
International Journal of Database Management Systems (IJDMS) Vol.5, No.3, June 2013

DOI : 10.5121/ijdms.2013.5303 39

ALGORITHM FOR RELATIONAL DATABASE

NORMALIZATION UP TO 3NF

Moussa Demba

Department of Computer Science & Information, Aljouf University

Sakaka, Kingdom of Saudi Arabia
bah.demba@ju.edu.sa

ABSTRACT

When an attempt is made to modify tables that have not been sufficiently normalized undesirable side-

effects may follow. This can be further specified as an update, insertion or deletion anomaly depending on

whether the action that causes the error is a row update, insertion or deletion respectively. If a relation R

has more than one key, each key is referred to as a candidate key of R. Most of the practical recent works

on database normalization use a restricted definition of normal forms where only the primary key (an

arbitrary chosen key) is taken into account and ignoring the rest of candidate keys.

In this paper, we propose an algorithmic approach for database normalization up to third normal form by

taking into account all candidate keys, including the primary key. The effectiveness of the proposed

approach is evaluated on many real world examples.

KEYWORDS

Relational database, Normalization, Normal forms, functional dependency, redundancy.

1. INTRODUCTION

Normalization is, in relational database design, the process of organizing data to minimize

redundancy. It usually involves dividing a database into two or more tables and defining

relationships between the tables. The objective is to isolate data so that additions, deletions, and

modifications of a field can be made in just one table and then propagated through the rest of the

database via the defined relationships. Edgar Codd, the inventor of the relational model, also

introduced the concept of normalization and Normal Forms (NF). The normal forms of relational

database theory provide criteria for determining a table's degree of vulnerability to logical

inconsistencies and anomalies. The higher the normal form applicable to a table, the less

vulnerable it is. In general, normalization requires additional tables and some designers find this

first difficult and then cumbersome.

Violating one of the first three rules of normalization, make the application anticipates any

problems that could occur, such as redundant data and inconsistent dependencies.

When using the general definitions of the second and third normal forms (2NF and 3NF for short)

we must be aware of partial and transitive dependencies on all candidate keys and not just the

primary key. This can make the process of normalization more complex; however, the general

definitions place additional constraints on the relations and may identify hidden redundancy in

relations that could be missed [1].

A functional dependency X→A is partial if some attribute B∈X can be removed from X and

the dependency still holds. Let A, B, and C be attributes of a relation R, A→B and B→C be two

International Journal of Database Management Systems (IJDMS) Vol.5, No.3, June 2013

40

dependencies that hold in R. Then C is transitively dependent on A via B (provided that A is not

functionally dependent on B or C) [1].

Most of the recent works on database normalization are web-based tools without presenting

algorithms and define the two notions, 2NF and 3NF, with respect to primary keys only, ignoring

the other candidate keys as in [2], [3, [4], [5]. However, the original definitions of the two notions

as given in [6], [7] , [1], [8] consider all candidate keys. To see the difference between the two

approaches, suppose we have a schema relation R(A,B,C,D,E,F) together with the dependencies

F={A→BCDEF; BC→ADEF; B →D; E→F }

In this example, we have two candidate keys A and BC. If A is selected as the primary key of the

relation, and ignoring BC then there is no partial dependencies on A, implying that the relation is

in 2NF. But if all candidate keys are taken into account (that is the general definition is

considered), although there are no partial dependencies on A, we have a partial dependency B→D

on candidate key BC, implying that the relation is not in 2NF. This make normalization process

particularly confusing for many designers. In this paper, we propose an algorithmic approach for

database normalization that uses the original and general definitions of normal forms. The general

definitions take into account all candidate keys of a schema relation. For each synthesized

relation, a primary key is also generated. The algorithms are presented step-by-step so designers

can learn and implement them easily. Hereafter, all input schema relations are supposed at least

in first normal form (1NF).

Throughout the paper, R represents a relational schema; A, B, C,... denote attributes; X, Y and Z

denote set of attributes, and F a set of functional dependencies.

The rest of the paper is organized as follows: section 1 presents some basic concepts and

notations, in section 2 we present a procedure for removing redundant attributes, in section 3 we

present an algorithm for removing redundant attributes and another for redundant dependencies.

