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ABSTRACT 

When an attempt is made to modify  tables that have not been sufficiently normalized undesirable side-

effects may follow. This can be further specified as an update, insertion or deletion anomaly depending on 

whether the action that causes the error is a row update, insertion or deletion respectively. If a relation  R 

has more than one key, each key is referred to as a candidate key of R. Most of the practical recent works 

on database normalization use a restricted definition of normal forms where only the primary key (an 

arbitrary chosen key) is taken into account and ignoring the rest of candidate keys. 

In this paper, we propose an algorithmic approach  for database normalization up to third normal form by 

taking into account all candidate keys, including the primary key. The effectiveness of the proposed 

approach is evaluated on many  real world examples. 
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1. INTRODUCTION 

Normalization is, in relational database design, the process of organizing data to minimize 

redundancy. It usually involves dividing a database into two or more tables and defining 

relationships between the tables. The objective is to isolate data so that additions, deletions, and 

modifications of a field can be made in just one table and then propagated through the rest of the 

database via the defined relationships. Edgar Codd, the inventor of the relational model, also 

introduced the concept of normalization and Normal Forms (NF). The normal forms of relational 

database theory provide criteria for determining a table's degree of vulnerability to logical 

inconsistencies and anomalies. The higher the normal form applicable to a table, the less 

vulnerable it is. In general, normalization requires additional tables and some designers find this 

first difficult and then cumbersome.  

 

Violating one of the first three rules of normalization, make the application anticipates any 

problems that could occur, such as redundant data and inconsistent dependencies. 

 

When using the general definitions of the second and third normal forms (2NF and 3NF for short) 

we must be aware of  partial and  transitive dependencies  on all candidate keys and not just the 

primary key. This can make the process of normalization more complex; however, the general 

definitions place additional constraints on the relations and may identify hidden redundancy in 

relations that could be missed [1]. 

 

A functional dependency X→A is   partial  if  some attribute B∈X can be removed from X and 

the dependency still holds. Let A, B, and C be attributes of a relation R, A→B and B→C be two 
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dependencies that hold in R. Then C is transitively dependent on A via B (provided that A is not 

functionally dependent on B or C) [1]. 

 

Most of the recent works on database normalization are web-based tools without presenting 

algorithms and define the two notions, 2NF and 3NF, with respect to primary keys only, ignoring 

the other candidate keys as in [2], [3, [4], [5]. However, the original definitions of the two notions 

as given in [6], [7] , [1], [8] consider all candidate keys. To see the difference between the two 

approaches, suppose we have a schema relation R(A,B,C,D,E,F) together with the dependencies 

F={A→BCDEF; BC→ADEF; B →D;  E→F } 

 

In this example, we have two candidate keys  A and BC. If A is selected as the primary key of the 

relation, and ignoring BC then there is no partial dependencies on A, implying that the relation is 

in 2NF. But if all candidate keys are taken into account (that is the general definition is 

considered), although there are no partial dependencies on A, we have a partial dependency B→D 

on candidate key BC, implying that the relation is not in 2NF. This make normalization process 

particularly confusing for many designers. In this paper, we propose an algorithmic approach for 

database normalization that uses the original and general definitions of normal forms. The general 

definitions take into account all candidate keys of a schema relation. For each synthesized 

relation, a primary key is also generated. The algorithms are presented step-by-step so designers 

can learn and implement them easily.  Hereafter, all input schema relations are supposed at least 

in first normal form (1NF). 

 

Throughout the paper, R represents a relational schema; A, B, C,... denote attributes; X, Y and Z 

denote set of attributes, and F a set of functional dependencies. 

 

The rest of the paper is organized as follows:  section 1  presents some basic concepts and 

notations, in section 2 we present a procedure for removing redundant attributes, in section 3 we 

present an algorithm for removing redundant attributes and another for redundant dependencies. 

Section 4 presents an algorithm for classifying dependencies into full and partial and in section 5 

we present the algorithms for the decomposition into 2NF and  3NF respectively. In section 6 a 

complete  and practice example is presented and in section 7 we conclude the paper. 

