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ABSTRACT 

 

An atomic commit protocol (ACP) is a distributed algorithm used to ensure the atomicity property of 

transactions in distributed database systems. Although ACPs are designed to guarantee atomicity, they add 

a significant extra cost to each transaction execution time. This added cost is due to the overhead of the 

required coordination messages and log writes at each involved database site to achieve atomicity. For this 

reason, the continuing research efforts led to a number of optimizations that reduce the aforementioned 

cost. The most commonly adopted optimizations in the database standards and commercial database 

management systems are those designed around the early release of read locks of transactions. In this type 

of optimizations, certain participating sites may start releasing the read locks held by transactions before 

they are fully terminated across all participants. Hence, greatly enhancing concurrency among executing 

transactions and, consequently, the overall system performance. However, this type of optimizations 

introduces possible “execution infections” in the presence of deferred consistency constraints; a 

devastating complication that may lead to non-serializable executions of transactions. Thus, this type of 

optimizations could be considered useless, given the importance of preserving the consistency of the 

database in presence of deferred constraints, unless this complication is resolved in a practical and 

efficient manner. This is the essence of the “unsolicited deferred consistency constraints validation” 

mechanism presented in this paper. 
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1. INTRODUCTION 

 
Preserving the atomicity property of transactions at the local level of individual database sites is 

not sufficient in a distributed database system. This is because a distributed transaction might end 

up committing at some participating sites and aborting at others due to a site or a communication 

failure. This jeopardizes global atomicity and, consequently, the consistency of the entire 

database. For this reason, an atomic commit protocol (ACP) has to be used in any distributed 

database system. 
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An ACP is essentially a distributed synchronization algorithm that guarantees a unanimous and 

deterministic final outcome for each distributed transaction. This outcome represents either the 

execution of a transaction as a whole, across all participating sites, or none at all. 

 

ACPs, such as the basic two-phase commit (2PC) [1, 2] or one of its widely known variants (see 

[3, 4] for surveys of the most common 2PC variants and optimizations), ensure atomicity but with 

a significant extra cost added to each transaction execution time. This added cost is due to the 

overhead of the required coordination messages and log writes at each involved database site to 

achieve atomicity. To minimize the adverse effects of this overhead on the overall system 

performance, there is a continuing interest in developing more efficient ACPs and optimizations, 

albeit for different distributed database system environments with inherently different 

characteristics. These include main memory databases (e.g., [5]), mobile and ad hoc networks 

(e.g., [6, 7, 8] ), real-time databases (e.g., [9, 10, 11]) and component-based architectures (e.g., 

[12]); besides traditional distributed database systems (e.g., [3, 13]). 

 

One of the most notable results of these continuing efforts is a type of optimizations in which 

transactions are allowed to release their read locks at certain participants before they have fully 

terminated across all participants. An example to this type of optimizations is the (traditional) 

read-only optimization [14]. This optimization is considered one of the most pronounced 

optimizations and is currently part of the distributed database standards [15]. In this optimization, 

an exclusively read-only participant in a transaction execution terminates the transaction and 

releases the read locks held on behalf of the transaction before the transaction has fully 

terminated at the update participants. Hence, this early release of read locks at readonly 

participants significantly enhances concurrency among executing transactions and, consequently, 

the overall system performance. This is especially important considering that read-only 

transactions (i.e., retrieval transactions that do not contain any update operations) are the majority 

of executing transactions in any general database management system. The performance 

enhancement of the read-only optimization on the overall system performance has been addressed 

in a number of simulation studies (e.g., [4, 16]) although basic analytical evaluations can still 

reveal the fact of enhanced performance using this optimization (e.g., [14]). 

 

In spite of the significance of the above type of optimizations on the overall performance of 

distributed database systems, its applicability is curtailed due to the fact that it may lead to 

nonserializable executions of transactions. This is a devastating possibility which could occur 

whenever transactions are allowed to continue to execute at some participants, acquiring further 

locks, after they have already terminated at others [15, 17]. These possible infected executions of 

transactions at individual participating sites cannot be captured by any (local) concurrency control 

mechanism without a sort of an additional global synchronization mechanism among all involved 

participating sites. Furthermore, these infected executions could occur not only in the context of 

the more general non-request/response processing paradigm, but also in the context of the 

simpler, widely accepted and standardized request/response paradigm where each operation 

processing request is acknowledged [15]. 