Section 4 presents an algorithm for classifying dependencies into full and partial and in section 5

we present the algorithms for the decomposition into 2NF and 3NF respectively. In section 6 a

complete and practice example is presented and in section 7 we conclude the paper.

2. REMOVING REDUNDANT ATTRIBUTES AND DEPENDENCIES

Before determining partial dependencies, some redundant functional dependencies could be

removed. To do that, many algorithms have been proposed for removing redundant

dependencies, called minimal cover [9], [10]. To achieve this goal, one needs to compute the

closure of a given set of attributes and then remove redundant attributes.

Definition 1.

Given a relation R, a set of attributes X in R is said to functionally determine another set of

attributes Y, also in R, written X → Y, if and only if each X value is associated with precisely

one Y value; R is then said to satisfy the functional dependency X →Y.

Definition 2.

A set of functional dependencies F is in canonical form if each functional dependency X→A in

F, A is a singleton attribute.

Hereafter, all functional dependencies are supposed in canonical form.

International Journal of Database Management Systems (IJDMS) Vol.5, No.3, June 2013

41

Let X be a set attributes and F be a set of functional dependencies. Let X
+
 be the set of all

attributes that depend on a subset of X with respect to F, i.e., X
+
 is the set of attributes Z, such

that X→Z ∈ F. X
+
 is called the closure of X w.r.t F.

The Algorithm A1 computes the closure of a given set of attributes w.r.t F:

Algorithm A1: computes X+.

 Input: A relation R, a set of functional dependencies F and a

 set X of attributes.

Output: X+, the closure of X.

 X
+
:= X

 While there is a fd Y→ A∈ F

 if Y⊆X+ and A⊄ X+ then

 X+:=X+ ∪{A}

To check if a functional dependency Y→A holds in a set of dependencies F, we compute the

closure of Y and check If A⊆Y+. This test is particularly useful, as we will see later in the next

algorithm.

We can use attribute closure to remove redundant dependencies from a set of functional

dependencies. We can do this by examining each dependency in turn to see if it is redundant. A

dependency is redundant if it can be inferred from the other dependencies, and can thus be

removed.

Given a set of dependencies F, an attribute B is extraneous in X→A with respect to F if A∈ (X-

B)
+
. If B∈(X-B)

+
 then B is called an implied extraneous attribute. If B is extraneous, but not

implied, then it is nonimplied. For example, suppose we have the functional dependencies

A,B→C and A→C in F. Then B is a nonimplied extraneous attribute in A,B→C. As another

example, suppose we have the dependencies A,B→C and A→B in F. Then B is an implied

extraneous attribute in A,B→C.

 F is called partially left-reduced if no attributes are implied extraneous attribute. The

elimination of non-implied extraneous attribute is postponed until the time that redundant

dependencies are eliminated, using the Algorithm A3. Many algorithms, sometimes difficult to

reuse, have been proposed in [11], [12] for removing extraneous attributes.

In our approach, we propose the following algorithm to eliminate implied extraneous attributes

by minimizing attribute closure computations. Algorithm A3 removes any implied extraneous

attributes. Our observation is that any implied extraneous attribute has to appear both on the left-

hand side of at least one dependency and on the right-hand side of at least one dependency.

Therefore, categorizing attributes according to their appearance on the left-hand side and right-

hand side of dependencies could reduce the number of attributes closure computation.We define

the sets:

 ro={A/ A occurs only on the right hand side of dependencies in F}

 lo={A/ A occurs only on the left hand side of dependencies in F }

 lr={A/ A∉ro and A∉lo }

Note that lo∩ro=φ, lo∩lr=φ and ro∩lr=φ. Moreover, the set lo, if not empty, contains key-

attributes.

International Journal of Database Management Systems (IJDMS) Vol.5, No.3, June 2013

42

Lemma 1. If B is an implied extraneous attribute in a set of dependencies F, then B∈lr.

Proof. It is easy to see that an implied extraneous attribute, as defined above, has to occur on the

left-hand side of a dependency, then cannot be an element of the set ro.

Lemma 2. If B is an extraneous implied attribute, then B∉lo and B∉ro.

