloring of ����� , �� are shown. In this case av� ,
�� 	  x�'xq�, so according to definition 24, the net computed distance  between    and  � is 

~� , �� 	 3. 
5. A MULTI-CORE ARCHITECTURE: CUDA 

The architecture benefits of both CPU and GPU for general purpose non graphics GPU 

computing are obtained by developing a unified architecture of GPU and CPU called compute 

unified device architecture. The programs which are usually created for CUDA hardware [9], 

executes on the both CPU and GPU. A parallel component of program is called kernel that runs 

parallel on the GPU. The kernel cannot access the data from CPU’s main memory directly, but 

before launching kernel it’s  require input data must be copied to the GPU’s memory, and 

output data is also  first be written to the GPU’s memory and then copied to CPU memory.  

The architecture of CUDA and how data flow occurs between GPU and CPU is shown in 

(Figures  5-6). The necessary amount of memory required by the kernel must be pre-allocated, 

and the kernel is not able to use recursion or other similar operation that requires a stack, but 

conditionals and loops are allowed. Additionally, the number of registers present in each 

multiprocessor is limited and if the number of registers used by kernel is too high then 

multiprocessor schedules less stream processors [10] to perform computation simultaneously.   

This causes, a high-performance kernel code to be very careful in order to reduce the number 

of registers used and put limit on the amount of branching. The better flexibility of CUDA still 

not able to solve the very basic problems of small cache and associated high memory latency 

for memory intensive programs present in GPU card G80’s. 

 
 

Figure  5. Architecture of CUDA 
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Figure   6.  Typical GPGPU application flow 

6.  PARALLEL IMPLEMENTATION OF WEIGHTED SEQUENCE 

COMPARISION ALGORITHM USING EBWT 

This section basically gives the detail of the implementation steps, that we carried out for 

parallelization of extended burrow wheeler transform based weighted sequence comparison 

algorithm on CUDA without Thrust library and with Thrust library. 

6.1.  Profiling  

The most time consuming portion of the sequential code is determine by using Gnu profiling 

technique. In this technique we obtained a flat profile of sequential code by using gprof utility 

available in Gnu compiler. The generated flat file contains a set of information. For instance 

percentage of time required finishing the execution of particular function, number of call made 

for the function, self millisecond per call, and total milliseconds per call. In addition to this, 

gprof sort this information according to the functions that uses greater percentage of time. The 

utility gprof gives fast and simplest way to do function level profiling of the code.   

Our main objective behind the use of gprof utility is to determine the expensive functions 

with respect to time and then parallelize the sequential code accordingly. So that these time 

consuming functions takes less time and we can gain a significant improvement on sequential 

code. In order to perform the profiling of sequential code, we compile the code with –pg option 

and then execute the code as usual.  

After the execution of code is completed, an output file named gmon.out is created and this 

file can studied for parallelization purpose of sequential code. The profiling detail of our 

sequential implementation of extended burrow wheeler transform based weighted sequence 

comparison algorithm is shown in “Table 1” and  as per our analysis performed on this 

profiling table, we found that calculate_distances and sort_data are the function that takes 

maximum percentage of time during their execution. So we parallelized these two functions by 

exploiting the parallelization features available in CUDA. 
 

 

 

 

 

 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011 

21 

 

Table  1. Profiling results 
 

Each sample counts as 0.01 seconds. 