 

In the context of the latter paradigm, infected executions of transactions arise when the ACP used 

in the system incorporates an optimization that is designed around the early release of read locks 

and, at the same time, consistency constraints are allowed to be evaluated in deferred mode. This 

mode for evaluating consistency constraints is currently part of the SQL (Structured Query 

Language) standards [18] and is defined to enhance performance, in certain situations, and to 

resolve some applicability limitations of consistency constraints, in others. When this mode is 
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used, a transaction may need to acquire further locks at its commit time/point (i.e., the time/point 

at which the transaction issues its final commit DCL (Data Control Language) statement). While 

the transaction is still executing at some participants to evaluate deferred constraints, it may 

terminate and start releasing its read locks at others, using the above type of optimizations, 

providing an opportunity for possible execution infections. 

 

Thus, to benefit from any optimization that is designed around the early release of read locks in 

the presence of deferred consistency constraints, the above possible infections have to be 

eliminated in a practical and efficient manner. This is the essence of the “unsolicited deferred 

consistency constraints validation” (UDCCV) mechanism presented in this paper. UDCCV is 

designed to detect the above possible execution infections during the execution of individual 

transactions and, once detected, UDCCV prohibit each susceptible transaction from being 

infected by disallowing it from using any early read lock release optimization at commit time. 

Thus, UDCCV allows for the use of both deferred constraints as well as early read lock release 

optimizations in the system without penalizing those transactions that are not susceptible to 

execution infections. In UDCCV, this is accomplished through the use of an inexpensive 

piggybacking of control information in the messages exchanged among involved sites during the 

course of the execution of each transaction (before the transaction reaches its final commit point). 

 

The rest of this paper is structured as follows. First, Section 2 discusses consistency constraints 

and highlights their impotence on performance and applicability. Section 2 also explains, through 

an example, the two operating modes of consistency constraints: immediate and deferred, and 

explains the differences between them. Then, Section 3 thoroughly explains execution infections 

in the presence of deferred consistency constraints. After that, Section 4 presents the UDCCV 

mechanism. Lastly, Section 5 summaries this paper and provides some concluding remarks. 

 

 

2. HIGHLIGHTS OF CONSISTENCY CONSTRAINTS 

 
In any organization, data is governed by predefined set of rules called consistency constraint 

(data integrity) rules. These rules are extracted by data administrators or application developers 

from the business rules of the organization and used to ensure the quality of data. Consistency 

constraints could be managed (i.e., both checked and enforced) at the application level or at the 

database management system level. One of the most important advantages of managing 

consistency constraints at the database management system level is that it relieves application 

programmers from performing this tedious, slow and error-prone task at their application level 

once defined within the database management system. 

 

Relational database management systems allow for the definition of certain types of consistency 

constraints in a declarative manner using SQL. Once defined, the database management system is 

responsible about their management. In the SQL standards, a consistency constraint can be 

defined in an immediate or deferred mode. The immediate mode for the management of 

consistency constraints is the default mode and the most commonly used in practice. In this 

mode, a consistency constraint is evaluated at the level of each individual SQL DML (Data 

Manipulation Language) statement that manipulates the data governed by the consistency 

constraint. If a DML statement of a transaction violates a consistency constraint, the transaction is 

immediately aborted (i.e., rolled-back). 
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2.1 Deferred Constraints 

 
Unlike the immediate mode, when a consistency constraint is defined in deferred mode, it is 

evaluated at the commit time of the transaction. Thus, the consistency constraint is evaluated at 

the transaction level instead of each individual DML statement. At commit time of a transaction, 

all deferred constraints that governs the data manipulated by the transaction are evaluated. If any 

of the constraints is violated, the transaction is aborted. Otherwise, the transaction is allowed to 

commit. The SQL standards incorporate the deferred mode for evaluating consistency constraints 

for two essential reasons: 

 

I. Performance: deferred constraints enhance system performance when transactions tend to 

abort because of users’ requests to abort or because of congestion over the system resources 

(other than the locks on data). Thus, in such systems, by using deferred constraints, the 

system can avoid wasting computing resources on evaluating consistency constraints at the 

level of individual DML statements for transactions that will most probably end up aborting 

before reaching their final commit points. Similarly, system performance is enhanced when 

inserting (or loading) large amounts of data associated with consistency constraints into the 

database. 