In contrast to the algorithm proposed in [12] that tests the redundancy of all attributes in (lo∪lr),

we will test only for the attributes in lr. Let |X| denotes the cardinality (number of attributes) of X.

Algorithm A2: Removes implied extraneous attributes.

Input: F, a set of functional dependencies.

Output: G, a partially left-reduced set of dependencies.

Initialize G:=F

1.for each fd X→A∈G do
 if |X|>1 then set Y:=X

 for any attribute B∈Y do

 if B∈lr then

 set H:=G-(X→A)∪{(Y-B)→A}

 if B∈(Y-B)+ under H then

 set Y:=Y-{B}

 end

 if X≠Y then G:=H

 end

 end

2.Remove all duplicated dependencies in G, if any.

This algorithm is substantially better than the one proposed in [12].

Example 1 [12]: Let F be the set of dependencies:

 AB→D; B→A; ABC→D; D→A; AB→E; B→H; ABC→J; AB→F;

 B→G; ABC→K; BN→H; AB→G

G:=F, lr={A, D}, lo={B,C} and ro={E,F,G,H.J,K}

According to lemma 2, there is no need to check for the attributes in lo or in ro.

-For AB→D.

 B cannot be an implied extraneous attribute as B∉lr, then we check for A:

 we have A∈(Y-A)+; Y=Y-A

 G is changed by replacing AB→D by B→D :

 B→D; B→A; BC→D; D→A; B→E; B→H; BC→J; B→F; B→G;

 BC→K; BN→H; B→G

 -For BC→D.

 G will not change as B,C∉lr

International Journal of Database Management Systems (IJDMS) Vol.5, No.3, June 2013

43

-For BN→H.

 G will not change as B,N∉lr

B→G is duplicated, then has to be removed we get the partially left-reduced dependencies F' of F:

 B→D; B→A; BC→D; D→A; B→E; B→H; BC→J; B→F; B→G; BC→K;

 BN→H

There is no more extraneous implied attributes in F', while the nonimplied extraneous attribute N,

it will be removed by the next procedure.

The next step consists to remove redundant dependencies. The main idea is to compare the lhs of

dependencies that have the same rhs: if a dependency f1: X→A is redundant in F, then there is

at least a dependency f2: Y→A in F where X→Y∈F
+
. We write XF

+
 to mean that the closure of

X w.r.t a set of dependencies F. Algorithmically this can be expressed as follows:

Algorithm A3: Removes redundant dependencies.

Input: F, a set of partially left-reduced dependencies.

Output: Fm, a minimal cover of F

1. Fm:= F

2. for each X→A∈Fm

 while there exists a Y→A∈Fm
 G:= Fm-(Y→A)

 if X⊆YG
+ then

 Fm:= G

 end

 end

 end

3. Fm is the minimal cover of F.

To illustrate the algorithm, let F be the dependencies given in example 1.

1. Initialization of Fm to:

 B→D; B→A; BC→D; D→A; B→E; B→H; BC→J; B→F; B→G; BC→K;

 BN→H

2. Summarized in table 1.

3. Fm= { B→D; B→E; B→F; B→H; B→G; BC→J; BC→K; D→A }

International Journal of Database Management Systems (IJDMS) Vol.5, No.3, June 2013

44

Table 1. Sketch elimination of redundant dependencies.

Pass X→A Y→A Fm

1 B→D BC→D, B∈ (BC)+ Fm:= Fm – (BC→D)

2 B→E

3 B→F

4 B→A

5 B→H BN→H, B∈(BN)
+
 Fm:= Fm – (BN→H)

6 B→G

7 BC→J

8 BC→K

9 D→A B→A , D∈B
+
 Fm:= Fm – (B→A)

In [12] they claimed that their (fast) algorithm computes 5 closures and the standard one 19

closures to remove redundant dependencies. As we can see in the table 1, only 3 computations

are needed using our Algorithm A3, i.e., passes 1, 5 and 9, that is a substantial improvement.

Moreover, for the other non-redundant dependencies, no extra effort is needed.

Unfortunately, there can be several minimal covers for a set of functional dependencies. We can

always find at least one minimal cover Fm for any set of dependencies F using Algorithm A3.

