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ABSTRACT 

This paper considers the non-centralized version of privacy preserving data publishing (PPDP), which 

refers to generating published tables from multiple non-centralized private tables owned by different data 

holders.  Traditional solutions to PPDP on a single centralized dataset cannot be directly applied to this 

problem.  Even if every published table satisfies a traditional privacy preserving requirement individually, 

an adversary who can collect multiple published tables may be able to deduce some private information 

that violates the satisfied requirement.  Due to privacy reasons, the data holders cannot share information 

with each other to cooperate on the data publishing issues.  In this paper, we propose non-centralized 

distinct l-diversity and an algorithm to generate published tables.  Our algorithm does not rely on any 

communications between the data holders but only collects published tables released by other data holders.  

Experiments on real datasets are conducted to show that the algorithm is feasible to real applications. 

KEYWORDS 

Non-centralized, Privacy Preserving Data Publishing, Database, Conditional Independence 

1. INTRODUCTION 

Traditional solutions to the problem of privacy preserving data publishing (PPDP), such as k-

anonymity [1], l-diversity [2], and t-closeness [3], only guarantee that privacy is preserved if a 

published table is created from a centralized dataset.  Recently, many researchers have shown that 

if there are multiple published tables created from a centralized dataset (which can be either 

dynamic or static), privacy may not be preserved even if every published table satisfies a certain 

privacy preserving requirement individually [4][5][6][7][8].  This problem is called serial data 

publishing (on a centralized dataset).  In this paper, we consider a similar but different problem: 

data publishing on non-centralized datasets.  The non-centralized datasets that we refer to are 

multiple datasets that have a common sensitive attribute with the same domain and store 

information about the same group of individuals, but they are owned by different data holders that 

cannot share information with each other due to privacy reasons.  We are going to show that 

privacy may not be preserved even if all published tables generated from such multiple non-

centralized datasets satisfy certain privacy preserving requirements for data publishing 

individually.  It is illustrated in the following example. 

Table 1 shows two private tables, namely PriTR and PriTC, which are solely owned by the 

Revenue Department and the Censor Department respectively.  Both PriTR and PriTC store 

income information of the same group of individuals.  Some data miners may find such 

information useful for their manpower researches.  However, due to privacy reasons or even 

enforced by law, private tables PriTR and PriTC cannot be released directly to any other parties.  
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Instead, the Revenue Department and the Censor Department release two published tables, 

denoted as Tage and TZIP code, which are created by generalizing or suppressing the attributes of  

Table 1.  Two private tables PriTR and PriTC. 

Name Age Gender Salary Class  Name ZIP Code Salary Class 

Alice 60 F High  Alice 25434 High 

Bob 50 M High  Bob 27343 High 

Carlo 55 M High  Carlo 19343 High 

Diana 50 F High  Diana 17234 High 

Eva 48 F Middle  Eva 28544 Middle 

Fred 43 M Middle  Fred 24453 Middle 

George 25 M Middle  George 26211 Middle 

Helen 37 F Middle  Helen 23094 Middle 

Ivan 57 M Low  Ivan 29454 Low 

Janice 57 F Low  Janice 12845 Low 

Kate 18 F Low  Kate 15341 Low 

Leslie 22 F Low  Leslie 22093 Low 

(a) Private table PriTR  (b) Private table PriTC 

 

Table 2.  Two published tables Tage and TZIP code. 
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(a) Published Table Tage  (b) Published Table TZIP code 

 

PriTR and PriTC respectively.  An example is shown in Table 2, where Tage and TZIP code 

individually satisfy distinct 2-diversity [2], which is a traditional privacy preserving requirement 

for data publishing.  Even if an adversary can obtain access to either Tage or TZIP code and possess 

the identification information (the age and the ZIP code) of an individual (the victim), the 

adversary cannot deduce the exact sensitive attribute value of the victim.  At best, the adversary 

can only narrow down the number of possible sensitive attribute values to two.  However, 

ensuring that Tage and TZIP code satisfy distinct 2-diversity individually is not enough to preserve 

privacy.  We will show that if an adversary can obtain access to both Tage and TZIP code, the 

adversary may be able to deduce some information that cannot be deduced from either Tage or TZIP 

code individually, and such information may cause privacy breaches.  Suppose an adversary knows 

the following identification information of the victim. 

• Both Tage and TZIP code contain a tuple that corresponds to the victim. 

• The victim's age < 40 and the victim's ZIP Code < 20k. 
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From Tage (Table 2(a)) and the fact that the victim's age < 40, the adversary deduces that the 

salary class of the victim is either “Low” or “Middle”.  From TZIP code (Table 2(b)) and the fact that 

the victim's ZIP code < 20k, the adversary deduces that the salary class of the victim is either 

“Low” or ”High”.  Since both Tage and TZIP code have a tuple that corresponds to the victim, the 

adversary can combine the above results and deduce that the salary class of the victim must be 

”Low”.  In other words, the adversary can deduce the exact sensitive value of the victim.  Hence, 

2-diversity is violated even if both Tage and TZIP code are 2-diverse tables individually. 

Table 3.  The centralized table PriTR,C (for centralized data publishing only). 

Name Age Gender ZIP Code Salary Class 

Alice 60 F 25434 High 

Bob 50 M 27343 High 

Carlo 55 M 19343 High 

Diana 50 F 17234 High 

Eva 48 F 28544 Middle 

Fred 43 M 24453 Middle 

George 25 M 26211 Middle 

Helen 37 F 23094 Middle 

Ivan 57 M 29454 Low 

Janice 57 F 12845 Low 

Kate 18 F 15341 Low 

Leslie 22 F 22093 Low 

 

Table 4.  A published table Tage, ZIP code (for centralized data publishing only). 

Age ZIP Code Salary Class 
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The Revenue Department and the Censor Department not only need to ensure that their published 

tables, Tage and TZIP code, satisfy a certain privacy preserving requirement individually, but also 

have to ensure that no privacy breaches will occur if both published tables are obtained by an 

adversary.  The solution is trivial if the Revenue Department and the Censor Department can 

share their private tables, PriTR and PriTC, with each other.  It is because they can first combine 

PriTR and PriTC together to form a centralized table PriTR,C as shown in Table 3 by matching the 

name attributes of the two private tables.  Then, they can construct published table Tage, ZIP code as 

shown in Table 4 by generalizing the age and the ZIP code attributes of the centralized table 

PriTR,C.  Both Tage and TZIP code can be obtained by suppressing an attribute in Tage, ZIP code.  If Tage, 

ZIP code satisfies a certain privacy preserving requirement, releasing both Tage and TZIP code does not 

cause privacy breaches.  It is because the private information deduced from an adversary who can 
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obtain access to both Tage and TZIP code must be no more than the private information stored in Tage, 

ZIP code.  However, in our example, Tage, ZIP code (Table 4) is only a 1-diverse table.  Hence, the 

Revenue Department and the Censor Department know that the adversary may be able to deduce 

the exact sensitive attribute value of an individual if the adversary can obtain access to both Tage 

and TZIP code.  Therefore, they will not release Tage and TZIP code together and thus privacy breaches 

are avoided. 

