
International Journal of Database Management Systems ( IJDMS ) Vol.4, No.6, December 2012 

DOI: 10.5121/ijdms.2012.4601                                                                                                                        1 

 

OPTIMIZED BACKTRACKING FOR SUBGRAPH 

ISOMORPHISM 

Lixin Fu and Shruthi Chandra
 

Department of Computer Science, 167 Petty Building, 

University of North Carolina, Greensboro, NC 27412, USA 
lfu@uncg.edu 

 

ABSTRACT 

Subgraph isomorphism is a fundamental graph problem with many important applications. Given two 

graphs G and SG, the subgraph isomorphism problem is to determine whether G contains a subgraph that 

is isomorphic to SG. It is well known that the problem is NP complete in the worst case. In this paper, we 

present two new algorithms for subgraph isomorphism problem for labeled graphs. If the graphs have 

unique vertex labels, we designed a new algorithm based on modified adjacency list that has achieved 

linear performance. For general graphs we present another algorithm using optimized backtracking 

search. Though this algorithm doesn’t guarantee polynomial time, it reduces the search space by applying 

several pruning techniques. Simulation results show that our new algorithms are competitive with classic 

Ullman’s algorithm and more recent VF2. 
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1. INTRODUCTION 

A given graph G1 is isomorphic to a subgraph G2 if there exists a one-to-one mapping of the 

nodes of G1 onto the nodes of G2 such that all corresponding edge adjacencies are preserved.  

 [7]. Given two graphs G and SG, the subgraph isomorphism problem is to determine whether G 

contains a subgraph that is isomorphic to SG. Subgraph isomorphism has wide applications in 

cheminformatics, bioinformatics, social networks, software and data engineering, World Wide 

Web, etc. In these applications, graphs are used to model complex structures and relationships. 

The large sizes of graphs in the real world applications pose great challenges for designing 

efficient isomorphism algorithms. Subgraph isomorphism is a generalization of both the 

maximum clique problem and the problem of testing whether a graph contains a Hamiltonian 

cycle, and is therefore NP-complete [9]. However with certain constraints, it is possible that 

subgraph isomorphism may be solved in polynomial time. For example, if the node labels are 

unique, we design a new isomorphism algorithm that runs in linear time. 

 

Definition: A labeled graph G = (V, E, α , β, L ), where 

• V is the set of vertices or nodes, 

• E is the set of edges, 

• α :V → L, is the node labeling function; 

• β :V ×V → L is the edge labeling function 

• L is a finite alphabet of labels for nodes and edges. 
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Definition: The adjacency matrix of a finite labeled graph G of n vertices is the n × n matrix 

where the non-diagonal entry aij represents an edge from vertex i to vertex j with label e. Let aij 

=e if there exists an edge from vertex i to vertex j, aij =0 otherwise. Diagonal entries represent the 

node labels. We randomly assign unique Node Ids to the nodes. 
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 1 2 3 4 5 

1 A x z 0 0 

2 x B 0 x Y 

3 z 0 C 0 0 

4 0 x 0 D 0 

5 0 y 0 0 E 

 
Figure 1: A graph with edge labels and adjacency matrix 

 
Definition:  In  adjacency  list  representation, for  each  vertex in the graph we keep a linked 

list of vertices adjacent to it. Depending on the requirement we can have other attributes of 

vertices like edge labels, Node Ids or degree along with the vertices label in the list. Following is 

the adjacency list representation of a simple undirected graph in Figure 1 with edge label attribute 

along with the vertices. Adjacency matrix representation is suitable for dense graphs while 

adjacency lists for sparse graphs. 

 

2. RELATED WORK  

Subgraph isomorphism problem have been researched extensively due to its fundamental 

significance in graph theory and recent important applications such as social media and world 

wide web. The algorithms roughly fall into two categories. 

 

1. A brute force approach which directly compare two graphs using classical DFS or 

Backtracking approach 

2. Approaches based on pre-computing before comparing the graphs 

 

A natural way to tackle the graph isomorphism is to use direct back-tracking and brute force 

methods to construct a search tree. In these algorithms, the approach would be to classify the 

nodes according to defined invariants down the search space. Then invoke a function that 

explores the possible matching of the nodes of one graph against the other. Backtrack if a branch 

does not reach a valid solution. Examples of this class of algorithms are Ullman[1] and VF2[2]. 
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These algorithms work very well at best and average cases, but in worst cases the whole search 

tree and each branch needs to be backtracked which considerably degrades the algorithm’s 

performance. 