 

II.   Applicability: deferred constraints solve the problem of “cyclic consistency constraints” [19]. 

This problem arises whenever there is a circular chain of referential consistency constraints 

between two or more relations (i.e., tables). Once exist, it is impossible to insert any tuple 

(i.e., row or record) into any of the relations unless a method is used to temporarily breaks the 

chain. 

 

Next, the above two reasons are discussed in further details. 

 

2.1.1. Performance of Deferred Constraints 

 
In deferred mode, any locks that are exclusively needed for the evaluation of a deferred 

consistency constraint are acquired at commit time of transactions. This is in contrast with 

immediate constraints where all the locks needed for the execution of a DML statement are 

acquired during the execution of the DML statement. This includes any exclusively needed locks 

for the evaluation of the consistency constraint. Thus, there is a clear trade-off between the two 

modes of consistency constraints. Deferred constraints hold the locks that are exclusively needed 

to evaluate the constraints for shorter periods of time compared with immediate constraints, 

allowing for more concurrency in the system. This is besides not wasting any time on evaluating 

the constraints during the execution of a transaction until the transaction issues its final commit 

statement. On the other hand, deferred constraints introduce the risk of conflicts among 

concurrently executing transactions at commit time. This is due to the contention over the locks 

that are exclusively needed to evaluate the deferred constraints compared with immediate 

constraints where all needed locks are acquired during execution time (before reaching the final 

commit point). This increases the possibility of transactions that are associated with deferred 

constraints to abort at commit time after they have already consumed all the required computing 

resources for their execution. 

 

Based on the above trade-off, it can concluded that deferred constraints significantly enhance the 

system performance when transactions tend to abort because of users’ requests to abort or 
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because of congestion over the system resources (other than the locks on data). Similarly, system 

performance is enhanced when loading large amounts of data into the database, delaying the 

validation of constraints until the loading of the data is completed. Otherwise, immediate 

constraints are best to use. 

 

 
 

Figure 1. A cyclic consistency constraints example. 

 

2.1.2. Applicability of Deferred Constraints 

 
Consider the ER (Entity-Relationship) diagram shown in Figure 1. The diagram consists of two 

entities: “Employee” and “Department”; and two relationships between them: “Works_for” and 

“Manages”. The “Works_for” relationship states that “each employee works for one and only one 

department; and each department is worked for by one or more employees”. The “Manages” 

relationship states that “each employee manages zero or one department; and each department is 

managed by one and only one (managing) employee”. 

 

Usually, when transforming the conceptual ER diagram shown in Figure 1 to the relational 

model, two relations are created: one that corresponds to the “Employee” entity and one that 

corresponds to the “Department” entity. We also need to observe the cardinality constraints when 

transforming the two relationships in the ER diagram to the relational model. That is, each 

employee has to be assigned to an exactly one department and each department has to be assigned 

to an exactly one (managing) employee. This can be accomplished by placing a “NOT NULL” 

constraint in the “Dept_ID” field that corresponds to the department for which an employee 

works, and placing another “NOT NULL” constraint in the “Mgr_ID” field that corresponds to 

the employee who manages the department, respectively. This is, of course, besides defining two 

referential consistency constraints: one that ties each employee to a valid department, and one 

that ties each department to a valid (managing) employee. This leads to the SQL DDL (Data 

Definition Language) statements shown in Figure 2. Notice that the two referential consistency 

constraints are added after the two relations are defined. This is because of the presence of a 

cyclic referential consistency constraints that prohibits the definition of one referential 

consistency constraint within the definition of one relation before the creation of the second 

relation, and vice versa. 
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Figure 2. SQL DDL statements for the two relations. 