Unfortunately, the above solution may not be applicable in practice.  It is because due to privacy 

reasons or even enforced by law, the Revenue Department and the Censor Department cannot 

share their private tables with each other (though both departments belong to the government).  It 

follows that no one can precisely construct PriTR,C and generate Tage, ZIP code.  Hence, the above 

solution cannot be applied when such a restriction is enforced.  With such a restriction, this 

problem becomes non-centralized data publishing.  The solution to this problem is not trivial 

since the Revenue Department and the Censor Department cannot share information with each 

other, but they still have to generate Tage and TZIP code that do not cause privacy breach even if there 

is an adversary who can obtain access to both Tage and TZIP code. 

The objective of this paper is to present a way to release published tables that will not cause 

privacy breaches in non-centralized environment.  Firstly, we propose two approaches for a data 

holder to determine the private information that will be deduced by an adversary who can get 

access to all non-centralized published tables if the data holder releases a published table.  Since 

there may be correlations among the attributes in different published tables, two approaches are 

needed.  The first approach is for the scenario that the adversary knows such correlations.  This 

approach determines the private information deduced by such an adversary by considering how 

the adversary utilizes the correlations to deduce the private information.  The second approach is 

for the scenario that the adversary does not know such correlations.  This approach determines the 

private information deduced by such an adversary by considering how the adversary makes a 

conditional independent assumption to deduce private information.  For both approaches, the data 

holder does not need to communicate with other data holders.  Instead, the data holder only needs 

to collect published tables generated by other data holders.  Secondly, we propose how to adopt 

distinct l-diversity [2], which is a privacy preserving requirement for centralized data publishing, 

to non-centralized data publishing.  It is so called non-centralized distinct l-diversity.  Thirdly, we 

propose an algorithm for a data holder to generate published tables that satisfy non-centralized 

distinct l-diversity.  Our algorithm is modified from Incognito [13], which is an efficient and 

widely-used algorithm for (centralized) data publishing.  Theorems are presented to show the 

correctness of the proposed algorithm.  Experiments on real datasets are conducted to show that 

the proposed algorithm is feasible to real applications. 

This paper is organized as follows.  Section 2 presents the related work.  Section 3 presents the 

table models used in this paper.  Section 4 discusses the private information deduced from 

multiple published tables in a non-centralized environment.  Section 5 presents the non-

centralized version of distinct l-diversity and an algorithm for non-centralized PPDP.  Section 6 

presents the experiment results.  Finally, conclusions are presented in Section 7. 

2. RELATED WORK 

This paper focuses on data publishing on non-centralized datasets.  There has been extensive 

research in PPDP, such as k-anonymity [1], l-diversity [2], and t-closeness [3].  However, they 

focus on the cases for a single centralized dataset and a single published table.  In the previous 

section, we have shown that these solutions cannot be directly applied to the cases for multiple 

published tables. 

Recently, the problem of serial data publishing has attracted a lot of attentions.  These research 

works can be classified into serial data publishing on a dynamic dataset and serial data publishing 

on a static dataset.  Most of the works focus on the cases for a dynamic dataset (or multiple 
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instances of data), which includes an incremental dataset [4][5] (i.e. allowing insertions of new 

tuples),  a dataset with insertions and deletions [6], a dataset with insertions, deletions, and 

updates [7], a dataset with sensitive values that change over time [8].  Some other works focus on 

the cases for a static dataset, such as [9].  Nevertheless, all such works cannot be applied to our 

problem.  It is because they require the data holder to possess a dataset or a series of dataset 

instances that contains all information.  However, in the non-centralized datasets problem, no one 

possesses all information. 

We propose a statistical approach to determine the private information deduced by an adversary 

and the results are stored in a probabilistic table.  Many previous works also use probabilistic 

approach [10] or deal with probabilistic databases [11][12]. 

Our proposed algorithm that generates published tables is modified from Incognito [13].  Similar 

to many previous works [1][14][15][16], published tables are generated by generalizing and 

removing the quasi-identifier attributes of the private table, while remaining the sensitive attribute 

unchanged. 

In the non-centralized data publishing problem, no one (neither the data holders nor the 

adversaries) is able to combine all the private/published tables and deduce the actual correlations 

among the quasi-identifier attributes in different private/published tables.  Without such 

correlations, even if an adversary can get access to two or more published tables, the adversary 

can only deduce information stored in the tables individually, but not the "combined" information 

reflected by these tables.  Nevertheless, the adversary can make the conditional independence 

assumption, which is not uncommon in database research works [17][18][19][20] and other 

research works [21], such as Bayesian analysis [22][23], to deduce the "combined" information 

reflected by the published tables. 

This paper focuses on PPDP, which focuses on how to publish data.  There is another related area 

called privacy preserving data mining (PPDM), which focuses on how to perform data mining on 

the data that is modified to preserve privacy [24][25][26].   

3. TABLE MODELS 

In this section, we present the private table model (Section 3.1) and the published table model 

(Section 3.2). 

3.1. Private Table 

A private table stores private information about a group of individuals.  It is solely owned by a 

data holder and is never released to other parties directly.  In this paper, we focus on the case that 

there are multiple non-centralized private tables that store information about the same group of 

individuals.  For example, Table 1 shows two private tables, namely PriTR and PriTC, which are 

solely owned by the Revenue Department and the Censor Department respectively.  Both PriTR 

and PriTC store income information about a group of individuals.  A tuple in the private table 

corresponds to an individual.  A private table consists of three sets of attributes: 

• Explicit-identifier attributes.  Each of them can uniquely identify an individual in the 

private table, such as the name. 

• Quasi-identifier attributes [1].  It is a set of attributes that may uniquely identify an 

individual in the private table when some of such attributes are considered together and 

linked to an external dataset, such as the age and the gender. 

• A sensitive attribute.  It stores sensitive information about an individual, such as the 

salary class.  In this paper, we consider the private tables that share a common sensitive 

attribute and store information about the same group of individuals. 
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3.2. Published Table 

Some parties, say data miners, may find the information stored in the private table useful for 

research or other purposes.  However, due to privacy reasons or even enforced by law, the data 

holder cannot release the private table to the data miners directly.  Hence, the data holder needs to 

generate a table with less information and release it to the data miners instead.  Such a table is 

called a published table.  A popular approach to construct a published table from a private table is 

to suppress the explicit identifier attributes, generalize or suppress the quasi-identifier attributes, 

and retain the sensitive attribute of the private table [1][14][15][16].  For example, Tage and TZIP 

code in Table 2 are two published tables for private tables PriTR and PriTC respectively.  This paper 

considers non-centralized data publishing, which refers to generating published tables from 

multiple non-centralized private tables, where each private table has a published table.  Let n be 

the number of private tables.  Then, there will be n published tables.  Let Ti be the published table 

for the private table PriTi, where 1 ≤ i ≤ n.  A published table Ti consists of two sets of attributes: 

• Quasi-identifier attributes.  Each of them is generalized from a quasi-identifier attribute 

in the corresponding private table.  Some quasi-identifier attributes may be suppressed 

and thus not all quasi-identifier attributes in the private table appear in the published 

table.  Let m be the number of quasi-identifier attributes among all published tables.  The 

quasi-identifier attributes are denoted as Ai for 1 ≤ i ≤ m.  In this paper, duplicate quasi-

identifier attributes among the published tables are discarded.  A group of tuples with the 

same quasi-identifier attribute values form an equivalence class (EC) (or a QI-group).  

