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ABSTRACT 

Recently, the cyclic association rules have been introduced in order to discover rules from items 

characterized by their regular variation over time. In real life situations, temporal databases are often 

appended or updated. Rescanning the whole database every time is highly expensive while existing 

incremental mining techniques can efficiently solve such a problem. In this paper, we propose an 

incremental algorithm for cyclic association rules maintenance. The carried out experiments of our 

proposal stress on its efficiency and performance. 
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1. INTRODUCTION 

Knowledge management is the most time consuming and expensive part of our daily lives [1]. 

In fact, it is crucial to explore a valid knowledge at any moment [2]. Mining association rules 

can achieve this overarching goal however this task becomes intensely more complicated in 

front of the wide size of databases, calling up gigabyte, terabyte, or even larger, in some 

applications [3]. In this respect, extracting association rules has outstandingly grasped the 

interest of the data mining community.  

Through time, the volume of information increases, the databases must be updated with the new 

amounts of data [4]. Considering that an association rule generates explicitly reliable knowledge 

according to an explored database at an accurate time. 

So that, each update of the database radically overwhelms the already stored patterns. A 

projection of the database’s changes must be drawn on extracted association rules [1]. Since 

then, several proposals to solve this problem appeared [4, 8, 9, 12, 13]. 

Parallel to those efforts, cyclic mining of association rules was also investigated on several 

studies. Such investigations can be found in [5, 6, 7]. The problem of cyclic association rules 

mining consists in generation of association rules from articles characterized by regular cyclic 

variation over time. In [5], Ozdon et al. presented the first strategies of cyclic association rules 

extraction. Then, as a response to the anomalies characterizing the already proposed approaches, 

a more efficient algorithm was introduced by Ben Ahmed et al. [7]. 

It can be seen that the research community has proposed separate solutions for the incremental 

mining and the cyclic association rules mining problems. 

In this paper, we present a new algorithm called IUPCAR (Incremental UPdate of Cyclic 

Association Rules) for incremental mining of cyclic association rules. This algorithm provides 

the benefits of fast incremental mining and efficient cyclic association rules extraction. 

The rest of the paper is organized as follows: section 2 studies the fundamental bases on which 

our proposal is built. Section 3 presents a formal description of the problem. Section 4 details 

our proposal and offers an illustrative example to scrutinize the mechanism of our approach. 
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Carried out experiments stressing on the efficiency of our proposal are sketched in section 5. 

Finally, section 6 concludes the paper and points out avenues for future work. 
 

2. FOUNDATIONS OF THE PROPOSED ALGORITHM  

This section provides the theoretical foundations on which is based our proposed algorithm. 

These bases concern the theoretical foundations of the two problems of cyclic association rules 

mining and incremental mining of association rules. Therefore, we present the cyclic association 

rules concept. Finally, we describe the incremental mining problem. 
 

2.1. Cyclic Association Rules 

Considering temporal transactional databases, several temporal patterns can be extracted [17]. 

Typically, one of them is related to cyclic association rules. Its general idea is to extract 

correlations between products which vary in a cyclic way. Thanks to its comprehension of the 

data, we presume that the user is the most advantaged to fix the best length of cycle according to 

considered products. Hence, we can analyze on depending on monthly, weekly, daily or even 

hourly sales of products with the respect of the length of cycle. 
 

For example, let September and October sales in a bookstore transaction database be shown in 

Table 1. In fact, we assume at the beginning of September according to the transactions 9.1 and 

9.2, that the sales of books and notebooks are highly important. This can be explained by the 

start of the academic year. Besides, this correlation is underlined also at the beginning of 

February by transactions 2.1 and 2.2. This fact is due to the start of the second semester of the 

academic year. Effectively, the considered cycle in this case is the length of the semester 

namely six months. The outcomes of these analyses are then used to support various business 

decisions in this bookstore. 