 

2. REMOVING REDUNDANT ATTRIBUTES AND DEPENDENCIES 
 
Before determining partial dependencies, some redundant functional dependencies could be 

removed. To do that, many algorithms have been proposed for removing  redundant 

dependencies,  called minimal cover [9], [10]. To achieve this goal, one needs to compute the 

closure of a given set of attributes and then remove redundant attributes. 

 

Definition 1. 
 

Given a relation R, a set of attributes X in R is said to functionally determine another set of 

attributes Y, also in R, written X → Y, if and only if each X value is associated with precisely 

one Y value; R is then said to satisfy the functional dependency  X →Y.  

 

Definition 2. 
 

A set of functional dependencies F is in  canonical form if each functional dependency X→A in 

F, A is a singleton attribute.  

 

Hereafter, all functional dependencies are supposed in canonical form. 
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Let X be a set attributes and F be a set of functional dependencies. Let X
+
 be the set of all 

attributes that depend on a subset of X with respect to F, i.e., X
+
 is the set of attributes Z, such 

that X→Z ∈ F. X
+
  is called the closure of  X w.r.t F. 

 

The Algorithm A1 computes the closure of a given set of attributes w.r.t F:  

 
Algorithm A1:   computes X+. 

 
 Input:  A relation R, a set of functional dependencies F and a   

        set X of attributes.   

Output:  X+, the closure of X. 

    X
+
:= X 

   While there is a fd Y→ A∈ F 

      if Y⊆X+  and A⊄ X+  then  

            X+:=X+ ∪{A}  

 

 
To check  if a functional  dependency  Y→A holds in a set of dependencies F, we compute the 

closure of Y and check  If A⊆Y+. This test is particularly  useful, as  we will see  later  in the next 

algorithm. 

 

We can use attribute closure to remove redundant dependencies from a set of functional 

dependencies. We can do this by examining each dependency in turn to see if it is redundant. A 

dependency is redundant if it can be inferred from the other dependencies, and can thus be 

removed.  

 

Given a set of dependencies F, an attribute B is  extraneous in X→A with respect to F if A∈ (X-

B)
+
. If B∈(X-B)

+
 then B is called an  implied extraneous  attribute. If B is extraneous, but not 

implied, then it is  nonimplied. For  example,  suppose  we have  the functional  dependencies  

A,B→C and  A→C in F. Then B is a nonimplied extraneous attribute in A,B→C. As another 

example, suppose we have the dependencies A,B→C and A→B in F. Then B is an implied 

extraneous attribute in A,B→C. 

 

 F is called  partially left-reduced if no  attributes are  implied extraneous  attribute. The 

elimination of non-implied extraneous  attribute is postponed until the time that redundant 

dependencies are eliminated, using the Algorithm A3. Many  algorithms, sometimes difficult to 

reuse, have been proposed in [11], [12] for removing extraneous attributes. 

 

In our approach, we propose the following algorithm  to eliminate implied extraneous attributes 

by minimizing attribute closure computations. Algorithm A3 removes any implied extraneous 

attributes. Our observation is that any implied extraneous attribute has to appear both on the left-

hand side of at least one dependency and on the right-hand side of at least one dependency. 

Therefore, categorizing attributes  according to their  appearance on the left-hand side and right-

hand side of dependencies could reduce the number of attributes closure computation.We define 

the sets: 

 

             ro={A/ A occurs only on the right hand side of dependencies in F} 

             lo={A/ A occurs only on the left hand side of dependencies in F } 

             lr={A/ A∉ro and  A∉lo } 

 

Note that lo∩ro=φ, lo∩lr=φ and ro∩lr=φ. Moreover, the set lo, if not empty, contains key-

attributes. 
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Lemma 1. If B is an implied extraneous attribute in a set of dependencies F, then  B∈lr. 

 

Proof. It is easy to see that an implied extraneous attribute, as defined above, has to occur on the 

left-hand side of a dependency, then cannot be an element of the set ro. 