For example, Tage in Table 2(a) has one quasi-identifier attribute age and two ECs, 

namely ECage ≥ 40 and ECage < 40. 

• A sensitive attribute.  All published tables share a common sensitive attribute S, which 

is the same as the sensitive attribute shared by all private tables. 

4. PRIVATE INFORMATION DEDUCED FROM MULTIPLE PUBLISHED TABLES 

In this section, we discuss the private information deduced by an adversary who can obtain access 

to multiple published tables for non-centralized data publishing.  Data holders have to know what 

private information can be deduced by such an adversary in order to generate published tables 

that do not cause privacy breaches.  Section 4.1 shows that some private information can be 

deduced by simple counting on each published table individually.  Section 4.2 shows that more 

private information can be deduced by considering multiple published tables together with 

(Section 4.2.1) or without (Section 4.2.2) knowing the correlation among the quasi-identifier 

attributes.  Section 4.3 shows that the deduced private information can be systematically stored in 

a probabilistic table, which is needed for our proposed algorithm to generate non-centralized 

published tables. 

4.1. Private Information Deduced by Simple Counting on Each Published Tables 

Consider a victim who has a tuple in both published tables Tage and TZIP code depicted in Table 2.  

Let h, m, and l be the events that the salary classes of the victim are “High”, “Middle”, and “Low” 

respectively.  Let P(H), P(M), and P(L) be the probabilities that the salary classes of the victim are 

“High”, “Middle”, and “Low” respectively.  We assume that the private tables are consistent and 

hence P(H) can be computed by counting the number of tuples with sensitive attribute values = 

“High” in either Tage or TZIP code.  In our example, there are four out of 12 tuples with values equal 

to “High” in each of Tage and TZIP code, which store information about the same group of 

individuals and the sensitive attribute values are the same.  Hence, we have 

P(H) = 4/12 = 0.333.  Similarly, we have P(M) = P(L) = 0.333. 

Consider an adversary who (1) can obtain access to both Tage and TZIP code, (2) knows that there is a 

tuple in both Tage and TZIP code that corresponds to the victim, and (3) knows that the victim's age ≥ 

40 and the victim's ZIP code ≥ 20k.  The adversary can deduce some private information, in terms 

of conditional probabilities, about the victim from each of Tage and TZIP code individually.  First we 
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consider Tage.  Since the victim's age ≥ 40, the tuple that corresponds to the victim must be one of 

the first eight tuples.  Among these eight tuples, four of them have the sensitive attribute value = 

“High”.  Hence, the conditional probability that the salary class of the victim is “High” given that 

the victim's age ≥ 40 is 4/8 = 0.5.  Such a conditional probability is denoted as P(H|A ≥ 40), where 

A be the age of the victim.  Similarly, the adversary can deduce conditional probabilities P(M|A ≥ 

40) = 0.25 and P(L|A ≥ 40) = 0.25 from Tage.  Next we consider TZIP code.  Let Z be the ZIP code of 

the victim.  Similarly, the adversary can deduce P(H|Z ≥ 20k) = 0.25, P(M|Z ≥ 20k) = 0.5, and 

P(L|Z ≥ 20k) = 0.25 from TZIP code. 

4.2. Private Information Deduced from Multiple Published Tables 

As mentioned in Section 1, although published tables Tage and TZIP code (Table 2) satisfy the 2-

diversity requirement individually, an adversary who can obtain access to both Tage and TZIP code 

may be able to deduce further private information that violates such a requirement.  We propose 

some approaches to determine such further private information deduced by the adversary.  The 

proposed approach can be used to verify whether releasing a non-centralized published table 

cause privacy breaches, which is an important step for our proposed algorithm to generate non-

centralized published tables. 

In Section 4.1, we presented the conditional probabilities deduced from each of Tage and TZIP code 

by the simple counting approach.  The conditions of such conditional probabilities involve either 

A or Z, but not both.  As an example, the conditional probabilities deduced in the previous 

subsection are P(H|A ≥ 40) and P(H|Z ≥ 20k).  However, the adversary actually wants to compute 

P(H|A ≥ 40, Z ≥ 20k), which is the conditional probability that the sensitive attribute value of the 

victim is high given that A ≥ 40 and Z ≥ 20k.  It is because the adversary knows the age and the 

ZIP code of the victim and is able to obtain access to both Tage and TZIP code. 

Although the age and the ZIP code attributes are in different private tables hold by different data 

holders, it is not surprising that there is a correlation between the two attributes.  For example, a 

city may have more elder people than younger people.  Hence, the probability that an individual 

who lives in such a city is an elderly is higher.  There are two ways to compute  

P(H|A ≥ 40, Z ≥ 20k).  The first way is for the adversary who does not know the QI attribute 

correlation.  Such an adversary can make the conditional independent assumption to compute 

P(H|A ≥ 40, Z ≥ 20k).  The second way is for the adversary who does not know the QI attribute 

correlation.  Such an adversary can use a statistical approach to compute P(H|A ≥ 40, Z ≥ 20k).  In 

the rest of this subsection, we will discuss these two ways to compute P(H|A ≥ 40, Z ≥ 20k). 

4.2.1 Without Knowing the Quasi-Identifier Attribute Correlation 

Consider an adversary who does not know the correlation between the age and the ZIP code 

attributes.  It seems that the adversary can compute the P(H|A ≥ 40, Z ≥ 20k) value by assuming 

that the age and the ZIP code attributes are independent, and then use the independence property 

P(A ≥ 40, Z ≥ 20k) = P(H|A ≥ 40) · P(Z ≥ 20k).  Unfortunately, such an assumption cannot be 

made.  It is because the knowledge about the ZIP code of an individual may be updated by 

knowing the age of the individual.  It is illustrated in the following example.  Suppose the 

adversary does not know the age of the individual.  In TZIP code, there are 12 tuples and eight of 

them have ZIP code ≥ 20k.  Hence, the probability that the individual's  

ZIP code ≥ 20k is 2/3.  Such a probability is denoted as p.  On the other hand, suppose the 

adversary knows that the individual's age < 40.  From Tage, the adversary knows the individual's 

tuple must be one of the last four tuples.  Hence, the salary class of the individual is either “Low” 

or “Middle” with equal chance.  With such information, the adversary can eliminate the tuples 

with sensitive attribute value = “High” in TZIP code.  Among the remaining eight tuples, six of them 

have ZIP code ≥ 20k.  Hence, the adversary now has p = 3/4.  In other words, by knowing the 

victim's age < 40, the value of p is updated from 2/3 to 3/4.  This counter example explains why 

the adversary cannot assume that the age and the ZIP code attributes are independent. 
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In fact, to compute P(H|A ≥ 40, Z ≥ 20k), the adversary who does not know the QI attribute 

correlation can make the following assumption: the age and ZIP code attributes are conditionally 

independent given the value of the salary class attribute.  In probability theory, conditional 

independence for events E1 and E2 is defined as follows: E1 and E2 are two conditionally 

independent events given event G if and only if P(E1,E2|G) = P(E1|G) · P(E2|G). 