 

Ullman algorithm is a classic early backtrack based algorithms. It uses a refinement procedure 

based on matrix of possible future matched node pairs to prune unfruitful matches. It is a simple 

enumeration algorithm for the isomorphisms between a graph G and a subgraph of another graph 

H with the adjacency matrices AG and AH.  A matrix M’ with |VG| rows and |VH| columns can 

be used to permute the rows and columns of AH to produce a further matrix P. In this algorithm 

backtracking procedure can only be applied to two graphs at a time. The enumeration algorithm is 

designed to find all of the possible mappings between a graph and a subgraph.  

 

VF/VF2  reduces the memory requirement from O(N
2
) to O(N). It extends assignment by growing 

two connected graphs inside the pattern and the target graph respectively, and by performing the 

checking of conditions of connectivity of current subgraphs. It finds the first best match and then 

finds all the matches between two given graphs. The VF is tested with a graph dataset called as 

ARG database. Zong Ling proposes an algorithm that extracts a centered spanning tree from 

pattern graph and partition model graph in the pre-processing stage [7]. It then carries out the 

matching procedure by increasing the size of the pattern graphs obtained in preprocessing stage. 

From the experimental results shown in the paper, for most of the patterns, this algorithm runs in 

near-linear execution time. 

3. ADJACENCY LIST MATCHING FOR UNIQUE LABELED GRAPHS 
 

Many real world applications of SGI problem, the datasets contain unique node labels. For 

example, the node labels of social media graphs e.g. Facebook and those in roadmap graphs are 

unique. Under this constraint we introduce a new linear algorithm that matches the sorted 

adjacency lists using the approach similar to merging sorting. We call this algorithm MLC 

(Merging Lexicographic Chain). 

 

3.1. MLC Algorithm 

Throughout this paper we use G and SG to refer to our main graph (model graph) and sub graph 

(query graph) respectively. Input can be taken in the form of adjacency list (for sparse graph) or 

adjacency matrix (for dense graphs). 

 
Step 1: Preprocessing: Construct adjacency list of nodes including all node properties 

for each node u ∈ SG 

sgAdjList ← adjacency list of SG node u 

for each node v ∈ G 

gAdjList ← adjacency list of G node v 

 

Normalize the adjacency lists 

for each node u ∈ SG 

sgLexChain[u] ← Sort the nodes in sgAdjList[u] according to the lexicographic order of 

their node labels of the neighbors of u 

sgLexChainList ← Sort the list of sgLexChain according to the lexicographic order 

of their head node labels 

for each node v ∈ G 

gLexChain[v] ← Sort the nodes in gAdjList[v] according to the lexicographic order of 

their node labels of the neighbors of v 

gLexChainList ← Sort the list of gLexChain according to the lexicographic order 

of their head node labels 
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Step 2: Adjacency list comparison. For each node in the lexical chain list of SG, try to find a 

match in the lexical chain list of G. If matching is found for all nodes in SG, then search is 

successful otherwise no matching is found. 

 
u :  the head node of the first sgLexChain in sgLexChainList 

v :  the head node of the first gLexChain in gLexChainList 

while (sgLexChainList is not empty) {          

       while( Label(u) > Label(v) and gLexChainList is not empty)   remove first list of 

gLexChainList 

       // u is not found in G 

       if( Label(u) < Label(v) or gLexChainList is empty) ) return “Matching is not found.” 

        

      // Now Label (u) = Label (v), matching the Lex Chain of u and v 

      m: the first neighbor of u in sgLexChain; 

      n: the first neighbor of v in gLexChain; 

      while (sgLexChain is not empty) { 

           while( Label(m) > Label(n) and gLexChain is not empty)   Remove n from gLexChain 

           if( Label(m) < Label(n) or gLexChain is empty) ) return “Matching is not found.”    

           if ( edge_label(m) ≠ edge_label(n) )  return “Matching is not found.” 

           Remove m from sgLexChain; 

           Remove n from  gLexChain; 

       } 

       Remove u from sgLexChainList; 

       Remove v from  gLexChainList; 

} 

return “Matching is found.” 