%  time Cumulative seconds Self  seconds calls Self  s/call Total  s/call Function name 

99.31 40.36 40.36 1 40.36 40.36 calculate_ 

distances( 

 conjugate*,     

 unsigned int,  

 unsigned int,      

unsigned int, bool) 

 

0.12 40.41 0.05 1 0.05 0.24      sort_data 

(conjugate*,  

 unsigned int, 

conjugate*) 

 

0.12       40.46         0.05    main 

 

0.10       40.50 0.04     1693856 0.00        0.00        std::vector<std::stri

ng,                                                                                       

std::allocator<std::s

tring 

>>::operator[](unsi

gned int) 

 

 

  0.05      40.52        0.02 5297631 0.00     0.00     __gnu_cxx::__nor

mal  

_iterator<std::strin

g*,     

std::vector<std::stri

ng, std 

::allocator<std::stri

ng> >    

  ::operator*() const 

 

0.05      0.02 40.54 1703906 0.00      0.00  

__gnu_cxx::__nor

mal 

iterator<std::string

*,   

std::vector<std::stri

ng, 

std::allocator<std::s

tring> > 

0.05      40.58        0.02     10046 0.00 0.00 gnu_cxx::__normal

_iterator 

<std::string*, 

std::vector< 

std::string, std:: 

allocator<std::strin

g> > >                       

6.2. Parallelization Techniques 

Our implementation of parallel extended burrow wheeler transform based weighted sequence 

comparison on CUDA and CUDA with thrust library is divided into four phases that are : 

finding possible sequence and pattern from weighted sequence and weighted pattern, generating 

conjugate  for each of the possible sequences and patterns, sorting of conjugates,  and 

computation of distance between possible sequences and possible pattern. Each of these phases 

is handled by either CPU or GPU processor available in CUDA. The selection of CPU and 
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GPU processor for the execution of above mentioned phases are based on the parallelization 

feasibility of that phase. 

     The finding of possible sequences and pattern from weighted sequences and pattern is one of 

the typical exponential problems and it is not feasible for parallelization because a brute force 

computation is required to enumerate all possible sequences and patterns. However, it is further 

possible to improve this brute force computation by applying some heuristics, in which we 

replace the exponential method for finding possible sequence and pattern into a three subparts 

that are: coloring of weighted sequence, tree construction of weighted sequence and finally tree 

traversal. 

 

     The coloring of each character positions in a weighted sequence is performed according to 

some set of rules. A character position is colored with white if one of the possible characters at 

that position has a probability of appearance equal to 1. A character position is colored gray if 

only one of the possible characters has probability of appearance greater than the presumed 

threshold value denoted by θ and if more than one character has probability of appearance 

greater than the threshold value θ, then that particular position is colored with black. 

       As soon as coloring is over, a tree is constructed for molecular weighted sequence by 

scanning it from left to right and if white or gray color appears then corresponding characters is 

simply added as a one of the node of tree. If a black color is encounter, then branching occurs 

in the tree.  

     Once the construction of tree is over we traverse the tree from leaves to root and a weight of 

each character at each node is multiplied up to root. All the sequence which are generated 

during tree traversal contains total weighted of appearances that are obtained by multiplying 

weight of each character is greater than presumed threshold value θ.   

     The possible sequences and pattern generation operation is followed by their conjugate 

generation. The conjugate generations of possible sequences or possible patterns were 

performed in parallel. Every possible sequence or pattern was assigned to a block, wherein, 

each thread presents in per block was responsible for the generation of one conjugate. For better 

understanding, let us taken example in which it was shown that how the fifth conjugate of first 

sequence or first pattern having length 10 characters was formed. The thread which would be 

responsible for the generation of fifth conjugate would be the fifth thread in the block to which 

first possible sequence or pattern was assigned.                                

     This fifth thread would simply copy the content of the first sequence or pattern from indices 

6 to 10 into a temporary memory location and then copying the content from indices 0 to 5 of 

first sequence and pattern into the same temporary memory location and concatenate them to 

form required conjugate. It is found from our deep observation that, the number of conjugate 

generated for each possible sequence or pattern is equal to the number of characters contained 

in it. Thus, the maximum number of threads required for conjugate generation would be equal 

to total number of possible sequence and pattern generated multiplied by maximum width of 

possible sequence or a pattern.  