Here we use an example to illustrate how to make the conditional independence assumption in 

our problem.  If the salary class of the individual is given in the first place, the knowledge about 

the ZIP code of an individual is independent of the knowledge of the age of the individual.  In 

other words, knowing the ZIP code (or the age) of the individual will not update the knowledge 

about the age (or the ZIP code) of the individual.  It is illustrated in the following example.  

Suppose the information that the salary class of the victim is either “Low” or “Middle” with equal 

chance is given in the first place.  With such information, the adversary has p = 3/4 already even 

if we do not know the individual's age and only consider TZIP code.  Hence, even if the adversary 

now knows that the individual's age < 40, the value of p will not be updated.  This is also true if 

the salary class of the victim equals to other value(s).  It is because the salary class attribute is the 

only connection between the age and the ZIP code attributes if the adversary does not know the 

QI attribute correlation.  By knowing the age attribute, one can update the knowledge about the 

salary class attribute, which can be used to update the knowledge about the ZIP code attribute.  If 

such an updated knowledge about the salary class attribute is given in the first place, it will 

update the knowledge about the ZIP code of the individual regardless of the knowledge about the 

age of the individual. 
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�(����,	�
��)

         (1) 

�(�,����,	�
��)
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With such an assumption, the adversary can compute P(H|A ≥ 40, Z ≥ 20k) as follows. 

• By the definition of conditional probability, P(H|A ≥ 40 , Z ≥ 20k) can be expressed as 

Equation (1) . 

• The salary class has only three possible values, by the law of alternatives, Equation (1) 

can be expressed as Equation (2). 

• By the product rule of conditional probabilities, Equation (2) can be expressed as (3). 

• By the definition of conditional independence, Equation (3) can be expressed as Equation 

(4). 

• By simple counting on Tage and TZIP code individually, the adversary can deduce  

P(A ≥ 40|H) = 0.5, P(Z ≥ 20k|H) = 0.25, P(H) = 0.333, P(A ≥ 40|M) = 0.25,  

P(Z ≥ 20k|M) = 0.5, P(M) = 0.333, P(A ≥ 40|L) = 0.25, P(Z ≥ 20k|L) = 0.25, and  

P(L) = 0.333.  By substituting these values into the Equation (4), the adversary can 

obtain: P(H|A ≥ 40, Z ≥ 20k) = 0.4. 

Similarly, the adversary can also calculate the conditional probabilities for other sensitive 

attribute values: P(M|A ≥ 40, Z ≥ 20k) = 0.4 and P(L|A ≥ 40, Z ≥ 20k) = 0.2. 

In general, suppose there are n published tables, namely T1, ..., Tn, which are generated from n 

private tables PriT1, ..., PriTn respectively.  Further suppose there are m quasi-identifier attributes, 

namely A1, ..., Am, which are distributed among these n published tables.  The n published tables 

can be formulated as:  

�� = ���, … , ���
, ��, �
 = �����, … , ���

, ��, … , �� = ���� ��, … , �!, ��, 
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where 1 ≤ r1 < r2 < ... < rn-1 < m. 

The conditional independence assumption for such a general case is stated as follows. 

Assumption 1.  The quasi-identifier attributes among different published tables, i.e. �� , … , ���
 in 

T1, ����, … , ���
 in T2, ..., and ��� ��, … , �! in Tn, are conditionally independent given the 

value of sensitive attribute S. 

Assumption 1 is needed by the adversary who does not know the QI attribute correlation to 

deduce private information from multiple published tables by considered them together.  Note 

that if the adversary knows the QI attribute correlation, the adversary does not need this 

assumption to deduce the required private information (see the next part of this subsection). 

The idea of Assumption 1 is that if the value of S is given in the first place, the knowledge about 

the A1, ..., Am values of an individual are independent to each other.  In other words, knowing the 

Ai value of the individual will not update the knowledge about the Aj value of the individual for 1 

≤ i ≠ j ≤ m.  In probability theory, conditional independence for events E1, ..., Em is defined as 

follows. 

Definition 1. (Conditional independence for m events) E1, ..., Em are conditionally independent 

events given event G if and only if "(#�, … , #!|$� = Π%&�
! "(#%|$� for m ≥ 2. 

Consider the worst case that the adversary can obtain access to all n published tables and know 

the values of all m quasi-identifier attributes for the victim.  Let Sk be a possible value of S for 1 ≤ 

k ≤ s. 

Here shows that the adversary is able to compute P(Sk|A1 ≥ v1, ..., Am ≥ vm), which is conditional 

probability that the sensitive attribute value of the victim is Sk given that A1 ≥ v1, ..., Am ≥ vm. 

P(Sk|A1 ≥ v1, ..., Am ≥ vm) can be expressed as an expression containing terms that can be 

calculated by simple counting on the published tables (such an expression is the general case for 

Equation (4).  By the definition of conditional probability, it can be expressed as  

�('(,���)�,…,�*�)*)
�(���)�,…,�*�)*)

  

By the law of alternatives, the above can be expressed as 

�('(,���)�,…,�*�)*)
∑ �(',,���)�,…,�*�)*)-

,.�
  

By the product rule of conditional probabilities, the above can be expressed as 

�(���)�,…,�*�)*|'()∙�('()
∑ �(���)�,…,�*�)*|',)∙�(',)-

,.�
  

By Assumption 1 and Definition 1, the above can be expressed as 

     
(∏ 01,(

�
1.� )∙�('()

∑ (2∏ 01,,
�
1.� 3∙�(',))-

,.�
  (5) 

where 4�,� = "(�� ≥ 6�, … , ���
≥ 6��

|��), 4
,� = "2���� ≥ 6���, … , ���
≥ 6��7��3, 

… , 4�,� = "2��� �� ≥ 6�� ��, … , �! ≥ 6!7��3, and vi is a value in the domain of Ai for 

1 ≤ i ≤ m.  (Recall that m is the number of QI attributes, n is the number of published tables, and s 

is the number of possible sensitive values.) 

All the terms in Equation (5) can be deduced easily.  As described earlier, the probabilities P(S1), 

..., P(Ss) can be calculated by simple counting on any one of T1, ..., Tn; the conditional 

probabilities p1,k, ... pn,k can be calculated by simple counting on each of T1, ..., Tn respectively.  

Therefore, the adversary is able to compute P(Sk | A1 ≥ v1, ..., Am ≥ vm).   



International Journal of Database Management Systems ( IJDMS ) Vol.4, No.2, April 2012 

10 

Similarly, the adversary can also calculate conditional probabilities from  

P(Sk|A1 ≥ v1, ..., Am-1 ≥ vm-1, Am < vm) to P(Sk|A1 < v1, ..., Am < vm). 

Table 5.  A published table Tage, ZIP code (for centralized data publishing only). 