 

TRANSACTION ID ITEMS 

9.1 Books ,notebooks 

9.2 Books, notebooks 

… … 

2.1 Books, notebooks 

2.2 Books, notebooks 
 

Table 1 . Transactional database DB in a bookstore 

 

We present the basic concepts related to cyclic association rules that will be of use in the 

remainder. 

Time unit Considering the temporal aspect, the first considered measure is the time unit. 

Firstly, it was introduced by Odzen et al [5]. 

Definition 1. Given a transactional database DB, each time unit ui correspond to the time scale 

on the database [5]. 

 

 

 

 

 

 

 

 

 

Table 2. Initial database DB 

TRANSACTION ID ITEMS 

1 B 

2 A,B 

3 A,B,C,D 

4 A,B,C 

5 C 

6 A 
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Example 1 Let the following example be highlighted in table 2. The transactions illustrated in 

table 2 are extracted hourly. So that, the time unit is the hour. 

Cycle The concept of cycle was primarily introduced by Odzen et al [5]. 

Definition 2. A cycle c is a tuple (l, o), such that l is the length cycle, being multiples of the unit 

of time; o is an offset designating the first time unit where the cycle appeared. 

Thus, we conclude that 0 ≤ o < l. 

Example 2 If we consider a length of cycle l= 2 and the corresponding offset is 1. So that, the 

cycle c=(l,o)=(2,1). 
 

Several approaches addressing the cyclic association rules issue are proposed in the literature: 

− The Sequential Approach: is a two-phase based algorithm. 

The basic idea is: 

(1) To generate the large itemsets and to extract straightforwardly the 

corresponding association rules. Undoubtedly, all small k-itemsets are 

discarded during the support-pruning step and all weak rules are deleted during 

 the con dence-pruning step. 

(2) To detect the cycles of rules. Only, those are cyclic will be kept and the 

remainder is pruned. 

− The Interleaved Approach: is a three-phase based algorithm. 

Three optimization techniques are used: 

� Cycle pruning: Technique for approximating the cycles of itemsets. In fact, we 

considerer : "If an itemset X has a cycle, then any of the subsets of X has the 

same cycle"; 

� Cycle skipping : Technique for avoiding counting the support of an itemset in 

time units, which we know, cannot be part of a cycle of the itemset; 

� Cycle elimination: Technique relying on this property: "If the support for an 

itemset X is below the minimum support threshold in time segment then X 

cannot have any of the cycles in subtime segments." 

Thanks to cycle pruning, we generate the potential cycles. For every unit of time, we 

apply the cycle skipping to extract the itemsets and we count their support thanks to the 

cycle elimination. 

− The PCAR Approach: Radically, it is based on the segmentation of the database in a 

number of partitions fixed by the user. The scan of the database is done sequentially 

partition by partition. 

This latter is scanned to generate the frequent cyclic itemsets. Achieving the last one, 

we obtain the set of frequent cyclic itemsets. Thus, we extract from them the cyclic 

association rules. 
 

 

2.2. Incremental Maintenance of Association Rules 

Various streams of approaches were reported to update incrementally the discovered association 

rules. We present the most well-known ones. 

Firstly, the strategic idea of incremental update was proposed by Cheung et al by introducing 

FUP for incrementally updating frequent itemsets [8]. This approach assumes batch updates and 

takes advantage of the relationship between the original database DB and the incrementally 

added transactions db. Inspired from the Apriori algorithm, the basic idea of FUP is that by 

adding db to DB, some previously frequent itemsets will remain frequent and some previously 

infrequent itemsets will become frequent (these itemsets are called winners). At the same time, 

some previously frequent itemsets will become infrequent (these itemsets are called losers). The 

major contribution of FUP is to use information in db to filter out some winners and losers, and 

therefore reduce the size of candidate set in the Apriori algorithm. FUP improves the 
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performance of Apriori greatly because the performance of this latter relies heavily on the size 

of candidate set. 
 