 

Lemma 2. If B is an extraneous implied attribute, then B∉lo and B∉ro. 

 

In contrast to the algorithm proposed in [12] that tests the redundancy of all attributes in (lo∪lr), 

we will test only for the attributes in lr. Let |X| denotes the cardinality (number of attributes) of X.  

 

Algorithm A2:  Removes implied extraneous attributes. 

  
Input: F, a set of functional dependencies.  

Output: G, a partially left-reduced set of dependencies. 

Initialize G:=F 

1.for each fd X→A∈G  do 
   if |X|>1 then set Y:=X  

      for any attribute B∈Y do  

         if B∈lr then 

           set H:=G-(X→A)∪{(Y-B)→A}  

           if B∈(Y-B)+ under H then 

               set Y:=Y-{B}  

      end 

      if X≠Y then G:=H  

   end 

  end 

2.Remove all duplicated dependencies in G, if any. 

 
This algorithm is substantially better than the one proposed in [12]. 

 

Example 1 [12]:  Let F be the set of dependencies:  

 

 AB→D; B→A; ABC→D; D→A;  AB→E; B→H; ABC→J; AB→F;   

 B→G; ABC→K; BN→H; AB→G 

 

G:=F, lr={A, D}, lo={B,C} and ro={E,F,G,H.J,K}  

 

According to lemma 2, there is no need to check for the attributes in lo or  in ro. 

 

-For AB→D.  

 B cannot be an implied extraneous attribute as B∉lr, then we check for A: 

 we have  A∈(Y-A)+; Y=Y-A 

  G is changed by replacing AB→D by  B→D :  

 

          B→D; B→A; BC→D; D→A; B→E; B→H; BC→J;  B→F; B→G;    

          BC→K; BN→H; B→G 

  

 -For BC→D.   

   G will not change as B,C∉lr 
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-For BN→H.  

   G will not change as B,N∉lr 

 

B→G is duplicated, then has to be removed we get the partially left-reduced dependencies F' of F:  

 

 B→D; B→A; BC→D; D→A; B→E;  B→H; BC→J; B→F; B→G; BC→K;   

 BN→H 

 

There is no more extraneous implied attributes in F', while the nonimplied extraneous attribute N, 

it will be removed by the next procedure. 

 

The next step consists to remove redundant dependencies. The main idea is to compare the lhs of 

dependencies that have the same rhs:  if  a dependency f1:  X→A is redundant in F, then there is 

at least a dependency f2:  Y→A in F where X→Y∈F
+
.  We write XF

+
 to mean that the closure of 

X  w.r.t a set of dependencies F. Algorithmically this can be expressed as follows:  

 
Algorithm  A3:  Removes redundant dependencies. 

 
Input: F, a set of partially left-reduced dependencies.  

Output: Fm, a minimal cover of F 

1. Fm:= F 

2. for each X→A∈Fm 

    while there exists a Y→A∈Fm 
      G:= Fm-(Y→A) 

      if X⊆YG
+ then  

          Fm:= G 

      end  

     end 

    end 

3. Fm is the  minimal cover of F. 

 
To illustrate the algorithm, let F  be the dependencies given in example 1. 

 

1. Initialization of Fm to:  

 

  B→D; B→A; BC→D; D→A; B→E;  B→H; BC→J; B→F; B→G; BC→K;  

  BN→H 

 

2. Summarized in table 1. 

 

3. Fm= {   B→D; B→E; B→F; B→H; B→G; BC→J; BC→K; D→A  } 
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Table 1.  Sketch elimination of redundant dependencies. 

Pass X→A Y→A Fm 

1 B→D   BC→D, B∈ (BC)+ Fm:= Fm – (BC→D) 

2 B→E   

3 B→F   

4 B→A   

5 B→H BN→H, B∈(BN)
+
 Fm:= Fm – (BN→H) 

6 B→G   

7 BC→J   

8 BC→K   

9 D→A B→A ,  D∈B
+
 Fm:= Fm – (B→A) 

 

In [12] they claimed that their (fast) algorithm computes 5 closures and the standard one 19 

closures to remove redundant dependencies. As we can see in the table 1,  only 3 computations 

are needed using our Algorithm A3, i.e., passes 1, 5 and 9, that is a substantial improvement. 