Age Salary Class Number of 

Tuples 

 ZIP Code Salary Class Number of 

Tuples 

≥ 40 

High 

Middle 

Low 

3 

3 

4 

 

≥ 20k 

High 

Middle 

Low 

4 

3 

2 
 

 

< 40 

High 

Middle 

Low 

4 

4 

3 

 

< 20k 

High 

Middle 

Low 

3 

4 

5 
 

 

(a) Published table T’age  (b) Published table T’ZIP code 

 

4.2.2 Knowing the Quasi-Identifier Attribute Correlation 

Table 5 shows two published tables T'age and T'ZIP code with different presentations such that they 

store the number of tuples having each sensitive value for each EC.  Such a presentation is more 

convenient to illustrate our idea presented in this subsection. 

Consider an adversary who can get access to T'age and T'ZIP code and knows the correlation between 

the age and the ZIP code attributes.  Such a correlation can be expressed in a probability equation, 

e.g. P(A ≥ 40|Z ≥ 20k) = 4/9.  We assume that such a correlation is consistent with the private 

tables and the published tables. 

Let PriT'age and PriT'ZIP code be the private tables of T'age and T'ZIP code respectively.  Since no one 

can get access to both PriT'age and PriT'ZIP code, no one can construct a table that precisely 

combines the information about age, ZIP code, and salary in both PriT'age and PriT'ZIP code.  Such a 

table is denoted as T'age, ZIP code and it is an imaginary table only (it cannot be constructed 

precisely).  Nevertheless, the adversary can still deduce the following information about the 

imaginary table. 

• There are four tuples in ECA ≥ 40, Z ≥ 20k in the imaginary table.  It is because there are nine 

tuples in ECZ ≥ 20k in T'ZIP code and P(A ≥ 40|Z ≥ 20k) = 4/9. 

• The maximum number of tuples in ECA ≥ 40, Z ≥ 20k in the imaginary table having sensitive 

value “High” is three.  It is because such a number is the minimum of the number of 

tuples in ECA ≥ 40 in T'age and the number of tuples in ECZ ≥ 20k in T'ZIP code having sensitive 

value “High”, which are three and four respectively. 

• Similarly, the maximum numbers of tuples in ECA ≥ 40, Z ≥ 20k in the imaginary table having 

sensitive value “Middle” and “Low” are three and two respectively. 

From the above information, although the adversary cannot construct the imaginary table 

precisely, the adversary can compute conditional probabilities P(H|A ≥ 40, Z ≥ 20k),  

P(M|A ≥ 40, Z ≥ 20k), and P(L|A ≥ 40, Z ≥ 20k) as follows. 

The adversary first constructs all possible instances of the imaginary table.  Let h, m, and l be the 

number of tuples in an imaginary table instance having sensitive value of “High”, “Middle”, and 

“Low”' respectively. 

The adversary can write a simple program to find out all possible values of h, m, and l.  Table 6 

shows such possible values for our example.  We observe that there are 10 possible imaginary 

table instances with equal chances.  For the first instance, there are three out of four tuples in ECA 

≥ 40, Z ≥ 20k with sensitive value “High”.  The value of P(H|A ≥ 40, Z ≥ 20k) can be computed by 

considering all instances as follows: 
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"(8|� ≥ 40, ; ≥ 20=� = �
�� ∙ >

?
�+

?
� +



� +



�+



�+

�
�+

�
�+

�
�A =

?
B  

Similarly, we have P(M|A ≥ 40, Z ≥ 20k) = 3/8 and P(M|A ≥ 40, Z ≥ 20k) = 1/4. 

Table 6.  The possible values of h, m, and l for all ten possible imaginary table instances. 

Instance h m l 

1 3 1 0 

2 3 0 1 

3 2 2 0 

4 2 1 1 

5 2 0 2 

6 1 3 0 

7 1 2 1 

8 1 1 2 

9 0 3 1 

10 0 2 2 

 

Table 7.  Probabilistic table PTage,ZIP code. 

Age ZIP Code Salary Class Probability 

≥ 40 

≥ 40 

≥ 40 

≥ 20k 

≥ 20k 

≥ 20k 

High 

Middle 

Low 

0.4 

0.4 

0.2 

≥ 40 

≥ 40 

≥ 40 

< 20k 

< 20k 

< 20k 

High 

Middle 

Low 

0.667 

0 

0.333 

< 40 

< 40 

< 40 

≥ 20k 

≥ 20k 

≥ 20k 

High 

Middle 

Low 

0 

0.667 

0.333 

< 40 

< 40 

< 40 

< 20k 

< 20k 

< 20k 

High 

Middle 

Low 

0 

0 

1 

 

It may not be possible for a data holder to know what the QI attribute correlation will be obtained 

by an adversary.  Nevertheless, the data holder can still use the above equation to make the 

published table satisfy non-centralized l-diversity regardless of the QI attribute correlation 

possessed by the adversary.  More details will be explained in the next subsection. 

4.3. Probabilistic Table 

The conditional probabilities computed in the previous subsections can be stored systematically 

in a table called a probabilistic table, which allows data holders to estimate the information 

deduced by an adversary in order to verify whether releasing a published table will cause privacy 

breaches.  A probabilistic table for n published tables is denoted as PT1~n.  It consists of three sets 

of attributes: 

• Quasi-identifier attributes.  The quasi-identifier attributes of all previous published tables, 

i.e., A1, ..., Am. Same as an equivalence class of a published table, an equivalence class of a 

probabilistic table is defined as a collection of tuples with the same quasi-identifier attribute 

values. 
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• A sensitive attribute.  It is the common sensitive attribute of all previous published tables.  

Let S be the number of possible sensitive attribute values.  Each equivalence class has exactly 

S tuples, which contain sensitive attribute values S1, ..., Ss. 

• A probability attribute.  The probability attribute of the tuple with A1 ≥ v1, ..., Am ≥ vm and S 

= Sk stores the P(Sk|A1 ≥ v1, ..., Am ≥ vm) value computed in Equation 5.  Similarly, the values 

of other conditional probabilities from P(Sk|A1 ≥ v1, ..., Am-1 ≥ vm-1, Am < vm) to P(Sk|A1 < v1, ..., 

Am < vm) for k = 1, .., s are also stored in this attribute. 

As an example, Table 7 shows PTage, ZIP code, which is a probabilistic table for published tables Tage 

and TZIP code in Table 2.  The probabilistic table PTage, ZIP code contains quasi-identifier attributes 

“Age” and “ZIP Code”, a sensitive attribute “Salary Class”, and an attribute storing probability 

values.  The first row of PTage, ZIP code indicates that given the victim's age ≥ 40 and the victim's 

ZIP code ≥ 20k, the conditional probability that the salary class of the victim is “High” is 0.4. 

In practice, an adversary may only be able to obtain access to some of the n published tables 

and/or may only know that some of the m quasi-identifier attribute values that correspond to the 

victim.  Let A1, ..., Am' be such quasi-identifier attributes in the published tables that can be 

accessed by the adversary, where m' < m.  In this case, we cannot use PT1~n to represent the 

information deduced by such an adversary.  It is because the adversary does not possess enough 

information to compute those conditional probabilities in PT1~n.  Instead, we use another 

probabilistic table that only contains quasi-identifier attributes A1, ..., Am', a sensitive attribute S, 

and a probability attribute to represent the information deduced by the adversary who ignores the 

quasi-identifier attributes Am'+1, ..., Am that he/she is not knowledgeable about.  Nevertheless, for 

preserving privacy, we only need to consider the worst case: the adversary is able to access all n 

published tables.  Hence, we do not need to explicitly construct all possible probabilistic tables. 