 

Based on the SQL definitions shown in Figure 2, consider a transaction T that attempts to insert 

two tuples: one into the EMPLOYEE relation and one into the DEPARTMENT relation, as shown 

in Figure 3. Such a transaction will be aborted by the system during the execution of its first 

DML statement (regardless of the order of the two INSERT statements within the transaction). 

This is because both of the Dept_ID in the EMPLOYEE relation and the Mgr_ID in the 

DEPARTMENT relation cannot be “NULL”, and a tuple in one of the two relations requires the 

existence of a valid tuple in the other one (according to the rules of referential consistency 

constraints), and vice versa. That is, if an employee tuple is to be inserted, it has to reference a 

pre-existing department tuple and, if a department tuple is to be inserted, it has to reference a pre-

existing (managing) employee tuple. In fact, no transaction can insert any tuples in either of the 

two relations at all. This dilemma is called “cyclic consistency constraints” and could span any 

number of relations, and not just two, in its general case. 

 

 
 

Figure 3. The two DML statements of transaction T. 

 

The only way to resolve the above dilemma is by breaking the cycle in the consistency constraints 

such that one of them is delayed (i.e., violated temporarily) until the end of T. This represents the 

other reason for using deferred consistency constraints. That is, deferred constraints solve the 

above dilemma by allowing a transaction to delay the validation of some or all the consistency 

constraints until its commit time. This is, of course, so long as the validation of each constraint 

that is to be delayed is defined “deferrable” (as shown in the definition of the two referential 

consistency constraints (i.e., foreign keys) in Figure 2). To defer the validation of a constraint 

until commit time or to set it back to the immediate mode, the SQL standards provide the 

statement shown in Figure 4 which can be invoked from within a transaction. 
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Figure 4. SQL statement to set the constraint mode 

 

Once one of the consistency constraints is set to deferred, the cycle in the consistency constraints 

is broken. Hence, T can insert an employee tuple and a department tuple, as shown in Figure 5. At 

commit time of the transaction, all deferred constraints are validated and the transaction is 

allowed to commit if it does not violate any of them. Otherwise, the transaction is aborted. In our 

example, only the Dept_ID in the EMPLOYEE relation is validated at commit time and the 

transaction is allowed to commit. This is because T has already inserted a department tuple that 

satisfies the foreign key referential consistency constraint in the DEPARTMENT relation before 

reaching its commit point and this constraint was evaluated in immediate mode (during the 

INSERT DML statement of the department tuple). 

 

 
 

Figure 5. Breaking the cyclic consistency constraints. 

 

 

3. CONSTRAINTS IN DISTRIBUTED DATABASES 

 
The need for deferred constraints in distributed database systems is similar to their need in 

centralized database systems. However, their use in distributed database systems introduces a 

significant complication. This complication stems from the fact that any release of locks prior to 

the full termination of transactions across all participants may introduce non-serializable 

executions, jeopardizing the consistency of the entire database. This scenario arises when the 

ACP used incorporates optimizations that are designed around the early release of read locks, 

which is the case of the majority of current implementations of commercial database management 

systems. This scenario is thoroughly explained in the next section. 

 

3.1. 2PC and Early Release of Read Locks 

 
In distributed database systems, once a transaction finishes its execution and issues its final 

“commit” request, the transaction manager at the site where the transaction was first initiated 

acts as the coordinator for the termination of the transaction across all participating sites. This is 

achieved by initiating an ACP such as 2PC. 

 

As the name implies, 2PC consists of two phases. These two phases are the voting phase and the 

decision phase. During the voting phase, the coordinator of a transaction requests all the 

participants in the execution of the transaction to prepare-to-commit, whereas, during the decision 

phase, the coordinator either decides to commit the transaction if all the participants are prepared 

to commit (voted “yes”), or to abort if any participant has decided to abort (voted “no”). On a 
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commit decision, the coordinator sends out commit messages to all participants whereas, on an 

abort decision, it sends out abort messages to only those (required) participants 

that are prepared to commit (voted “yes”). When a participant receives a decision, it enforces the 

decision and sends back an acknowledgment. 