Moreover, for the other non-redundant dependencies, no extra effort is needed. 

 

Unfortunately, there can be several minimal covers for a set of functional dependencies. We can 

always find at least one minimal cover Fm for any set of dependencies F using Algorithm A3.  

 
Theorem 1. Let F be a set of partially left-reduced dependencies, and Fm its  minimal cover 

obtained by the Algorithm A3. Then we have F+ ≡ Fm
+. 

 

3. FULL AND PARTIAL DEPENDENCIES 
 
A functional dependency X → A is a full functional dependency if removal of any attribute B 

from X means that the dependency does not hold any more; that is, for any attribute B∈X, (X - B) 

does not functionally determine A. A functional dependency X→A is a partial dependency if A is 

not a key-attribute and some attribute B∈X can be removed from X and the dependency still 

holds; that is, for some B∈X, (X - B) → A [7]. Full and partial dependencies are generated as 

follows:  

 

Algorithm  A4:  Determines full and partial dependencies. 

 
 Input: Fm, a minimal cover set of F.  
Output: Fp, Ff, sets of  partial and full dependencies in  

        Fm respectively. 

Let Fp:=φ and  Ff:=Fm. 

 For each dependency X→A∈Ff   
  if  X is a proper subset of a candidate key and A is not a  

   key attribute then  

   Fp:=Fp∪{X→A}  
   Ff:=Ff-(X→A)  

  while there is a fd Z→B∈Ff s.t. Z∈A+ do 

   Fp:=Fp∪{Z→B}  
   Ff:=Ff-(Z→ B)  

  end 

 end 

end 
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In the If-statement, we make condition on the candidate keys and not the primary key, because if 

a relation has many keys, all have to be considered (see the definition of 2NF in the next section). 

 

We can continue our running example by initializing Ff to:  

 

   {B→ D; B→ F; B→ G; D→ A;  B→ E; B→ H; BC→ J; BC→ K} 

 

 we have one candidate key BC, that is the primary key. Fp=φ. For the lines 1-5, B⊆(BC), then we 

have partial dependencies. 

 

Table 2.  Sketch determination of Ff  and FP. 

X→ A Ff  FP 

B→ D    Ff := Ff –{B→ D; D→ A} FP:= FP ∪{B→ D; D→ A} 

B→ E  Ff := Ff – (B→ E) FP:= FP ∪{B→ E } 

B→ F Ff := Ff – (B→ F) FP:= FP ∪{B→ F} 

B→ H  Ff := Ff – (B→ H) FP:= FP ∪{B→ H } 

B→ G Ff := Ff – (B→ G) FP:= FP ∪{B→ G } 

BC→ J   

BC→ K   

 
The final result is:  

 

  Ff ={BC→ J; BC→ K}  

  FP ={ B→ D; D→ A; B→ E; B→ F;  B→ G;  B→ H  } 

 

Lemma 3. Fm= Ff ∪ FP. 

 

Lemma 4. Let R be a relation schema and Fm its minimal cover dependency set. If there is no 

partial dependency in R then   Fp=φ. 

 

4.  NORMALIZATION 

 

4.1. The Second Normal Form 
 

A relation is in second normal form (abbreviated 2NF) if it is in 1NF and no non-key attribute is 

partially dependent on any candidate key [7], [1].   In other words, no X→Y where X is a strict 

subset of a candidate key and Y is a non-key attribute. 

 

Simply, a table is in 2NF if and only if it is in 1NF and every non-key  attribute of the relation is 

either dependent on the whole of any candidate key, or on another non-key  attribute.  

 

The following algorithm is used to decompose a 1NF relation schema R into 2NF:  

 

Algorithm  A5:  Decomposes  into 2NF. 
 