5. PRIVACY PRESERVING REQUIREMENT AND ALGORITHM FOR NON-

CENTRALIZED DATA PUBLISHING 

In this section, we present the non-centralized version of distinct l-diversity and an algorithm for 

non-centralized PPDP.  Section 5.1 proposes how to adopt distinct l-diversity as a privacy 

preserving requirement for non-centralized data publishing.  Section 5.2 proposes an algorithm, 

which is modified from Incognito [13], to generate a published table that satisfies non-centralized 

distinct l-diversity.  Section 5.3 proves the correctness of applying the modified version of 

Incognito to the non-centralized data publishing problem. 

5.1. Non-centralized Distinct l-diversity 

Suppose there are n data holders, denoted as DH1, ..., and DHn.  Each of them solely owns a 

private table, which have a common sensitive attribute S with the same domain and store 

information about the same group of individuals.  Let Prii be the private table owned by DHi for 1 

≤ i ≤ n.  For research or other purpose, a published version of the private table (the published 

table) is released by the data holders.  Let Ti be the published table released by DHi for 1 ≤ i ≤ n.  

Each published table contains the common sensitive attribute and some quasi-identifer attributes. 

Let A1, ..., Am be the m quasi-identifier attributes in these n published table.  Without loss of 

generality, we assume that DHn is the last data holder to release its published table Tn, which 

contains quasi-identifier attributes Am'+1, ..., Am, where m' < m.  DHn has to ensure that there are no 

privacy breaches for releasing Tn if it is obtained by an adversary who possesses T1, ..., Tn-1 and 

the identification information of the individuals in these published tables. 

We propose that distinct l-diversity [2], which is a privacy preserving requirement for centralized 

data publishing, can also be used for non-centralized data publishing.  In other words, it can be 

used by DHn to ensure that releasing Tn does not cause privacy breaches.  It is explained as 

follows.  Consider an equivalence class in probabilistic table PT1~n.  The number of tuples having 

non-zero probability attribute values can be regarded as the number of possible sensitive attribute 
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values of the victim deduced by an adversary who possesses the identification information of the 

victim.  It shares the same semantic of the l value in distinct l-diversity.  Hence, we can define 

distinct l-diversity for non-centralized data publishing under our proposed framework as follows. 

Defintion 2. (Distinct l-diversity for an equivalence class) An equivalence class in probabilistic 

table PT1~n satisfies distinct l-diversity if and only if it has at least l tuples having non-zero 

probability attribute values. 

For example, the four equivalence classes in PTage, ZIP code (Table 7) satisfy distinct l-diversity for l 

= 3, 2, 2, 1 (from the top to the bottom). 

According to distinct l-diversity for centralized data publishing, a published table satisfies distinct 

l-diversity if and only if all of its equivalence classes satisfy distinct l-diversity.  Here we have the 

same definition for non-centralized data publishing under our proposed framework.  It is formally 

defined as follows. 

Definition 3. (Distinct l-diversity for PT1~n) A probabilistic table PT1~n satisfies distinct l-

diversity if and only if all of its equivalence classes satisfy distinct l-diversity. 

For example, PTage, ZIP code (Table 7) only satisfies distinct l-diversity for l = 1. 

PT1~n represents the worst case that an adversary can obtain access to all n published tables and 

knows the values of all m quasi-identifier attributes of all individuals.  According to the definition 

of distinct l-diversity [2], if PT1~n satisfies distinct l-diversity, we can say that no privacy breaches 

will occur for such a worst case.  However, in practice, other possible cases may happen such that 

the adversary may only be able to obtain access to n' published tables and/or may only know m' 

quasi-identifier values about the victim, where n' < n and m' < m.  Theorems 1 and 2 show that if 

PT1~n (the worst case) satisfies distinct l-diversity, probabilistic tables for all other possible cases 

will also satisfy distinct l-diversity. 

Theorem 1. If the probabilistic table PT1~n that is constructed by the adversary who can obtain 

access to all n published tables satisfies distinct l-diversity, the probabilistic table PT1~n' that is 

constructed by the adversary who can only obtain access to n' published tables also satisfies 

distinct l-diversity, where n' < n. (Proof skipped due to page limit) 

Theorem 2. If the probabilistic table PT1~n that is constructed by the adversary who possesses the 

values of all m quasi-identifier attributes of the victim satisfies distinct l-diversity, the 

probabilistic table PT'1~n that is constructed by the adversary who only possesses the values of m' 

< m quasi-identifier attributes of the victim also satisfies distinct l-diversity. (Proof skipped due to 

page limit) 

Theorems 1 and 2 imply that no privacy breach will occur for all other possible cases if the worst 

case does not cause privacy breach. 

Next, we consider published table Tn.  The reason for data holder DHn to construct PT1~n is to 

check whether privacy breaches will occur for releasing published table Tn.  We say that no 

privacy breaches will occur for releasing published table Tn if probabilistic table PT1~n satisfy 

distinct l-diversity.  It is because according to Definition 3 and Theorems 1 and 2, if PT1~n 

satisfies distinct l-diversity, no privacy breaches will occur for the case that an adversary can 

obtain access to all/some published tables, which may include Tn.  Hence, no privacy breaches 

will occur for releasing published table Tn. 

The relationship among Tn, PT1~n, and (non-centralized) distinct l-diversity is formally defined as 

follows. 

Definition 4. (Non-centralized distinct l-diversity for Tn) If probabilistic table PT1~n satisfies 

distinct l-diversity, we say that Tn satisfies non-centralized distinct l-diversity. 
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Note that in order for Tn to satisfy non-centralized distinct l-diversity with l = l', previous 

published tables T1, ..., Tn-1 have to also satisfy non-centralized distinct l-diversity with l ≥ l'.  

Otherwise, it is possible that Tn cannot satisfy non-centralized distinct l-diversity with l = l' no 

matter how Tn is generalized. 

Adopting distinct l-diversity [2] to the problem of non-centralized data publishing allow us to 

propose an efficient algorithm to generate a published table that satisfies non-centralized distinct 

l-diversity.  It is explained as follows.  Firstly, as proved in Theorems 1 and 2, we only need to 

ensure that the worst case will not cause privacy breaches instead of checking all possible cases.  

Secondly, non-centralized distinct l-diversity satisfies the generalization property and the subset 

property, which are necessary to apply Incognito [13] to generate published tables correctly and 

efficiently (see Theorems 3 and 4). 

5.2. Algorithm 

Intuitively, a data holder, say DHn, can use the following steps (Steps 1 to 3) to generate a 

published table Tn that satisfies non-centralized distinct l-diversity (later we will show that Step 2 

can be skipped). 

• Step 1: Collect T1, ..., and Tn-1. 