 

When a participant receives a prepare-to-commit message for a transaction, it validates the 

transaction with respect to data consistency. If the transaction can be committed, the participant 

responds with a “yes” vote. Otherwise, the participant responds with a “no” vote and aborts the 

transaction, releasing all the resources held by the transaction including the locks held on behalf 

of the transaction. 

 

When the coordinator receives acknowledgments from all the participants that had voted “yes”, it 

forgets the transaction by discarding all information pertaining to the transaction from its protocol 

table that is kept in main memory. 

 

The resilience of 2PC to system and communication failures is achieved by recording the 

progress of the protocol in the logs of the coordinator and the participants. Specifically, the 

coordinator of a transaction force-writes a decision record for the transaction prior to sending out 

its final decision to the participants. Since a forced write of a log record causes a flush of the log 

onto a stable storage that survives system failures, the final decision is not lost if the coordinator 

fails. Similarly, each participant force-writes a prepared record before sending its “yes” vote and 

a decision (i.e., either commit or abort) record before acknowledging a final decision. When the 

coordinator completes the protocol, it writes a non-forced end record in the volatile portion of its 

log that is kept in main memory. This record indicates that all (required) participants have 

received the final decision and none of them will inquire about the transaction’s status in the 

future. Hence, allowing the coordinator to (permanently) forget the transaction, with respect to 

the 2PC protocol, and to garbage collect the log records of the transaction when necessary. 

 

3.1.1. The Read-Only Optimization 

 

The read-only optimization significantly reduces the cost of 2PC for read-only transactions. This 

is because any exclusively read-only participant, a participant that has not performed any updates 

to data at its site on behalf of a transaction, can be completely excluded from the decision phase 

of the transaction. 

 

Specifically, in this optimization, when a read-only participant in the execution of a transaction 

receives a prepare-to-commit message, it simply releases all the locks held by the transaction and 

responds with a “read-only” vote (instead of a “yes” vote). This vote means that the transaction 

has read consistent data and the participant does not need to be involved in the second phase of 

the protocol because it does not matter whether the transaction is finally committed or aborted. 

Consequently, this optimization allows each read-only participant to terminate and to release all 

the resources held by the transaction, including the read-locks, earlier than its update counterparts 

and without having to write any log records. This represents the essence of the traditional read-

only optimization [14]. 
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Figure 6. Two representative executing transactions. 

 

3.1.2. Dangers of Early Release of Locks 

 
The significance of the read-only optimization on the overall system performance is faced with 

the possibility of execution infections in the presence of deferred constraints. This possibility 

arises even if each participant deploys strict two-phase locking (S2PL) for concurrency control, 

the one that guarantees serializability in distributed database systems and the de facto 

concurrency control mechanism in the industry. In fact, any optimization that terminates a 

transaction at some participants while the transaction is still executing at others, acquiring further 

locks, may lead to execution infections. This represents a major complication that may jeopardize 

the consistency of the entire database if not resolved in a practical manner. 

 

To illustrate execution infections and their possible consequences, consider two transactions: T1 

and T2 that contain read (r) and write (w) operations. Each transaction also contains a final 

commit request, as shown in Figure 6. 

 

Assume that the data items (y) and (c) are located at one participant (P1) and data item (x) is 

located at another participant (P2). Furthermore, assume that (y) is associated with a deferred 

consistency constraint that has to examine the value of (c) for consistency before any transaction 

that modifies (y) can commit. 

 

One possible execution scenario for the two transactions is shown in Figure 7. In the figure, each 

operation (Op) of a transaction (T) submitted to a participant (P) is represented as (OpP_ID, T_ID 

(data_item)) and when an operation pertaining to a transaction is executed successfully at a 

participant, it is acknowledged (AckP_ID, T_ID) by the participant. 