 

Let’s take the following example and trace it with the algorithm discussed. 

Step-1: Construct normalized adjacency list for both the graphs. 

Format of normalized adjacency list is: [node_id | node_label | connected_edge_label] 

Here, connected_edge_label will be marked as “FIRST_EDGE” if it is a head node. 

Suppose gLexChainList: 

[1| A | FIRST_EDGE]--> | 2 | B | x |---- | 3 | C | z |---- | 4 | D | w |---- | 5 | E | u | 

[2| B | FIRST_EDGE]--> | 1 | A | x | ---- | 3 | C | y | ---- | 4 | D | v | ---- | 5 | E | x |  

[3| C | FIRST_EDGE]--> | 1 | A | z | ---- | 2 | B | y | ---- | 4 | D | x | ---- | 5 | E | v |  

[4| D | FIRST_EDGE]--> | 1 | A | w| ---- | 2 | B | v |----| 3 | C | x |----  | 5 | E | x | 

[5| E | FIRST_EDGE]--> | 1 | A | u |---- | 2 | B | x | ---- | 3 | C | v |------| 4 | D | x |  

sgLexChainList: 

[2| A | FIRST_EDGE  ]--> | 3 | B | x |---- | 1 | C | z | 

[3| B | FIRST_EDGE  ]--> | 2 | A | x |---- | 1 | C | y | 

[1| C | FIRST_EDGE  ]--> | 2 | A | z |---- | 3 | B | y | 

Step-2: Starting from first node in the normalized adjacency list of sub graph SG, pick each list 

and compare with compatible lists in main graphs. If a matching is found, mark the list as visited 

and continue to map next node in the subgraph. If all the nodes in the subgraphs are mapped, 

search is successful, otherwise no match found. 

 

We will start comparing each item in sub graph with each item in main graph 

Node “A” in subgraph is compared with Node “A” in main graph. 

Node labels are matched. In this case, subgraph node “A” has neighbors “B” and “C” with degree 

2, and main graph node “A” has neighbors “B”, “C”, “D” and “E” with degree equal or greater 

than 2. Hence sub graph node “A” can be mapped to main graph node “A”. Similarly compare 

and Match nodes “B” and “C” of the subgraph. So in this example a matching is found. 
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3.2 Advantages and Limitation 
 
MLC algorithm works because when the node labels are unique and the chain lists of the 

subgraph is contained in those of the main graph, the subgraph will be uniquely matched. The 

following simple and powerful features make this algorithm an efficient and a scalable solution 

for matching unique node labeled graphs: 

 

1. Uses the lexicographic ordering to speed up the sorting of the lists. We can use data structures 

such as tries to accomplish this in linear time 

2. Works faster with early detection and quitting for unmatched nodes or edges. The algorithm 

continues to the next step only when the current node is successfully matched in the lex chain 

Although MLC is linear and extremely fast, unfortunately it does not work on graphs with 

duplicate node labels in general. We give the following counter example, which motivated to 

design a new algorithm with completely different approach for general graphs in the next section.  

 

In the Figure 2, we see that both Main Graph and Sub Graph have the same node label and same 

edge label and all the nodes have the same degree. According to our MLC algorithm, a matching 

should be found but this is obviously not correct.  
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Figure 2: A counter example 

4. OPTIMIZED BACKTRACKING RECURSIVE ALGORITHM 

For general graph with duplicate node labels, we give a new optimized backtracking algorithm 

that incorporates several pruning techniques which decrease the search space of matching. We 

find the mapping for each node in the subgraph in the main graph using recursive comparison of 

neighboring nodes. The recursion goes on until we find correct mapping for all the nodes in the 

subgraph. The algorithm halts either if all the subgraph nodes are mapped or if the graph is 

exhausted without complete mapping. In the course of the algorithm we apply several pruning 

techniques to reduce the search paths. 