The BORDERS Algorithm proposed by Thomas et al. [9] and Feldman et al.[10], is another 

approach using the concept of "negative border" introduced by Toivonen [11] aiming to indicate 

if it is necessary or not to check any candidate against the initial database. The main 

contribution outlined is its need at most of one scan of the original database in the update 

operation. In this respect, the algorithm maintains information about the support of frequent 

itemsets in the original database along with the support of their negative border. If any itemset 

becomes a winner in the updated database, it follows that some itemset formerly in the negative 

border will also become a winner. Consequently, the negative border can be considered as an 

indicator for the necessity of looking for winners in the original database. If no expansion 

happens in the border, no need brings a point up to scan the original database. 
 

The WEIGHT approach is another strategy for maintaining association rules in dynamic 

databases proposed by Shichao Zhang et al. [12]. This method used weighting technique to 

highlight new data. Indeed, it is a four-phase based approach: (i) Firstly, all frequent and 

hopeful itemsets related to the initial database are stored; (ii) Secondly, each incremental dataset 

DBi is mined and all frequent itemsets are stored. According to the requirements given by users, 

an assignment of a weight to each set DBi is subjectively done, (iii) Thirdly, the aggregation of 

all rules based on hopeful itemsets by weighting is accomplished, (iv) Finally, a selection of 

high rank itemsets is achieved being the founded output. 

3. INCREMENTAL MINING OF CYCLIC ASSOCIATION RULES  

Along this section, we present a description of the tackled problem. First, we formally define 

the problem of cyclic association rules. Then, we present the basic notions. 
 

3.1 Formal problem description 

Regarding cyclic association rules, we stress on rules that are repeated in a cyclical way. Indeed, 

given a length of cycle, we extract itemsets that appear sequentially in the database. Let 

consider X and Y two itemsets appearing in DB at transaction number i and sequentially at the 

transaction number i+length of cycle until the end of the database (Table 3). According to given 

support threshold, we prune the non frequent cyclic itemsets. Thus, we generate the cyclic 

association rules based on minimum confidence threshold. 

 

 
 

 

 

 

 

Table 2. Initial database DB 

 

To summarize, the cyclic association rules mining problem can be reduced to extraction of 

frequent cyclic itemsets, because once we have frequent cyclic itemsets set, cyclic association 

rules generation will be straightforward. 

After several updates of DB, an increment db of |db| transactions is added to DB. The problem 

of incremental maintenance of cyclic association rules is to compute the new set of the frequent 

cyclic itemsets in DB’=DB ∪ db according to a support threshold MinSup. 

In order to extract cyclic association rules from databases, the only plausible solution is to rerun 

one of the classical algorithms dedicated to the generation of cyclic association rules i.e., 

Sequential, Interleaved or PCAR. As a result, two drawbacks are quoted: 

TRANSACTION_ID          Items 

i X,Y 

i+length of cycle X,Y 

… … 

i+(length of cycle * k) X,Y 
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– If the original database is large, much computation time is wasted in maintaining association 

rules whenever new transactions are generated; 

–Information previously mined from the original database, provides no help in the maintenance 

process. 
 

3.2 Basic notions 

We start this subsection by presenting the key settings that will be of use in the remainder. 

Frequent Cyclic itemset: This concept refers to cyclic itemsets having supports exceeding the 

considered threshold. The formal definition is as follows. 
 

Definition 3.1 
Let XY be an itemset, the sup(XY) is the support of the itemset in the database, reminding that 

only cyclic occurrences are considered on the support computing, and the minimum support 

threshold reminding MinSup. 

The itemset XY is considered as Frequent Cyclic denoted FC if the cyclic occurrences of the 

itemset XY are greater or equal to the given support threshold otherwise if sup (XY ) ≥ MinSup. 

Example 3  

We consider the context shown by table 2, the Minsup equal to 2 and the length of cycle is 2. 

The binary sequence representing the itemset AB is 011100 so sup (AB)=MinSup=2 then AB is 

called Frequent Cyclic itemset FC. 
 