 

In this transaction execution scenario, T1 executes its first operation at P2 and then its second 

operation at P1. Once the two operations of T1 are executed and acknowledged, the coordinator 

initiates 2PC for T1. Participant P2 of T1 is read-only and releases the read lock that it holds on 

behalf of T1 when it receives the prepare (PrepP_ID, T_ID) message. It also sends a “read-only” 

vote (ROP_ID, T_ID) to the coordinator in response to the prepare message. Participant P1 does 

not receive the prepare message of T1 until some latter time (possibly due to queuing or 

communication delays). Meanwhile, T2 starts executing and changes the released data (x) of T1 at 

P2. Thus, T2 is “serialized after” T1 at P2 (T1 → T2). T2 also changes (c) prior to T1 had the chance 

to examining it at P1 (according to the consistency constraint that is placed on (y)).  

 

After the commitment of T2 at both participants, P1 receives the delayed prepare message of T1 

and acquires a read lock on (c) to evaluate the deferred constraint associated with (y) that T1 has 

modified during the course of its execution. Then, P1 proceeds with the commit processing of T1. 

Thus, T2 is “serialized before” T1 at P1 (T2 → T1). By merging the two local schedules, this 

scenario results in a global schedule that is not serializable (T1 → T2 → T1), although local 

serializability is preserved at each participant. 
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Figure 7. An example to an infected execution 

 

The above possible execution infection could happen not only with the read-only optimization but 

with any optimization designed around the early release of read locks before a transaction is fully 

terminated across all participants. Consequently, as this type of optimizations has been shown to 

significantly enhance system performance and so widely popular in the implementation of 

commercial database management systems, there is an absolute necessity for a mechanism that is 

able to detect and to prohibit scenarios similar to the one above from occurring. This is the 

essence of the unsolicited deferred consistency constraint validation mechanism. 
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4. THE UDCCV MECHANISM 

 
As explained in the previous section, when deferred constraints are used in conjunction with 

optimizations designed around the early release of read locks, there are possibilities for execution 

infections. These infections may occur because the time at which a transaction terminates and 

starts releasing its read locks at some participants is not the same as the time it terminates at the 

other participants. This creates a different termination time/point for the same transaction at 

different participants, providing an opportunity for execution infections. Consequently, this 

difference in termination time is called infection prone time period and is formally stated as 

follows: 

 

Definition: The infection prone time period is the time period between the earliest terminating 

time of a transaction at one participant and the latest terminating time of the same transaction at 

another participant. 

 

To exclude the possibility of execution infections, the infection prone time period has to be 

eliminated, disallowing any further locking between the earliest terminating time at one 

participant and the latest terminating time at another participant. This can be accomplished by 

prohibiting the use of either any optimization that is designed around the early release of read 

locks, or deferred consistency constraints. The first approach makes the earliest terminating time 

of a transaction at any participant to be the same as the latest terminating time for the same 

transaction at any other participant; whereas, the second approach makes the latest terminating 

time of a transaction at any participant to be the same as the earliest terminating time for the same 

transaction at any other participant. In other words, regardless of which approach is used, the 

termination time of each transaction will be the same across all participants. However, neither of 

these two approaches are acceptable from performance point of view. This is because both of 

them deprive the system of the anticipated performance enhancement gain. Not only that, but the 

second approach also deprives the system of a solution to a consistency constraint applicability 

limitation, as explained in Section 2.1.2. 

 

A third approach that also eliminates the infection prone time period is also visible. In this 

approach, all exclusively needed locks for the evaluation of deferred constraints are acquired 

during the execution of individual DML statements and postponing the (actual) validation process 

of deferred constraints until commit time of transactions. This approach enhances system 

performance by not performing the actual validation of deferred constraints until the end of 

transactions but reduces the level of concurrency among executing transactions. This is because it 

leads to the holding of the locks exclusively needed for the evaluation of deferred constraints, 

unnecessarily, from the time that a DML statement is executed until the termination time of the 

transaction. Thus, all the three approaches above fall short of providing the full anticipated 

benefits of deferred constraints and, at the same time, the optimizations designed around the early 

release of read locks, motivating the design of the UDCCV mechanism. 