Input: R, Ff and Fp. 

Output: a set R2NF of relations into 2NF. 

Let G:=Fp and Xf the set of attributes in Ff. 

R
2NF
:=φ 

 for each Y→A∈G do 
   if Y is a proper subset of a candidate key then 
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     - create RY(YG
+). 

     - choose Y as the primary key of RY. 

     - set Xf:=Xf-{B} for any non-key attribute B∈YG
+
. 

     - remove from G any dependency whose lhs is in YG
+
. 

     - R2NF:= R2NF ∪ RY(YG
+
) 

   end 

 end 

R
2NF
:= R

2NF ∪ RK(Xf), where K∈Xf is the (chosen) primary key of R.  

 
If Y is a key-attribute that means that Y is causing  a partial dependency. The statement  Xf:=Xf-

{B} is justified by the fact that Y is already in Xf. Moreover, the resulting decomposition 

preserves the functional dependencies of Fm, because Y→A belongs to RY and Y⊆Xf. 

 

Theorem 2. Let R be a 1NF relation. We have the following results: 

a. If Fp=φ then R is automatically in 2NF.  

b. If Fp≠φ then R is not in 2NF.  

 

Proof.  

a. If Fp=φ, i.e., there is no partial dependency in R, that means also that the first if-condition 

of the algorithm will never hold. Then RK is the only relation created by the Algorithm 

A5. As RK is partial dependency free (no partial dependency exists in Ff), then R= RK is 

in 2NF. 

b. If Fp≠φ, i.e., the first if-condition of the algorithm holds at least once. Therefore, R is not 

in 2NF as R≠RK. 

 

Let's assess our example:  

 

  Ff={ BC→ J, BC→ K }    

  Fp={ B→ D; D→ A; B→ E; B→ F; B→ G; B→ H } 

  

 and Fm=Ff∪Fp. 

 
As we can see all attributes in Ff depend fully on the only candidate key {BC} and all the 

attributes in Fp depend directly/indirectly on the key-attribute B, i.e., B is causing a partial key. 

Therefore, the relations  RBC and RB are created:  

   

    RBC(B,C,J,K) 

    RB(B,D,A,E,F,G,H) 

 

Note that when a 1NF relation has no composite candidate keys (candidate keys consisting of 

more than one attribute), the relation is automatically in 2NF.  If there is no composite candidate 

keys, then Fp=φ and by theorem 2 the relation is in 2NF. 

 

4.2 Third Normal Form 

 
A relation is in third normal form (abbreviated 3NF) if it is in 2NF and none of its non-key 

attributes are transitively dependent upon any candidate key [6], [1], [7]. An alternative (simpler) 

definition is a relation is in 3NF if in every non-trivial dependency X→A either X is a super key 

or A is a key attribute (i.e., A is contained within a candidate key). 

 

 The transitive dependencies set on 2NF relations is defined by:   
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  Ft={ X→A∈Fm} such that 

 

i. X is not a candidate key, and 

ii.  A is not a key attribute.  

 

Note that partial dependencies violate the 3NF. We have the following characterization. 

  

Theorem : A relation schema R is in third normal form if and only if for every key K of R and 

every nonkey-attribute A depends directly on K. 

 

The following procedure is used to decompose  a 1NF relation into 3NF. 

 

Algorithm  A6. Decomposes into 3NF. 

 
Input: R(X) a 1NF relation, and the set of dependencies Ft. 

       Where X is the set of attributes in R. 

Output: a set R3NF of relations into 3NF. 

Let G:=Ft and R
3NF
:=φ 

For each dependency Y→A∈G do 
- create a new relation RY, if not already created, 

- add Y and A in RY, if not already added, 

- consider Y as the primary key of RY, 

-  R
3NF
:= R

3NF
 ∪ RY 

- remove Y→A from G, and 

- if A∈X then   

        set R(X):=R(X–{B}) for any B∉Y and B∈AG
+. 

  end 

end 

     R
3NF:= R

3NF
 ∪R(X)  

end 

 

  

Lemma 5. If Ft≠φ, then the input relation R is not in 3NF. 