 

4.1  Optimized Backtracking Algorithm 
 
Step 1: Early detection and Quit 

SG_NLS ← Node Label Set of SG 
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G_NLS ← Node Label Set of G 

SG_ELS ← Edge Label Set of SG 

G_ELS ← Edge Label Set of SG 

if (SG_NLS ⊄ G_NLS OR SG_ELS ⊄ G_ELS) 

print “Subgraph not found” 

 
Step 2: Preprocessing 

for each node v ∈ SG 

SG_adjList ← Construct adjacency list of nodes including all node properties; 

for each node v ∈ G 

G_adjList ← Construct adjacency list of nodes including all node properties; 

 

Step 3: Recursive Search and Backtracking 

CHECK-SGI() { 

    u is first node in SG; 

for each node v ∈ G { 

FIND-MAPPING(u,v) ; 

if(Mapping is complete) 

Set found=true; 

print “Subgraph found” 

            } 

if(found is not true) 

print “Subgraph Not found”; 

} 

 
FIND-MAPPING(u,v) { 

if(Mapping is full) 

Set found=true; 

return true; 

if( COMPATIBLE-NODES (u, v)) { 

compatiblePairs = GET-COMPATIBLE-NEIGHBORS(u,v); 

if(compatiblePairs is null) return false; 

else { 
Add (u,v) to Mapping; 

for each pair(u’,v’) in compatiblePairs { 

if(found is true) break; /* Search successful */ 

if(endOfBranch) 

reset endOfBranch ; 

continue; 

FIND-MAPPING(u’,v’); 

} 

if(Mapping is full) 

Remove last added (u,v) from Mapping 

return false; 

else return true; 

} 

 } 

} 

 
GET-COMPATIBLE NEIGHBORS(u,v) { 

for each neighbor u in SG_adjList 

for each neighbor v in G_adjList 
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if(COMPATIBLE-NODES(u,v)) { 

if(u OR v is not already in Mapping) 

Add (u,v) to compatiblePairs; 

if(∀u in SG_adjList (u,v) is in Mapping) 

Set endOfBranch to true; 

return compatiblePairs; 

} 

} 

 
COMPATIBLE-NODES(u,v) { 

if((Label(u) = Label(v)) and (Degree(u) <= Degree(v)) return true; 

else return false; 

} 

 

We trace an example graph with the above algorithm. 

 
Figure 3: Main Graph 
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3 y x B 

Figure 4: Sub Graph 

 

*********************Main Graph Data****************************** 

Pruned Maingraph Nodes 
Node [id,label,degree] = [1,A,3] Neighbors: {[2,B,x][3,D,z][7,B,y]} 

Node [id,label,degree] = [2,B,2] Neighbors: {[1,A,x][4,C,y]} 
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Node [id,label,degree] = [3,D,1] Neighbors: {[1,A,z]} 

Node [id,label,degree] = [4,C,2] Neighbors: {[2,B,y][7,B,z]} 

Node [id,label,degree] = [5,A,2] Neighbors: {[6,C,z][7,B,x]} 

Node [id,label,degree] = [6,C,2] Neighbors: {[5,A,z][7,B,y]} 

Node [id,label,degree] = [7,B,4] Neighbors: {[1,A,y][4,C,z][5,A,x][6,C,y]} 

 

*********************Sub Graph Data****************************** 

Actual Subgraph Nodes 
Node [id,label,degree] = [1,A,2] Neighbors: {[2,B,x][3,C,z]} 

Node [id,label,degree] = [2,B,2] Neighbors: {[1,A,x][3,C,y]} 

Node [id,label,degree] = [3,C,2] Neighbors: {[1,A,z][2,B,y]} 

 

Initially Mapping: [[] <--> []] 

Pass 1: Starts with (SG, G) = (1,1) => ([1,A,2], [1,A,3]) 

Nodes are compatible to compare. So check Neighbor compatibility 

For SG node 1 neighbors are [2,B,x] [3,C,z] 

For G node 1 neighbors are [2,B,x] [3,D,z] [7,B,y] 

Neighbors are not compatible to compare. Pick the next node in G. 

Pass 2: Starts with (SG, G) = (1,2) => ([1,A,2], [2,B,2]) 

Label mismatch. Nodes are NOT compatible to compare. Pick the next node in G. 

Pass 3: Starts with (SG, G) = (1,4) => ([1,A,2], [4,C,2]) 

Label mismatch. Nodes are NOT compatible to compare. Pick the next node in G. 