 

Unlike the first two approaches above, UDCCV eliminates the infection prone time period on a 

per transaction basis and not on the system design level. That is, UDCCV allows for 

optimizations that are designed around the early release of read locks to co-exist with deferred 

constraints and resolves any possible execution infections on a per transaction basis. More 

specifically, in UDCCV, when a participant executes an operation pertaining to a transaction and 
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the operation is associated with a deferred consistency constraint that needs to be validated at 

commit time of the transaction, the participant sends an UDCCV flag as part of the operation 

acknowledgment message. When the coordinator of the transaction receives such a message from 

a participant, it means that the transaction may need to acquire further locks at the participant at 

commit processing time. In this way, the coordinator, with the help of the participant, can detect 

possible execution infections at the participant and it has to prohibit it from occurring at commit 

processing time of the transaction. 

 

At the commit time of a transaction (i.e., when the transaction issues its final commit statement), 

the coordinator knows which participants have executed operations associated with deferred 

consistency constraints. If any participant has executed such an operation, the coordinator needs 

to prohibit the possibility of execution infections. This is accomplished by sending an UDCCV 

flag as part of each prepare message that the coordinator sends to each participant not aware of 

the possible execution infections. Notice that more than participant may have already sent 

UDCCV flags during the execution of the transaction as they have deferred constraints to be 

validated at their sites at commit time of the transaction. Thus, these participants are already 

aware of possible execution infections and do not need to be informed about this possibility. 

 

When a participant receives a prepare message with an UDCCV flag for a transaction, the 

participant becomes aware of possible execution infections. Based on that, the participant 

continues to hold all the locks, including the read-only ones, until the final decision is received. 

That is, the participant does not apply any of its implemented early read lock release 

optimizations with this specific transaction. This means that the participant will follow 2PC until 

the completion of both of its phases and not just the first phase as though it does not implement 

any early read lock release optimization. Thus, when a potential case of execution infection is 

encountered, all participants continue to hold all locks until the final decision is made, eliminating 

the possibility of execution infections. 

 

If none of the participants had executed any operation that is associated with deferred constraints, 

the received prepare message by a read-only participant will not contain an UDCCV flag. Hence, 

the participant can utilize the read-only optimization and releases the read locks earlier than its 

update counterparts. Thus, the UDCCV delays the early release of read locks only when there is a 

possibility of execution infections, eliminating the infection prone time period on a per 

transaction basis. 

 

Returning to the previous example with the UDCCV in mind, when P1 executes the second 

operation of T1, it will send an UDCCV flag as part of its acknowledgment (Ack1,1 in Figure 7). 

Based on that, the coordinator will send an UDCCV flag as part of the prepare message to P2 

(Prep2,1). Hence, P2 will be aware of the possibility of the execution infection and, instead of 

releasing the read lock held on behalf of T1 and sending a “read-only” message (RO2,1), P2 will 

continue to hold the read lock and sends a “yes” vote, awaiting the final decision from the 

coordinator. Based on that, T2 will not be able to execute its operation at P1 as the lock needed on 

(x) at P2 is still held on behalf of T1, preventing the execution progress of T2. This eliminates the 

possibility for the two transactions to engage in a non-serializable execution due to an execution 

infection. This result can be generalized with the following theorem. 
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Theorem: In any distributed database system that is based on a request/reply paradigm and 

implements deferred consistency constraints, the UDCCV mechanism guarantees infection-free 

executions of transactions when combined with S2PL and an ACP that incorporates an 

optimization designed around the early release of read locks. 

 

Proof: The proof proceeds by contradiction and consists of two parts. 

 

For an execution infection to occur, there has to be a lock on a data item (d) that is released by a 

transaction Ti before its commit point at some participant P and (d) is locked and modified by 

another transaction Tj which commits before Ti in the global serialization schedule as follows: 

locki(d) < lockj(d) and Tj → Ti 

 

I. If locki is a “write” lock then it is impossible for Tj to acquire a lock on (d) and reaches its 

commit point before Ti reaches its commit point first because, in S2PL with an ACP, the write 

locks are released after transactions are terminated across all participants. 

 

II. If locki is a “read” lock then it is possible for Tj to acquire a lock on (d) and reaches its commit 

point before Ti terminates across all participants according to any early read lock release 

optimization incorporated in the ACP used and not S2PL. But, as UDCCV is used, locki cannot 

be released until Ti terminates across all participants. Thus, it is impossible for Tj to precede Ti in 

the serialization order. 