  

Now, we can complete our example given the initial 1NF relation with BC the only candidate key 

BC:  

       RBC(A, B, C,  D, E, F, G, H, J, K) 

 

together with the following dependencies: 

 

      Fm={BC→J;  BC→K; B→D; D→A; B→E; B→F; B→G; B→H } 

      Ft={B →D; D→A; B→E; B→F; B→G; B→H }  

 

According to the lemma 5, RBC(X), where X is the set of attributes, is not in 3NF. Therefore new 

relations RB(B, D, E, F, G, H) and  RD(D, A)  are then created and the attributes  D, E, F, G, H  

are removed from X  because they are in X+. We get the final relations into 3NF:  

 

        RBC(B, C, J, K) 

        RB(B, D, E, F, G, H) 

        RD(D, A)  

 

 



International Journal of Database Management Systems ( IJDMS ) Vol.5, No.3, June 2013 

48 

Example 2:  Consider the schema relation   

           R(isbn, invno, title, authors, publ, place, year) 

    

together with the  set of dependencies:  

           

 Fm={( title, authors, publ, place, year)→ isbn; isbn→ title; isbn→ authors;  

                     isbn→ publ;  isbn→place; isbn→ year; invno → isbn } 

 

The attribute invno is the unique key of R. The set of partial dependencies Fp=φ and the set of 

transitive dependencies : 

 Ft= {( title, authors, publ, place, year)→ isbn; isbn→ title; isbn→ authors;  

                     isbn→ publ;  isbn→place; isbn→ year} 

 

Therefore the relation R is in 2NF but not in 3NF because Ft≠φ. R can be easily normalized by 

decomposition using the algorithm A6 as follows: 

 

R1( title, authors, publ, place, year, isbn) 

R2(invno, title, authors, publ, place, year) 

 

5.  A COMPLETE EXAMPLE 

 
To demonstrate the applicability of the above algorithms, consider the more realistic example 

presented in [1]. 

 

Suppose we want to normalize the 1NF relation ClientRental up to 3NF. This relation contains 9 

attributes and 17 dependencies:  

 

Clientrental (clientNo, propertyNo,  clientName, pAddress, rentStart, rentFinish, rent,   

                           ownerNo, ownerName) 

 

with the following dependencies F:  

 

f1: propertyNo,rentStart → rentFinish 

f2: clNo,propertyNo  → rentFinish 

f3: clNo,rentStart → rentFinish 

f4: clNo → clName 

f5: propertyNo,rentStart → clName 

f6: clNo,propertyNo → rentStart 

f7: ownerNo → oName 

f8: propertyNo → oName 

f9: clNo,rentStart → oName 

f10: clNo,rentStart → pAddress 

f11: propertyNo → pAddress 

f12: propertyNo → rent 

f13: clNo,rentStart → rent 

f14: propertyNo → ownerNo 

f15: clNo,rentStart → ownerNo 

f16: clNo,rentStart → propertyNo 

f17: propertyNo,rentStart → clNo 
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Step 1:  First of all, we call the Algorithm A3 to generate a minimal cover Fm of F, as there is no 

implied extraneous attributes.  Let lhs(fj)⊆lhs(fi)
+ means that the left-hand-side of the dependency 

fj is in the closure of the left-hand-side of the dependency fi, i.e. lhs(fi)→lhs(fj).  