Theorem 1. Let F be a set of partially left-reduced dependencies, and Fm its minimal cover

obtained by the Algorithm A3. Then we have F+ ≡ Fm
+.

3. FULL AND PARTIAL DEPENDENCIES

A functional dependency X → A is a full functional dependency if removal of any attribute B

from X means that the dependency does not hold any more; that is, for any attribute B∈X, (X - B)

does not functionally determine A. A functional dependency X→A is a partial dependency if A is

not a key-attribute and some attribute B∈X can be removed from X and the dependency still

holds; that is, for some B∈X, (X - B) → A [7]. Full and partial dependencies are generated as

follows:

Algorithm A4: Determines full and partial dependencies.

 Input: Fm, a minimal cover set of F.
Output: Fp, Ff, sets of partial and full dependencies in

 Fm respectively.

Let Fp:=φ and Ff:=Fm.

 For each dependency X→A∈Ff
 if X is a proper subset of a candidate key and A is not a

 key attribute then

 Fp:=Fp∪{X→A}
 Ff:=Ff-(X→A)

 while there is a fd Z→B∈Ff s.t. Z∈A+ do

 Fp:=Fp∪{Z→B}
 Ff:=Ff-(Z→ B)

 end

 end

end

International Journal of Database Management Systems (IJDMS) Vol.5, No.3, June 2013

45

In the If-statement, we make condition on the candidate keys and not the primary key, because if

a relation has many keys, all have to be considered (see the definition of 2NF in the next section).

We can continue our running example by initializing Ff to:

 {B→ D; B→ F; B→ G; D→ A; B→ E; B→ H; BC→ J; BC→ K}

 we have one candidate key BC, that is the primary key. Fp=φ. For the lines 1-5, B⊆(BC), then we

have partial dependencies.

Table 2. Sketch determination of Ff and FP.

X→ A Ff FP

B→ D Ff := Ff –{B→ D; D→ A} FP:= FP ∪{B→ D; D→ A}

B→ E Ff := Ff – (B→ E) FP:= FP ∪{B→ E }

B→ F Ff := Ff – (B→ F) FP:= FP ∪{B→ F}

B→ H Ff := Ff – (B→ H) FP:= FP ∪{B→ H }

B→ G Ff := Ff – (B→ G) FP:= FP ∪{B→ G }

BC→ J

BC→ K

The final result is:

 Ff ={BC→ J; BC→ K}

 FP ={ B→ D; D→ A; B→ E; B→ F; B→ G; B→ H }

Lemma 3. Fm= Ff ∪ FP.

Lemma 4. Let R be a relation schema and Fm its minimal cover dependency set. If there is no

partial dependency in R then Fp=φ.

4. NORMALIZATION

4.1. The Second Normal Form

A relation is in second normal form (abbreviated 2NF) if it is in 1NF and no non-key attribute is

partially dependent on any candidate key [7], [1]. In other words, no X→Y where X is a strict

subset of a candidate key and Y is a non-key attribute.

Simply, a table is in 2NF if and only if it is in 1NF and every non-key attribute of the relation is

either dependent on the whole of any candidate key, or on another non-key attribute.

The following algorithm is used to decompose a 1NF relation schema R into 2NF:

Algorithm A5: Decomposes into 2NF.

Input: R, Ff and Fp.

Output: a set R2NF of relations into 2NF.

Let G:=Fp and Xf the set of attributes in Ff.

R
2NF
:=φ

 for each Y→A∈G do
 if Y is a proper subset of a candidate key then

International Journal of Database Management Systems (IJDMS) Vol.5, No.3, June 2013

46

 - create RY(YG
+).

 - choose Y as the primary key of RY.

 - set Xf:=Xf-{B} for any non-key attribute B∈YG
+
.

 - remove from G any dependency whose lhs is in YG
+
.

 - R2NF:= R2NF ∪ RY(YG
+
)

 end

 end

R
2NF
:= R

2NF ∪ RK(Xf), where K∈Xf is the (chosen) primary key of R.

If Y is a key-attribute that means that Y is causing a partial dependency. The statement Xf:=Xf-

{B} is justified by the fact that Y is already in Xf. Moreover, the resulting decomposition

preserves the functional dependencies of Fm, because Y→A belongs to RY and Y⊆Xf.