Frequent Pseudo-Cyclic itemset: The frequent pseudo-cyclic concept is presented as follows. 

Definition 3.2  
Let XY be an itemset, the sup (XY ) is the support of the itemset in the database, the MinSup the 

minimum support threshold. The itemset XY is considered as frequent pseudo-cyclic denoted 

FPC if its support is less than MinSup. Simultaneously, the computed support is greater than a 

given threshold called MinFPC. 

MinFPC ≤ sup(XY ) < MinSup. 

Example 4  

Given the previous context, we consider   MinSup equal to 2, the MinFPC is 0.2 and the length 

of cycle is 2. The binary sequence representing the itemset AD is 000100 so sup(AD) = 1 < 

MinSup=2 ≥ MinF P C=0.2 then AD is called Frequent Pseudo-Cyclic itemset FPC. 
 

Minimum FPC threshold: According to this measure, we classify the remainder of the 

itemsets after MinSup   pruning on hopeful cyclic itemsets that are not frequent in the initial 

database but are more likely to move to this status in the increment database. 

Definition 3.3  

The Minimum FPC threshold, denoted by MinFPC, refers to a threshold dedicated to prune the 

none hopeful itemsets. It is computed according to this formula: 

MinFPC = [(MinSup/ |DB| + |db|)+ MinSup] /[ |DB| + |db|] 

Example 5  
Continuing with the same database DB considered as initial one, let the database db containing 

4 transactions be the increment one. In addition we fix the MinSup to 2. Then the MinFPC is 

computed as follows: 

MinFPC = [(2 /| 6 | + | 4 |) + 2] /| 6 | + | 4 |= 0.2 
 

Non Frequent Cyclic Itemset: This concept refers to cyclic itemsets that are not both frequent 

cyclic itemsets and frequent pseudo-cyclic itemsets. 

Definition 3.4  
Let XY be an itemset, the sup(XY ) is the support of the itemset in the database and the MinSup 

the minimum support threshold. The itemset XY is considered as non frequent cyclic itemset 

denoted NFC if the cyclic occurrences of the itemset XY are less than the given MinFPC 

threshold otherwise if sup(XY ) < MinFPC. 
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Example 6  

Given the previous context, we consider MinSup equal to 4, the MinFPC is 2 and the length of 

cycle is 2. The binary sequence representing the itemset AD is 000010 so sup(AD)=1 

<MinFPC=2 < MinSup=4 then AD is called non frequent cyclic itemset denoted NFC. 
 

The major contribution of this paper is to propose a new strategy dedicated to the incremental 

update of cyclic association rules aiming to reduce efficiently the runtime required for the 

generation of cyclic association rules in the case of addition of transactions at the maintenance 

process of databases. Indeed, this proposal is detailed in the following section. 

 

4. IUPCAR ALGORITHM  

In order to maintain incrementally the cyclic association rules, we introduce a novel approach 

called Incremental UPdate of Cyclic Association Rules denoted IUPCAR. Indeed, the IUPCAR 

algorithm operates in three phases: 

– In the first phase, a scan of the initial database is done to class the founded itemsets on three 

classes namely the frequent cyclic itemsets, the frequent pseudo-cyclic itemsets and non 

frequent cyclic itemsets. 

– In the second phase, according to the second database, we categorize the itemsets into the 

three mentioned classes. Then, depending of the ancient class of the itemset with its ancient 

support and the new class with its new support in the increment database, an affectation of the 

suitable class is made according to a weighting model. 

– In the final phase, given the founded frequent cyclic itemsets after the update operation, the 

corresponding cyclic association rules are generated. 

As highlighted by figure 1, first and foremost, the IUPCAR algorithm takes on input the initial 

database, the minimum support threshold MinSup, the minimum confidence threshold MinConf 

and the length of cycle. According to those key settings, a generation of frequent cyclic 

itemsets, frequent pseudo-cyclic itemsets and non frequent cyclic itemsets from the initial 

transactions is done. Stressing on the dynamistic feature of the databases, we add the novel 

transactions building the db database.  