      As the conjugate generation of a sequence is over, the sorting of these generated conjugates 

is begins. To perform sorting of conjugates in parallel on CUDA is a quite challenging task, 

because of some strict constraints imposed by underlying CUDA architecture. Our parallel 

implementation of traditional Bitonic sort [16] on CUDA has a large number of scatter read 

write operations that are performed on global memory, make it inefficient than sequential 

sorting algorithms . Therefore we looks towards some more improved sorting scheme which 

gives remarkable results on its parallel implementation on CUDA and we found that, thrust [17] 

is a set of library providing standard library functionality in CUDA framework for performing 
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various operations. In thrust, the sorting library makes use of an optimum parallel 

implementation of radix sort [18]. 

     Once the sorting of conjugate is over, the distance between each weighted sequence and 

weighted pattern is computed. The sequential distance calculation method between possible 

sequence and pattern is given in definition 9. During our study on distance calculation 

algorithms using extended burrow wheeler transform. We found that there is very less number 

of inter communication required between the distance calculation of each possible sequences 

and patterns. So, we parallelize this operation by using one thread of each block for distance 

calculation between each possible sequence and patterns generated from weighted sequence 

and pattern. Therefore the total numbers of threads running in parallel are able to accurately 

calculate the distances. 

7.  RESULT AND DISCUSSION 

We evaluate the performance of the implementation of the algorithm for weighted sequence 

comparison using extended burrow wheeler transform on parallel processing architectures that 

are CUDA without thrust library and CUDA with thrust library used for sorting the conjugate 

of sequences. Our experimental setup were consists of a personal computer and CUDA cards 

having the following configurations: Intel Pentium(R) 4 CPU, 2.99 GHz, with 2.49 GB RAM 

running and CUDA card of NVIDIA Quadro FX 3700 graphics card (512MB global memory, 

16KB shared memory, 1.2 GHZ clock), Compiling environment used is Microsoft Visual 

Studio 2005, enabled with NVCC, available through CUDA 3.0 SDK  

We designed an experimental scheme to measure the execution time of the algorithm for 

various lengths of weighted sequences that are generated randomly with threshold value are  

�=0.2. 

The biological weighted sequences are generated randomly. In the parallel implementation 

of weighted sequence comparison algorithm using extended burrow wheeler transform.  We 

found that Sorting is the main performance improvement bottle-neck. Since the result shown 

in “Table 2 “reveals that  sorting on uni-processor is significantly better then compute unified 

device architectures.  We use bitonic sort for our implementation on NVIDIA multicore 

architecture that is compute unified device architecture. The main reasons for such 

performance degradation of bitonic sorting performs on compute unified device architecture 

are given below: 

 

• In the device of Compute unified device architecture, each thread is assigned to handle two 

ptr_d[ ]
*
 that points two element of array that need to sort. In accessing these two elements, the 

threads create an un-coalesced gather operation from the global memory of the device, thereby, 

it enormously decrease capable memory bandwidth and increasing the access time by a few 

hundred clock cycles. 

• Once the values of ptr_d[i] and ptr_d[i+1] are obtained by a thread, then the characters 

pointed to by these two pointers are accessed through a global-memory access. Since this 

gather operation is more scattered than the previous operation, there exists a further inefficiency 

in the bandwidth utilization, thereby costing a few hundred more clock cycles for the operation. 

• Now as the characters from the sequences are read and compared, then appropriate changes 

to their positions' is required and this change is reflected onto  ptr_d[ ] by making a global-
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write. Because these writes too are scattered in nature, no attempt are made to utilize the full-

bandwidth. 

         In addition to this reasons, the number of kernel calls generated by the CPU for bitonic 

sort too high and it is �(tot_length
*
). In a typical run,  tot_length ≈ 10

6
. Hence, the CPU 

overhead of launching these many kernels is also high. 

       After finding above, we conceived an idea to optimize lexicographic sorting on CUDA by 

using thrust library. Thrust is nothing but a library which provides an STL interface to coding 

in CUDA, along with a user-friendly library data structures. It also provides highly-optimized 

implementation of standard algorithms, such as sorting and searching. Thrust does not provide 

any ready-made implementation of lexicographic sorting. 