Pass 4: Starts with (SG, G) = (1,5) => ([1,A,2], [5,A,2]) 

Nodes are compatible to compare. So check Neighbor compatibility 

For SG node 1 neighbors are [2,B,x] [3,C,z] 

For MG node 5 neighbors are [6,C,z] [7,B,x] 

Compatible Neighbor pair list (3,6) (2,7) 

Mapping : [1 <--> 5] 
Pass 4-Recursive Call 1: Starts with (SG, G) = (3,6) 

(SG, G) = (3,6) => ([3,C,2], [6,C,2]) 

Nodes are compatible to compare. So check Neighbor compatibility 

Compatible Neighbor pair list (2,7) 

Mapping : [1 <--> 5] [3 <--> 6] 
Pass 4-Recursive Call 2: Starts with (SG, G) = (2,7) 

For SG node 2 neighbors are [1,A,x] [3,C,y] 

For MG node 7 neighbors are [1,A,y] [4,C,z] [5,A,x] [6,C,y] 

All SG Neighbors are already in Mapping and corresponding G nodes in Mapping matches 

with neighbors of 7. 

Mapping : [1 <--> 5] [3 <--> 6] [2 <--> 7] 

Subgraph is found in Main Graph. 

 
4.2 Distinctive features of this algorithm 

 
• Early Detection and Quit 

We ensure if the two graphs are compatible to compare by checking the number of nodes 

and edges in the subgraph and main graph at the first step. Most importantly we check 

whether the nodes and edges in the subgraph is the subset of that of the main graph to 

stop the search and quit at early stage. 

• Efficient Pruning: At each stage we eliminate most of incompatible node pairs from being 

added to the mapping using label pruning, edge pruning, degree pruning and neighbor 

pruning. This avoids later backtracking. 
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• Optimized (short-circuited) Backtracking: As we see in the classical SGI algorithms, we 

see that the backtracking happens at n
th

 state in worst case scenario. We have a short 

circuit backtracking, where we check the neighbor compatibility well ahead of entering 

into the matching routine. In case the decision turns to be false, then we have staged 

break points, and we backtrack to these points immediately. 

• Neighbor Compatibility: Every time a mapping pair is decided, we check whether the 

pair satisfies the relationship with the pairs already in mapping and whether the pair has 

neighbors which are compatible with each other. In this method we eliminate already 

compared incompatible pairs and already mapped pairs. This is a recursive call which 

follows with the subgraph path and ensures valid mapping reducing the search path 

 

5. SIMULATION RESULTS 
 

5.1 Execution Environment and Data Sets 
 
We implement the algorithms with Java 1.6 and run the experiments on Windows system with a 

2GB main memory. We have carried our testing and analysis using some of the datasets obtained 

from various websites in the internet. As this alone is not sufficient, we also design a random 

graph generator. The graph generator generates the different types of undirected graphs. This 

Graph generator works on the principle of pseudo random numbers. When we generate the 

different nodes and edge connections between nodes, a random generator procedure is invoked, 

which picks the labels randomly from the given inputs and generates the graph. So the simple 

logic behind this generator is to pick up the labels given by the user randomly and create a graph 

in the form of adjacency matrix. 

 

5.2 Simulation Results 
 

We implement our Optimized Backtracking algorithm, Ullman and VF2 for this comparison 

study. In our experiments we ran all the three algorithms for different kinds of graphs with 

different number of nodes. The experiment results show that the proposed algorithm correctly 

identifies whether a given subgraph exists in the main graph. That is, for all the test cases it was 

found that all the three algorithms gave the same result (Subgraph found/not found), with varying 

runtimes. Figure 5and Figure 6 shows the results of the comparison of Optimized Subgraph 

Isomorphism algorithm with Ullman and VF2 respectively. From these results we find that our 

algorithm is faster than Ullman and VF2 for some input graphs but overall has similar 

performance.  

 

 
Figure 5 
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Figure 6 
 

6. CONCLUSION AND FUTURE WORK 
 
Our algorithm proposes an efficient backtracking mechanism, early detection of dissimilar 

graphs, several pruning techniques to reduce the search paths, thereby improving the performance 

for a large class of graphs. In particular, our new MLC algorithm achieves linear performance for 

graphs with unique node labels. Our optimized backtracking search reduces the search space by 

applying several pruning techniques. Simulation results show that our new algorithms are 

competitive with classic Ullman’s algorithm and more recent VF2. 
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