Theorem 2. Let R be a 1NF relation. We have the following results:

a. If Fp=φ then R is automatically in 2NF.

b. If Fp≠φ then R is not in 2NF.

Proof.

a. If Fp=φ, i.e., there is no partial dependency in R, that means also that the first if-condition

of the algorithm will never hold. Then RK is the only relation created by the Algorithm

A5. As RK is partial dependency free (no partial dependency exists in Ff), then R= RK is

in 2NF.

b. If Fp≠φ, i.e., the first if-condition of the algorithm holds at least once. Therefore, R is not

in 2NF as R≠RK.

Let's assess our example:

 Ff={ BC→ J, BC→ K }

 Fp={ B→ D; D→ A; B→ E; B→ F; B→ G; B→ H }

 and Fm=Ff∪Fp.

As we can see all attributes in Ff depend fully on the only candidate key {BC} and all the

attributes in Fp depend directly/indirectly on the key-attribute B, i.e., B is causing a partial key.

Therefore, the relations RBC and RB are created:

 RBC(B,C,J,K)

 RB(B,D,A,E,F,G,H)

Note that when a 1NF relation has no composite candidate keys (candidate keys consisting of

more than one attribute), the relation is automatically in 2NF. If there is no composite candidate

keys, then Fp=φ and by theorem 2 the relation is in 2NF.

4.2 Third Normal Form

A relation is in third normal form (abbreviated 3NF) if it is in 2NF and none of its non-key

attributes are transitively dependent upon any candidate key [6], [1], [7]. An alternative (simpler)

definition is a relation is in 3NF if in every non-trivial dependency X→A either X is a super key

or A is a key attribute (i.e., A is contained within a candidate key).

 The transitive dependencies set on 2NF relations is defined by:

International Journal of Database Management Systems (IJDMS) Vol.5, No.3, June 2013

47

 Ft={ X→A∈Fm} such that

i. X is not a candidate key, and

ii. A is not a key attribute.

Note that partial dependencies violate the 3NF. We have the following characterization.

Theorem : A relation schema R is in third normal form if and only if for every key K of R and

every nonkey-attribute A depends directly on K.

The following procedure is used to decompose a 1NF relation into 3NF.

Algorithm A6. Decomposes into 3NF.

Input: R(X) a 1NF relation, and the set of dependencies Ft.

 Where X is the set of attributes in R.

Output: a set R3NF of relations into 3NF.

Let G:=Ft and R
3NF
:=φ

For each dependency Y→A∈G do
- create a new relation RY, if not already created,

- add Y and A in RY, if not already added,

- consider Y as the primary key of RY,

- R
3NF
:= R

3NF
 ∪ RY

- remove Y→A from G, and

- if A∈X then

 set R(X):=R(X–{B}) for any B∉Y and B∈AG
+.

 end

end

 R
3NF:= R

3NF
 ∪R(X)

end

Lemma 5. If Ft≠φ, then the input relation R is not in 3NF.

Now, we can complete our example given the initial 1NF relation with BC the only candidate key

BC:

 RBC(A, B, C, D, E, F, G, H, J, K)

together with the following dependencies:

 Fm={BC→J; BC→K; B→D; D→A; B→E; B→F; B→G; B→H }

 Ft={B →D; D→A; B→E; B→F; B→G; B→H }

According to the lemma 5, RBC(X), where X is the set of attributes, is not in 3NF. Therefore new

relations RB(B, D, E, F, G, H) and RD(D, A) are then created and the attributes D, E, F, G, H

are removed from X because they are in X+. We get the final relations into 3NF:

 RBC(B, C, J, K)

 RB(B, D, E, F, G, H)

 RD(D, A)

International Journal of Database Management Systems (IJDMS) Vol.5, No.3, June 2013

48

Example 2: Consider the schema relation

 R(isbn, invno, title, authors, publ, place, year)

together with the set of dependencies:

 Fm={(title, authors, publ, place, year)→ isbn; isbn→ title; isbn→ authors;

 isbn→ publ; isbn→place; isbn→ year; invno → isbn }

The attribute invno is the unique key of R. The set of partial dependencies Fp=φ and the set of

transitive dependencies :