 

 

 

 

 

 

 

 

 

 

 
Fig 1. The flowchart of IUPCAR. 

 
To accomplish this update operation, a scan of the new database is done and a generation of the 

itemsets and their classification are straightforwardly realized. After that, an update of the status 

and the weights of itemsets are done without rescanning the initial database. Finally, we 

generate the cyclic association rules based on the retained frequent cyclic itemsets. 

 

Intuitively in the updating problem, we assume the following cases shown by table 4: 
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    Table 4. Possible cases in update operation. 
 

– Frequent cyclic itemset FC is already saved as frequent cyclic FC (case A), frequent pseudo-

cyclic FPC (case B) or non frequent cyclic itemset NFC (case C); 

– Frequent pseudo-cyclic itemset FPC is already saved as a frequent cyclic FC (case D), 

frequent pseudo-cyclic FPC (case E) or non frequent cyclic itemset NFC (case F); 

– Non frequent cyclic itemset NFC is already saved as frequent cyclic FC(case G), frequent 

pseudo-cyclic FPC (case H) or non frequent cyclic itemset NFC (case J). 

To handle those various cases, we introduce the following weighting model. 

In the update operation, a dramatic change in the status of the itemsets between the first and the 

coming database is intuitively plausible. That’s why, we refer to the weighting model as a 

technique dedicated to decide which status is the suitable to the itemset after the new added 

transactions. 

Indeed, we sketch the mechanism of weighting model as follows. 

For an itemset X, we: 

– compute the relative support of X in the initial database DB, denoted by Sup (XDB), computed 

according to the given formula:  

Sup (XDB ) =Sup(X) / | DB | 
– compute the relative support of X in the increment database db, denoted by 

Sup(Xdb),computed according to the given formula:  

Sup (Xdb ) = Sup(X) / | db | 

– compare the relative support of X in the initial database Sup (XDB ) vs. that of the increment 

database Sup(Xdb ). 

And we choose the greatest one. 

– Two alternatives are plausible: 

1. If the itemset has the same state in the initial and the incremental database, we will enhance 

its weight; 

2. If the state of the itemset has changed from the initial to the incremental database, we will 

check which one of its states has the greatest weight and we will decrease its value and affect 

this state as its new one. 

In this respect, let the new weight of X be denoted by W ( Xdb ). 

The table 4 sketches the possible cases that can be summarized on three possible scenarii: 

1. No change in the status simply happens. So, the itemset remains frequent cyclic FC (case A) 

or frequent pseudo-cyclic itemset FPC (case E) or non cyclic frequent CNF (case J). The new 

weight is computed as follows: 

W (Xdb) = [Sup (XDB ) + Sup(Xdb )] / [| DB | + | db |] 

2. A change in the status between the initial transactions and the new ones occurs. So one of the 

cases depicted on the table 4 by (case B), (case C), (case D), (case F), (case G) or (case H) 

happens. Then, two situations are obviously outlined: 

db\DB FC FPC NFC 

FC Always FC 

(case A)          

Computation 

based on db and 

DB 

(case B)          

Computation based 

on db and DB 

(case C) 

FPC Computation 

based on db and 

DB (case D)         

Always FPC 

(case E)          

Computation based 

on db and DB 

(case F)          

NFC Computation 

based on db and 

DB (case G)         

Computation 

based on db and 

DB (case H)          

Always NFC (case 

I)          
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(a) If the previous support of the itemset is greater than the new one in the increment database, 

the affected status   is remained the same and its novel weight is computed as follows: 

W (Xdb) =[ Sup(XDB ) / | D B |] –[ Sup(Xdb ) / | db |] 
(b) If the new support of the itemset is greater than the previous one, the affected status is the 

new one and its novel weight is computed as follows:  

W (Xdb) =[ Sup(Xdb ) / | db |] –[ Sup(XDB ) / | DB |] 
– Considering the update operation of the itemsets’ status and weights, we extract cyclic 

association rules based on frequent cyclic itemsets. 