     In order to achieve this, an intermediate class had to be written, the objects of which 

imitated the list of solid words. The objects were then passed to the library defined sorting 

functions, keeping in regard the syntax and data-structure requirements of these functions. This 

helped achieve a significant improvement in our performance which is shown in “Table 3”. The 

library sort functions use the ideas discussed in [18]. The executions timed against the CPU 

performance along with the user-defined class are tabulated below and it is observed from 

“Table 4” that CUDA with thrust library on average outperforms the CPU through a 2.9 X 

times. However, the total time is not only the sum of the times taken to sort the conjugates and 

calculate the distances between them, but also it includes the card’s overhead of moving data to 

and from the main memory. In the similar manner “Table 5” shows CUDA with thrust library 

on average out performs CUDA without thrust library through 56.3X times. Moreover, “Table 

6” shows the distance score between varies length of weighted sequence and weighted pattern. 

This score helps to determine the weighted sequence which is closest to weighted pattern. The 

pictorial representation of above mentioned results is also shown in  (Figures.  7-9). 

Table   2.  Comparisons of execution time taken by performing sorting on CPU and CUDA for 

threshold � =0 .2 

 
Number of 

positions in 

weighted 

sequences 

Number of 

position in 

weighted 

pattern 

Time taken to perform 

Bitonic Sort (in s) 

CUDA CPU 

50 6 0.235 0.2500 

         60 6 0.341 0.3750 

70 6 0.473 0.3280 

80 6 3.226 2.188 

90 6 27.148 25.172 

100 6 171.97 120.468 

110 6 235.184 155.690 

120 6 314.291 199.469 

130 6 411.521 269.570 

140 6 513.339 298.2797 

150 6 639.562 384.219 

160 6 782.565 421.141 

170 6 904.870 512.000 

180 6 1600.89 598.370 

190 6 1242.66 678.969 
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200 6 1433.84 729.078 

210 6 1648.09 883.219 

220 6 1882.68 974.359 

230 6 2134.47 1043.281 

240 6 2422.18 1179.797 

250 6 2442.58 1310.688 

260 6 4086.38 1452.141 

 

Table. 3  A comparison of execution time taken by performing sorting on CPU and CUDA 

using thrust library for threshold � =0 .2 

 
Number of 

positions in 

weighted 

sequences 

Number of position 

in weighted pattern 

Time taken to perform 

Bitonic Sort (in s) 

CUDA CPU 

50 6 0.016 0.2500 

60 6 0.016 0.3750 

70 6 0.031 0.3280 

80 6 0.046 2.188 

90 6 0.140 25.172 

100 6 0.360 120.46 

110 6 0.422 155.69 

120 6 0.531 199.46 

130 6 0.593 269.57 

140 6 0.719 298.27 

150 6 0.812 384.21 

160 6 0.921 421.14 

170 6 1.079 512.00 

180 6 1.265 598.37 

190 6 1.375 678.96 

200 6 1.531 729.07 

210 6 1.688 883.21 

220 6 1.906 974.35 

230 6 2.047 1043.2 

240 6 2.250 1179.7 

250 6 2.422 1310.6 

260 6 2.703 1452.1 

 
Table. 4 A comparison of execution time taken by performing sorting, distance calculation and 

total time including communication cost on CPU and CUDA using thrust library for threshold 