 

4.1. The UDCCV Mechanism and Other Optimizations 

 
The UDCCV can be used with other optimizations designed around early release of read locks 

such as early release of read locks (ERRL) [17] and the unsolicited update vote (UUV) [20, 21]. 

 

In ERRL, a participant in a transaction execution does not have to be an exclusively read-only 

participant for it to release the read locks held on behalf of the transaction at prepare time of the 

transaction. That is, in ERRL, each update participant is also allowed to release the read locks 

held on behalf of a transaction once it receives the prepare message for the transaction. 

 

UUV is another read-only optimization that further reduces the costs associated with read-only 

participants. In UUV, each transaction starts as a read-only transaction at each participant and 

when the transaction executes the first operation that updates data at a participant, the participant 

sends an unsolicited update-vote. The “unsolicited update-vote” is a flag that is sent as part of the 

operation acknowledgment. Thus, at the end of a transaction, the coordinator precisely knows all 

update participants and infers that the rest of the participants are read only. In contrast to the 

traditional read-only optimization, this is accomplished, in UUV, without having to explicitly pull 

the vote of each participant. Consequently, the coordinator only needs to inform each read-only 

participant that the transaction has terminated without requiring the participant to send back any 

reply message, reducing the number of messages with read-only participants, compared with the 

traditional read-only optimization, to the half. 

 

The UDCCV mechanism can be used in conjunction with ERRL in a manner similar to its use 

with the traditional read-only optimization. That is, when a participant executes an operation that 

is associated with a deferred constraint, the participant sends an UDCCV flag as part of the 

successful operation acknowledgment. This flag informs the coordinator about a possible 
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execution infection. Consequently, at commit processing time, the coordinator informs each other 

participant about this possibility using an UDCCV flag that it sends as part of each prepare 

message. Once a participant receives such a flag, it continues to hold the read locks until the end 

of the commit protocol (i.e., the second phase of the protocol). If the transaction does not perform 

any operation that is associated with deferred constraints, the participants can still utilize ERRL 

as usual. Thus, UDCCV prevents possible execution infections only with transactions that are 

associated with deferred constraints while still able to utilize ERRL with the other transactions. 

 

The UDCCV mechanism can be also used in conjunction with UUV but in a slightly different 

manner than its use with the traditional read-only optimization. This is because, in UUV, a 

coordinator does not pull the votes of read-only participants through prepare messages. 

Consequently, in the case of possible execution infections, the coordinator cannot request from 

any participant to continue to hold the read locks until the commit decision is made. Instead, the 

coordinator delays the termination message, which is called “read-only” in UUV, that it is 

supposed to send to each read-only participant until after it has received the votes of the update 

participants and made the final decision for the transaction. Thus, ensuring full termination of 

transactions across all participants before any locks are released. Similar to the previous two 

optimizations, in UUV, the UDCCV mechanism is used on a per transaction basis and only in the 

presence of potential execution infections. 

 

5. SUMMARY AND CONCLUSIONS 

 
The most commonly adopted atomic commit protocol (ACP) optimizations in the database 

standards and commercial database management systems are those designed around the early 

release of read locks. However, when this type of optimizations is used in conjunction with 

deferred consistency constraints that are evaluated at commit time of transactions, execution 

infections may occur. These infections could lead to non-serializable executions of transactions, 

jeopardizing the consistency of the entire database. Thus, there is a need for global 

synchronization mechanisms to detect execution infections and to prohibit them from occurring. 

The unsolicited deferred consistency constraints validation (UDCCV), presented in this paper, 

represents one such mechanism. 

 

The UDCCV mechanism relies on the piggybacking of control information among all involved 

database sites in a transaction’s execution to detect and to prohibit any execution infection. 

Hence, UDCCV allows for the use of deferred consistency constraints while eliminating possible 

execution infections when adopting those widely advocated ACP optimizations that are designed 

around the early release of read locks. UDCCV achieves this on a per transaction basis and 

without adding any extra cost to the coordination messages and log writes of the used ACP. 
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