• Step 2: Construct a probabilistic table PT1~(n-1) from T1, ..., and Tn-1. 

• Step 3: Generate Tn from Prin such that PT1~n satisfies non-centralized distinct l-diversity. 

Step 1 is to collect the related published tables that have been already released by other data 

holders.  Step 2 is to construct a probabilistic table PT1~(n-1) from the collected published tables.  

Step 3 is to generate Tn by the modified version of Incognito [13], so that PT1~n, which is 

constructed by combining Tn and PT1~(n-1), satisfies non-centralized distinct l-diversity.   

Nevertheless, we figure out how to verify whether PT1~n satisfies non-centralized distinct l-

diversity without actually constructing PT1~n.  Hence, we do not need Step 2 to construct  

PT1~(n-1) neither.  To explain how to do so, we first describe the steps (Steps A to C) to construct 

PT1~n from PT1~(n-1) and Tn. 

• Step A: The first step is to generate all equivalence classes of PT1~n.  Recall that an 

equivalence class is a collection of tuples with the same quasi-identifier attribute values.  

Hence, we can use a set of quasi-identifier attribute values to be the name of an 

equivalence class.  The name of an equivalence class in PT1~n can be obtained by taking 

the union of the name of an equivalence class in PT1~(n-1) and that in Tn.  For example, let 

X, Y, and Z be {A1 ≥ v1, ..., Am' ≥ vm'} in PT1~(n-1), {Am'+1 ≥ vm'+1, ..., Am ≥ vm} in Tn, and {A1 

≥ v1, ..., Am ≥ vm} in PT1~n respectively.  Z is obtained by taking the union of X and Y.  The 

names of all equivalence classes in PT1~n are all possible combinations of the equivalence 

class names in PT1~(n-1) and those in Tn.  In other words, the number of equivalence 

classes in PT1~n equals to the number of equivalence classes in PT1~(n-1) multiplies the 

number of equivalence classes in Tn. 

• Step B: The second step is to generate sensitive attribute values with non-zero conditional 

probabilities for all equivalence classes in PT1~n.  Let SX, SY, and SZ be the set of S values 

with non-zero conditional probabilities in X, Y, and Z respectively.  In Equation (5), if all 

the terms on the right hand side are non-zero, the resulting conditional probability on the 

left hand side is non-zero.  If any term on the right hand side is zero, the resulting 

conditional probability on the left hand side is zero.  Hence, if Z is obtained by taking the 

union of X and Y, we have SZ = SX ∩ SY.  For example, if SX = {“High”, “Middle”} and SY 

= {“Middle”, “Low”}, we have SZ = {“Middle”}. 

• Step C: The third step is to apply Equation (5) to calculate the non-zero conditional 

probabilities for each sensitive attribute value generated in the Step B. 
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For non-centralized distinct l-diversity, we are only interested in the number of different sensitive 

attribute values with non-zero probabilities in each equivalence classes.  We do not care about the 

names of equivalence classes (obtained by Step A) and the actual values for the non-zero 

conditional probabilities (obtained by Step C).  Hence, to verify whether PT1~n satisfies non-

centralized distinct l-diversity, we can skip Step A and Step C and only perform Step B, which 

becomes the requirement checking step of the modified version of Incognito in Step 3.  The 

modified checking step counts the number of elements in each intersection of every possible 

combinations among the set of S values with non-zero conditional probabilities for every 

equivalence class in Tn and that in PT1~(n-1), and checks if all such numbers are not less than l.  To 

know the set of S values in the equivalence classes in PT1~(n-1), we only need to refer to T1, ..., Tn-1.  

In other words, there is no need to explicitly construct any probabilistic tables, including PT1~(n-1) 

and PT1~n.  We only need to count the number of elements in each intersection of every possible 

combinations among the set of S values with non-zero conditional probabilities for every 

equivalence class in T1, ... , Tn, and deduce that PT1~n satisfy non-centralized l-diversity if and 

only if all such numbers are not less than l.  For example, suppose two published tables T1 and T2 

have been published by two data holders and the third data holder is now generating T3.  Assume 

that T1 has three equivalence classes, each of which has the sensitive attribute sets S1A, S1B, and 

S1C; T2 has two equivalence classes, each of which has the sensitive attribute sets S2A and S2B.  If 

T3 has two equivalence classes, each of which has the sensitive attribute sets S3A and S3B.  An 

example is shown in Table 8.  Suppose two published tables, namely T1 and T2, are published by 

two data holders.  Both published tables have the same sensitive attribute S with the same 

domain.  Further suppose that the third data holder wants to publish a published table, say T3, with 

the same S sensitive value with the same domain.  The third data holder has to consider 12 

sensitive attribute set intersections as shown in Table 8(b).  If the size of every intersection is not 

less than l, releasing T3 satisfies non-centralized l-diversity. 

Table 8.  The sensitive attribute set intersections that are considered for releasing T3 after 

T1 and T2 are published. 

 

Incognito is still efficient with the aforesaid modification.  It is because the modified requirement 

checking step, which is the only step that we modify on Incognito, is still working on equivalence 

classes and is not computationally intensive. 

5.3. Theorems 

In this subsection, we prove the correctness of applying the modified version of Incognito to the 

non-centralized data publishing problem. 
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To apply Incognito, the privacy preserving requirement has to satisfy the generalization property 

and the subset property [13].  Generalization property means that suppose TA and TB are 

generalized from a private table PriT and TB is more general than TA; if TA satisfies a privacy 

preserving requirement, TB also satisfies the same requirement.  Subset property means that 

suppose TC is generalized from a private table PriT and TD is obtained by removing some quasi-

identifier attributes of TC; if TC satisfies a privacy preserving requirement, TD will also satisfy the 

same requirement.  Theorems 3 and 4 show that non-centralized distinct l-diversity satisfies the 

generalization property and the subset property. 

Theorem 3. Non-centralized distinct l-diversity satisfies the generalization property. (Proof 

skipped due to page limit) 

Theorem 4. Non-centralized distinct l-diversity satisfies the subset property. (Proof skipped due 

to page limit) 

Theorems 3 and 4 imply that we can apply the modified version of Incognito to generate 

published table Tn such that when Tn is considered with PT1~(n-1) together to construct PT1~n, PT1~n 

satisfies distinct l-diversity.  By Definition 4, we say that Tn satisfies non-centralized distinct l-

diversity and releasing Tn will not cause privacy breach even if it is considered with other 

published tables T1, ..., and Tn-1. 

6. EXPERIMENTS 

In this section, we present the experiment results.  The objective of our experiment is to evaluate 

whether our non-centralized algorithm is feasible to real applications.  The algorithm is feasible if 

it can generate a published table in a reasonable time from real databases, where each of them 

contains more quasi-identifier (QI) attributes and a large number of tuples.  Section 6.1 presents 

the settings of the experiment.  Section 6.2 presents the metrics measured in the experiment.  

Section 6.3 presents and discusses the experiment results. 

Table 9.  Schema of SAL. 