  

− f1 is redundant because lhs(f2)⊆lhs(f1)
+
 

−  f3 is redundant because lhs(f2)⊆lhs(f3)
+ 

− f5 is redundant because  lhs(f4)⊆lhs(f5)
+ 

− f8 is redundant because   lhs(f7)⊆lhs(f8)
+
 

− f9 is redundant because  lhs(f7)⊆lhs(f9)
+
 

− f10 is redundant because  lhs(f11)⊆lhs(f10)
+ 

−  f13 is redundant because  lhs(f12)⊆lhs(f13)
+  

− f15 is redundant because   lhs(f14)⊆lhs(f15)
+
 

 

After removing the redundant dependencies  (9), we get the minimal cover Fm :  

 

f2:  clNo,propertyNo →rentFinish 

f4: clNo →clName 

f6: clNo,propertyNo →rentStart 

f7: ownerNo →oName 

f11: propertyNo →pAddress 

f12: propertyNo →rent 

f14: propertyNo →ownerNo 

f16: clNo,rentStart →propertyNo 

f17: propertyNo,rentStart →clNo 

 

We have three candidate keys (clNo, propertyNo), (clNo, rentStart) and (propertyNo, rentStart). 

No matter is the choice of the primary key, we can determine partial and transitive dependencies. 

 
Step 2:  We call the Algorithm A4 to generate Ff and Fp from Fm. The set of partial dependencies 

is:  

 

       Fp={ clNo→clName;   

                propertyNo→pAddress;  

                propertyNo→rent; 

                propertyNo→ownerNo;   
                ownerNo→oName  

             } 

 

As Fp ≠φ the relation ClentRental is not in 2NF. In fact, the attribute clName is partially 

dependent on the candidate keys (clNo, propertyNo) and (clNo, rentStart). Also, the  attributes 

pAddress, ownerNo and  oName are partially dependent on the candidate keys (clNo, propertyNo) 

and (rentStart, propertyNo). 

 

And the set of full dependencies is:  

 

       Ff={  clNo,propertyNo→rentStart; 
                clNo,propertyNo→rentFinish; 

                clNo,rentStart→propertyNo; 

                propertyNo,rentStart→clNo  

             } 

and the set of transitive dependencies is:  



International Journal of Database Management Systems ( IJDMS ) Vol.5, No.3, June 2013 

50 

       Ft={ ownerNo→oName } 

 

Step 3:  Decomposition of the relation ClientRental into 2NF:  

 

We can choose   (clNo,propertyNo)  as the primary key, but no special consideration will be 

given to this key over the other candidate keys.  Then the call to the algorithm A5 creates  new 

relations. From Ff, we get the relation  

 

R(clNo,propertyNo)(clNo, propertyNo, rentStar, rentFinish) 

 

RclNo(clNo,clName) 

 

RpropertyNo(propertyNo, pAddress, rent,ownerNo, oName) 

 

The key-attributes clNo and propertyNo cause the violation of 2NF. The three relations 

are in Second Normal Form as every non-key attribute is fully functionally dependent on the 

primary key of the relation. 

 

Step 4:  Decomposition into 3NF:   

 

As the input of the Algorithm A6 we have R(clNo,propertyNo), RclNo, RpropertyNo and Ft. The only relation 

that contains the transitive dependency Ft is RpropertyNo. We then decompose RpropertyNo into two 

relations and remove the attribute oName from that relation to get all relations into 3NF:  

 

R(clNo,propertyNo)(clNo,propertyNo, rentStar, rentFinish) 

RclNo(clNo,clName) 

RpropertyNo(propertyNo, pAddress, rent, ownerNo) 

RownerNo(ownerNo, oName) 

 

The algorithms are dependency preserving as the original ClientRental relation can be recreated 

by joining the 3NF relations R(clNo,propertyNo), RclNo, RpropertyNo  and RownerNo through the primary 

key/foreign key mechanism. 

 

6. CONCLUSION 

In this paper we have presented  algorithms for relational database normalization into 2NF and  

3NF using their general definitions in a step-by-step feature. The first step before performing the 

procedure is to make a preprocessing on the set of dependencies to remove redundant 

dependencies. We have tested our algorithms on many realistic examples with multiple candidate 

keys taken from different sources. 

 

This work has mainly the following  major advantages:  (i) the general and original definition of 

normal forms is  used, (ii) the removal of redundant dependencies, (iii) in all phases, the 

computation of attributes closure are minimized compared to other algorithms although using a 

restricted definition of normal forms, and (iv) a primary key is determined for any generated 

relation.  
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