� =0 .2 
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Number 

of 

positions 

in 

weighted 

sequence

s 

Number 

of 

position 

in 

weighte

d 

pattern 

CUDA with thrust library  CPU 

Sorting 

time in 

millise

conds 

Distance 

calculation 

time in 

millisecond

s 

Total 

Time taken 

by 

algorithm 

in 

millisecond

s 

Sorting 

time in 

milliseco

nds 

Distance 

Calculation 

time in 

millisecond

s 

Total 

Time taken in 

milliseconds 

50 6 0.01 0.01 0.594 .0.25 0.4 0.73 

60 6 0.01 0.01 0.625 0.37 0.03 0.4 

70 6 0.03 0.01 0.735 0.32 0.4 0.8 

80 6 0.04 0.07 1.562 2.18 0.3 2.6 

90 6 0.14 0.77 4.016 25.1 2.7 28.1 

100 6 0.36 5.50 13.07 120.4 23.8 144.5 

110 6 0.42 6.00 14.82 155.6 25.7 181.6 

120 6 0.53 6.56 15.92 199.4 28.3 228.1 

130 6 0.59 7.09 16.65 269.5 30.5 300.3 

140 6 0.71 7.62 18.20 298.2 33.0 331.7 

150 6 0.81 8.18 19.36 384.2 35.4 420.0 

160 6 0.92 8.79 20.71 421.1 37.8 459.4 

170 6 1.07 9.21 22.0 512.0 40.3 552.8 

180 6 1.26 9.78 23.48 598.3 42 640.9 

190 6 1.37 10.3 25.67 678.9 44.9 724.4 

200 6 1.53 12.95 26.50 729.0 47.2 776.9 

210 6 1.68 11.45 28.00 883.2 49.6 933.8 

220 6 1.90 11.97 29.35 974.3 51.9 1027.5 

230 6 2.04 12.57 30.93 1043 53.8 1097.8 

240 6 2.25 13.09 32.67 1179 57.1 1237.6 

250 6 2.42 13.61 33.62 1310 59.5 1371.9 

260 6 2.70 14.14 35.20 1452 61.5 1514.7 

 

Table. 5 A comparison of execution time taken by performing sorting, distance calculation and 

total time including communication cost on CUDA using Thrust Library and CUDA without 

using thrust library for threshold � =0 .2 

 
Number 

of 

position

s in 

weighte

d 

sequenc

es 

Number 

of 

position 

in 

weighte

d 

pattern 

CUDA with Thrust Library CUDA  without  Thrust Library  

Sorting  

time in 

millise

conds 

Distance 

calculation 

time in 

millisecond

s 

Total 

Time 

taken im 

millisecon

dsl 

Sorting  

time in 

millisecon

ds 

Distance 

calculation 

time in 

millisecond

s 

Total 

Time taken 

im 

milliseconds 

50 6 0.016 0.016 0.594 0.235 0.016 0.4 

60 6 0.016 0.015 0.625 0.341 0.015 0.4 

70 6 0.031 0.016 0.735 0.473 0.016 0.6 
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80 6 0.046 0.078 1.562 3.226 0.078 3.4 

90 6 0.140 0.772 4.016 27.148 0.772 28.2 

100 6 0.360 5.50 13.07 171.97 5.50 177.8 

110 6 0.422 6.00 14.82 235.184 6.00 241.5 

120 6 0.531 6.563 15.92 314.291 6.563 321.3 

130 6 0.593 7.093 16.65 411.521 7.093 419 

140 6 0.71 7.625 18.20 513.339 7.625 521.5 

150 6 0.81 8.188 19.36 639.562 8.188 648.2 

160 6 0.92 8.797 20.71 782.565 8.797 791.9 

170 6 1.07 9.219 22.0 909.870 9.219 919.6 

180 6 1.26 9.783 23.48 1600.89 9.783 1611.3 

190 6 1.37 10.34 25.67 1242.66 10.34 1253.6 

200 6 1.53 2.953 26.50 1433.84 2.953 1437.5 

210 6 1.68 11.45 28.00 1648.09 11.45 1660.5 

220 6 1.90 11.97 29.35 1882.68 11.97 1896.0 

230 6 2.04 12.57 30.93 2134.47 12.57 2148.0 

240 6 2.25 13.09 32.67 2422.18 13.09 2436.8 

250 6 2.42 13.61 33.62 2442.58 13.61 2458.6 

260 6 2.70 14.14 35.20 4086.38 14.14 4101.7 

 