Attribute Type Attribute Range Number of Possible Values 

QI Attributes 

Age 16 – 94 77 

Education 1 – 17 14 

Birthplace 1 – 710 133 

Occupation 1 – 983 509 

Race 1 – 9 9 

Work class 2 – 10 7 

Marital status 1 – 6 6 

Sensitive Attribute Income 0 – 49 50 

 

6.1. Settings 

All experiments were performed on a computer with Intel Core 2 Duo 2.80GHz CPU and 3.2GB 

RAM running Windows XP and IBM DB2 Express-C.  We modify Incognito [13] to become our 

non-centralized algorithm.  To simulate a non-centralized data publishing environment, we divide 

a real (centralized) database SAL (from http://ipums.org) into a number of (non-centralized) 

private tables.  SAL contains 700k tuples, each of which stores information about an American 

adult.  Table 9 shows the schema of SAL that we use, which has seven QI attributes: age, 

education, birthplace, occupation, race, work class, and marital status; and a sensitive attribute: 

income.  Each possible value of an attribute is represented by an integer.  Table 9 shows the range 

and the number of possible values for each attribute. 

Similar to Incognito, our non-centralized algorithm requires users to define generalization levels 

for each QI attribute to indicate how to generalize the QI attribute in a published table.  In our 
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experiments, we define four generalization levels for each QI attribute: level-0 represents no 

generalization, while level-1, level-2, and level-3 represent the generalization that results in four, 

two, and one equivalence classes respectively. 

The four parameters for our experiments are l, |QI|, lpre, and |QIpre|.  They are explained as 

follows. 

• l is the l value for the distinct l-diversity requirement, i.e. the number of distinct sensitive 

values for each equivalence class has to be larger than or equal to l. 

• |QI| is the number of QI attributes for the current published table. 

• lpre is the distinct l-diversity requirement for the previous published table (if there are 

multiple previous published tables, here refer to the latest one).  Note that it is not 

necessary for lpre to be equal to the minimum number of distinct sensitive values for all 

equivalence classes in the (latest) previous published table. 

• |QIpre| is the number of QI attributes in the published tables that have been released by 

other data holders already (i.e. in the previous published tables) before generating the 

current published table.  If |QIpre| = 0, it means that the published table is generated when 

there is no previous published tables.  In this case, we can use distinct l-diversity [2] 

directly.  If |QIpre| > 0, it means that the published table is generated when there are some 

previous published tables.  In this case, our non-centralized algorithm is used. 

Note that we do not need to set the number of previous published tables as a parameter in our 

experiments.  It is because such a number does not directly affect the probabilistic table.  Instead, 

we can tune the |QIpre| parameter to control the effect of the previous published tables in the 

experiments. 

6.2. Metrics 

We measure the following three metrics in our experiment. 

1. Elapsed time for generating the published table given a probabilistic table and a private 

table. 

 

2. The number of published tables that satisfy the requirement.  We call these published 

tables published table candidates.  The published table candidates differ in the 

generalization levels for each QI attribute. 

 

3. The minimum average generalization level.  For each published table, there are a number 

of QI attributes, and each QI attributes are generalized according to the generalization 

level.  Hence, we can calculate the average generalization level for each published table.  

Similar to Incognito, our non-centralized algorithm outputs a number of published tables.  

A user only needs to select one published table among all the published table candidates 

to release.  Usually the one that is least generalized (with the lowest average 

generalization level) is chosen in order to have the highest data quality to the data miner.  

Therefore, we are interested in the minimum average generalization level among all these 

published tables. 
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Table 10.  Parameters for the four experiment sets. 

Experiment Set Parameter Values 

A 
lpre 30 

|QIpre| 2 

B 
lpre 50 

|QIpre| 2 

C 
lpre 30 

|QIpre| 4 

D 
lpre 50 

|QIpre| 4 

 

 

Figure 1.  Experimental results. 

6.3. Results and Discussions 

We performed four sets of experiment.  Their parameters are shown in Table 10.  Figure 1 shows 

the experimental results.  There are three observations about elapsed time based on the 

experimental results. 

1. The first observation is that our non-centralized algorithm takes less than 180s to generate 

a published table with five QI attributes. 

2. The second observation is that increasing the |QIpre| value does not significantly increase 

the time to generate a published table.  It is because the non-centralized algorithm only 

reads the sensitive attribute values in each equivalence class in the probabilistic table but 
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not the QI attributes.  Although the number equivalence classes increases when the |QIpre| 

value increases, our algorithm only needs to consider one equivalence class among the 

equivalence classes with the same set of sensitive attribute values.  In addition, the time 

to read the probabilistic table is negligible when comparing with the core algorithm that 

generates the published table by building and searching for the published table lattice.  

Hence, the |QIpre| value does not cause much impact to the total elapsed time to generate a 

published table. 

3. The third observation is that our algorithm takes more time to generate a published table 

with more QI attributes (i.e. a higher |QI| value), which is reasonable since the lattice size 

is increased when there are more QI attributes.  Therefore, the time needed to build and 

search the lattice is increased. 

The first two observations about elapsed time indicate that our algorithm is feasible for real 

applications. 

There are three observations about the number of published table candidates that satisfy the 

requirement based on the experimental results.  Note that only one of the published table 

candidates will be chosen as the published table. 

1. The first observation is that if the l value increases (i.e. the requirement is more 

restrictive), fewer published tables will satisfy the requirement.  That means the number 

of published table candidates decreases. 

2. The second observation is that if the |QI| value increases, the number of published table 

candidates increases.  It is because there are more combinations for different 

generalization levels of QI attributes and hence there are more published table candidates. 

3. The third observation is that if the lpre value increases, the number of published table 

candidates increases.  It is because releasing a new published table can only make the 

requirement enforced by previous published tables less restrictive.  A more restrictive old 

requirement allows more rooms for it to be lessen and hence more published table 

candidates can satisfy the new requirement. 

There are two observations about the minimum average generalization level based on the 

experimental results. 

1. The first observation is that if the l value increases, then the minimum average 

generalization level increases.  It is because a more generalized published table is needed 

for a more restrictive requirement. 

2. The second observation is that if the |QI| value increases, then the minimum average 

generalization level increases.  It is because more QI attributes will cause the equivalence 

classes to have less number of tuples for the same generalization levels.  Hence the 

generalization levels have to be increased in order to satisfy the same requirement. 

7. CONCLUSIONS 

This paper studied the problem of data publishing on multiple non-centralized datasets, which 

store information about the same group of individuals and share a common sensitive attribute 

with the same domain.  We have shown that such a problem is different from data publishing on a 

centralized dataset and serial data publishing on a dynamic/static dataset in the sense that there is 

no dataset that stores all information for non-centralized data publishing.  To solve the problem, 

we first propose a statistical approach, which does not rely on any communications between the 

data holders, to estimate the information that can be deduced by an adversary who can obtain 

access to all non-centralized published tables.  Then, we propose how to adopt distinct l-diversity 

[2] to non-centralized data publishing.  After that, we propose an algorithm to generate published 

tables that satisfy non-centralized distinct l-diversity.  Our algorithm is modified from Incognito 

[13], which is an efficient and widely-used algorithm for (centralized) data publishing.  Finally, 
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theorems and experiments are presented to show that the proposed algorithm is correct and 

feasible to real applications. 
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