 Ft= {(title, authors, publ, place, year)→ isbn; isbn→ title; isbn→ authors;

 isbn→ publ; isbn→place; isbn→ year}

Therefore the relation R is in 2NF but not in 3NF because Ft≠φ. R can be easily normalized by

decomposition using the algorithm A6 as follows:

R1(title, authors, publ, place, year, isbn)

R2(invno, title, authors, publ, place, year)

5. A COMPLETE EXAMPLE

To demonstrate the applicability of the above algorithms, consider the more realistic example

presented in [1].

Suppose we want to normalize the 1NF relation ClientRental up to 3NF. This relation contains 9

attributes and 17 dependencies:

Clientrental (clientNo, propertyNo, clientName, pAddress, rentStart, rentFinish, rent,

 ownerNo, ownerName)

with the following dependencies F:

f1: propertyNo,rentStart → rentFinish

f2: clNo,propertyNo → rentFinish

f3: clNo,rentStart → rentFinish

f4: clNo → clName

f5: propertyNo,rentStart → clName

f6: clNo,propertyNo → rentStart

f7: ownerNo → oName

f8: propertyNo → oName

f9: clNo,rentStart → oName

f10: clNo,rentStart → pAddress

f11: propertyNo → pAddress

f12: propertyNo → rent

f13: clNo,rentStart → rent

f14: propertyNo → ownerNo

f15: clNo,rentStart → ownerNo

f16: clNo,rentStart → propertyNo

f17: propertyNo,rentStart → clNo

International Journal of Database Management Systems (IJDMS) Vol.5, No.3, June 2013

49

Step 1: First of all, we call the Algorithm A3 to generate a minimal cover Fm of F, as there is no

implied extraneous attributes. Let lhs(fj)⊆lhs(fi)
+ means that the left-hand-side of the dependency

fj is in the closure of the left-hand-side of the dependency fi, i.e. lhs(fi)→lhs(fj).

− f1 is redundant because lhs(f2)⊆lhs(f1)
+

− f3 is redundant because lhs(f2)⊆lhs(f3)
+

− f5 is redundant because lhs(f4)⊆lhs(f5)
+

− f8 is redundant because lhs(f7)⊆lhs(f8)
+

− f9 is redundant because lhs(f7)⊆lhs(f9)
+

− f10 is redundant because lhs(f11)⊆lhs(f10)
+

− f13 is redundant because lhs(f12)⊆lhs(f13)
+

− f15 is redundant because lhs(f14)⊆lhs(f15)
+

After removing the redundant dependencies (9), we get the minimal cover Fm :

f2: clNo,propertyNo →rentFinish

f4: clNo →clName

f6: clNo,propertyNo →rentStart

f7: ownerNo →oName

f11: propertyNo →pAddress

f12: propertyNo →rent

f14: propertyNo →ownerNo

f16: clNo,rentStart →propertyNo

f17: propertyNo,rentStart →clNo

We have three candidate keys (clNo, propertyNo), (clNo, rentStart) and (propertyNo, rentStart).

No matter is the choice of the primary key, we can determine partial and transitive dependencies.

Step 2: We call the Algorithm A4 to generate Ff and Fp from Fm. The set of partial dependencies

is:

 Fp={ clNo→clName;

 propertyNo→pAddress;

 propertyNo→rent;

 propertyNo→ownerNo;
 ownerNo→oName

 }

As Fp ≠φ the relation ClentRental is not in 2NF. In fact, the attribute clName is partially

dependent on the candidate keys (clNo, propertyNo) and (clNo, rentStart). Also, the attributes

pAddress, ownerNo and oName are partially dependent on the candidate keys (clNo, propertyNo)

and (rentStart, propertyNo).