Table  6.  shows the distance between each sequence generated from weighted sequence with 

net probability of occurrence greater then threshold value = 1/5 to the pattern generated from 

weighted pattern with net probability of occurrence is greater than threshold value = 1/5 

 
 

weighted sequence weighted pattern Average distance 

between weighted 

sequences with 

weighted pattern 

weighted sequence   1 

  

weighted pattern    45 

weighted sequence   2 

  

weighted pattern    55.4 

weighted   sequence     3 

 

weighted pattern 65.4 

weighted sequence   4 

 

weighted pattern 75.5 

 

Weighted sequence  5 

 

weighted pattern 85.9 

Weighted sequence 6 

 

weighted pattern 94.5 

Weighted sequence 7 

 

weighted pattern 104.5 

Weighted sequence   8 

 

weighted pattern 114.4 

Weighted sequence   9 

 

weighted pattern 124.8 

Weighted sequence   10 

 

weighted pattern 134.4 
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Weighted sequence   11 

 

weighted pattern 144.4 

Weighted Sequence   12 

 

weighted pattern 154.4 

Weighted sequence   13 

 

weighted pattern 164.4 

Weighted sequence   14 

 

weighted pattern 174.4 

Weighted sequence   15 

 

weighted pattern 184.4 

Weighted sequence   16 

 

weighted pattern 194.4 

Weighted sequence   17 

 

weighted pattern 204.4 

Weighted sequence   18 

 

weighted pattern 214.4 

Weighted sequence   19 

 

weighted pattern 224.4 

Weighted sequence   20 

 

weighted pattern 234.4 

Weighted sequence   21 

 

weighted pattern 244.4 

Weighted sequence   22 

 

weighted pattern 254.4 

 

 
 

Figure 7. A comparision of execution time of sorting performed on CPU, CUDA without thrust 

library,  and CUDA with thrust library 
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Figure   8. A comparison of execution time of distance calculation performed on on CPU, 

CUDA without thrust library, and CUDA with thrust library 

 
 

Figure     9.    A comparison of total execution time of algorithm on CPU, CUDA without thrust 

library, and CUDA with thrust library 

8.  CONCLUSION  

We have presented the implementation of extended burrow wheeler transform based weighted 

sequence comparison algorithm on many core NVIDIA compute unified device architecture 

(CUDA).  Our experimental results shows that our parallel extended burrow wheeler  transform 

based weighted sequence algorithm with thrust library is the fastest published weighted 
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sequence comparison algorithm for modern many core CUDA processors and is up to 2.9X 

times more efficient than the techniques that maps weighted sequence comparison  onto the 

CPU. In addition to being the only and fastest CUDA weighted sequence comparison 

techniques, it is also faster than our previous extended burrow wheeler transform based 

weighted sequence comparison algorithm implemented on CUDA without using thrust library. 

We are able to achieve this algorithmic efficiency by deploying as much as our working the fast 

on chip memory provided by the NVIDIA CUDA architecture and by exposing as much as 

possible fine grained parallelism, in order to take the advantage of the thousand of parallel 

threads supported by this architecture. In general we also believe that once we make transition 

towards fine grained parallelism of manycore chips, the structure of algorithm is also moves 

towards data –parallel structure. The   implicit cached or explicit managed memory spaces also 

play important for improving efficiency on modern processors, therefore we believe that 

techniques that we apply on CUDA will also applicable for the implementation of this 

algorithm on other manycore processors and distributed computing like cell broadband engine, 

cluster computing, cloud computing . There are obviously a number of possible directions for 

future work in weighted sequence comparison problem. For instance, in case of weighted 

sequence greater 300 positions. An efficient algorithm might formulate somewhat different 

efficiency trade-offs than ours. 
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