And the set of full dependencies is:

 Ff={ clNo,propertyNo→rentStart;
 clNo,propertyNo→rentFinish;

 clNo,rentStart→propertyNo;

 propertyNo,rentStart→clNo

 }

and the set of transitive dependencies is:

International Journal of Database Management Systems (IJDMS) Vol.5, No.3, June 2013

50

 Ft={ ownerNo→oName }

Step 3: Decomposition of the relation ClientRental into 2NF:

We can choose (clNo,propertyNo) as the primary key, but no special consideration will be

given to this key over the other candidate keys. Then the call to the algorithm A5 creates new

relations. From Ff, we get the relation

R(clNo,propertyNo)(clNo, propertyNo, rentStar, rentFinish)

RclNo(clNo,clName)

RpropertyNo(propertyNo, pAddress, rent,ownerNo, oName)

The key-attributes clNo and propertyNo cause the violation of 2NF. The three relations

are in Second Normal Form as every non-key attribute is fully functionally dependent on the

primary key of the relation.

Step 4: Decomposition into 3NF:

As the input of the Algorithm A6 we have R(clNo,propertyNo), RclNo, RpropertyNo and Ft. The only relation

that contains the transitive dependency Ft is RpropertyNo. We then decompose RpropertyNo into two

relations and remove the attribute oName from that relation to get all relations into 3NF:

R(clNo,propertyNo)(clNo,propertyNo, rentStar, rentFinish)

RclNo(clNo,clName)

RpropertyNo(propertyNo, pAddress, rent, ownerNo)

RownerNo(ownerNo, oName)

The algorithms are dependency preserving as the original ClientRental relation can be recreated

by joining the 3NF relations R(clNo,propertyNo), RclNo, RpropertyNo and RownerNo through the primary

key/foreign key mechanism.

6. CONCLUSION

In this paper we have presented algorithms for relational database normalization into 2NF and

3NF using their general definitions in a step-by-step feature. The first step before performing the

procedure is to make a preprocessing on the set of dependencies to remove redundant

dependencies. We have tested our algorithms on many realistic examples with multiple candidate

keys taken from different sources.

This work has mainly the following major advantages: (i) the general and original definition of

normal forms is used, (ii) the removal of redundant dependencies, (iii) in all phases, the

computation of attributes closure are minimized compared to other algorithms although using a

restricted definition of normal forms, and (iv) a primary key is determined for any generated

relation.

International Journal of Database Management Systems (IJDMS) Vol.5, No.3, June 2013

51

REFERENCES

[1] Thomas, C., Carolyn, B. (2005) Database Systems, A Practical Approach to Design, Implementation,

and Management, Pearson Fourth edition .

[2] Bahmani A., Naghibzadeh, M. and Bahmani, B. (2008) "Automatic database normalization and

primary key generation", Niagara Falls Canada IEEE.

[3] Beynon-Davies, P. (2004) Database systems, Palgrave Macmillan, Third edition, ISBN 1–4039—

1601–2.

[4] Dongare,Y. V., Dhabe,P. S. and Deshmukh, S. V. (2011) RDBNorma: "A semi-automated tool for

relational database schema normalization up to third normal form", International Journal of Database

Management Systems, Vol.3, No.1.

[5] Vangipuram, R., Velputa, R., Sravya, V. (2011) "A Web Based Relational database design Tool to

Perform Normalization", International Journal of Wisdom Based Computing, Vol.1(3).

[6] Codd, E.F. (1972) "Further normalization of the data base relational model", In Database Systems,

Courant Inst. Comptr. Sci. Symp. 6, R. Rustin, Ed., Prentice-Hall, Englewood Cliffs, pp. 33—64.

[7] Elmasri, R., Navathe, S.B. (2003) Fundamentals of Database Systems, Addison Wesley, fourth

Edition.

[8] Date, C.J. (2004) Introduction to Database Systems (8th ed.). Boston: Addison-Wesley. ISBN 978-0-

321-19784-9.

[9] Ullman, J.D. (1982) Principe of Database Systems. Computer Science Press, Rockville, Md.

[10] Maier, D. (1983) The Theory of relational Databases. Computer Science Press, Rockville, Md.

[11] Bernstein, P.A. (1976) "Synthesizing third normal form relations from functional dependencies",

ACM Transactions on database Systems, vol.1, No.4, pp.277—298.

[12] Diederich, J., Milton, J. (1988) "New Methods and Fast Algorithms for Database Normalization",

ACM Transactions on database Systems, Vol.13, No.3, pp. 339—365.