 

5 IUPCAR EXAMPLE 

Aiming to illustrate deeply the mechanism of our approach with its different steps, we consider 

the context sketched in table 2 as an initial database. 

We introduce the following parameters: Length of cycle equal to 2; MinSup equal to 50% and 

|db| equal to 4. We propose to illustrate the possible cases; we choose one itemset to facilitate 

the explanation of our proposal.     Indeed, based on the initial database, we can extract:  

– classified as FC: AB and classified as FPC: AC and classified as NFC: AD. 

For the itemset AB, recognized as FC, we simulate the various cases that can be handled in the 

update operation. 

Furthermore, the table 5 summarized the possible new status of the itemset AB and its eventual 

supports in db. 

According to db, we find: 

1. Scenario (a): AB is generated as a FC: 

W(ABdb) = [Sup(ABDB )+Sup(ABdb)] / [|DB| + |db|]== [3+2] / [6+4] = ½ 
So that the new state affected is clearly F C but the weight of AB is increased due to its keeping 

the same status in DB and db; 

2. Scenarii (b, c): AB is generated as a F P C: 

(a). Scenario (b): the support of AB in DB is greater than the support of AB in db 

W( AB db) =[ Sup( ABDB) / | DB |] –[ Sup( AB db) / | db |]= ½ – ¼ = ¼ 

(b). Scenario (c): the support of AB in DB is less than the support of AB in db 

W( AB db) = [Sup( ABdb) / | db |] – [Sup( AB DB) / | DB |]= ¾ - ½ = ¼ . 

3. Scenarii (d, e): AB is generated as a FCN: 

(a). Scenario (d): the support of AB in DB is greater than the support of AB in db 

W( AB db) = [Sup( ABDB)/ | DB |] – [Sup( ABdb) /| db |]= ½ - ¼ = ¼. 

(b). Scenario (e): the support of AB in DB is less than the support of AB in db 

W( AB db) =[Sup(ABdb) /| db|]- [Sup(ABDB)/ |DB|] =¾ - ½ = ¼. 

 

 

 

 

 

 
 

Table 5. The possible cases in db for FC itemset 
 

Consequently, the new state affected to AB is FC (Scenarii (b, d)) because its support in DB is 

greater than its one in db. Nevertheless, the new affected status will have a weight less than the 

previous support because in the incremental database, we notice the change of its   status; 

     Likewise, we affect for AB FPC or FCN (Scenarii (c, e)) as new status because its support in 

the incremental    database is greater than its one in the initial database. 

     However, the new affected status will have a weight less than the one extracted in the 

incremental database because it does not maintain its initial status. 

AB FC FPC NFC 

Sup(ABdb) 2 

Scenario 

(a) 

1 

Scenario 

(b) 

3 

Scenario 

(c) 

1 

Scenario 

(d) 

3 

Scenario 

(e) 
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Similarly, the new two states of itemsets AC and AD are respectively as FPC and NFC, the 

same possible scenario simulated for AB are obviously in the update operation plausible. As a 

final step, after the update of the status of the itemsets and their weights, only frequent cyclic 

itemsets are considered in the extraction of the novel   cyclic association rules related to the both 

databases DB and db.  

6. EXPERIMENTAL STUDY 
     To assess the IUPCAR efficiency, we conducted several experiments on a PC equipped with 

a 3GHz Pentium IV and 2GB of main memory. The figure 2 is an illustration of the IUPCAR 

user-interface. During the carried out   experimentation, we used benchmarks datasets taken 

from the UC Irvine Machine Learning Database Repository. Table 6 depicts the characteristics 

of the datasets used in our evaluation. 
 

DATABASE #TRANSACTIONS #ITEMS #AVERAGE SIZE  

OF 

TRANSACTIONS 

SIZE 

(KO) 

T10I4D100K 100000 1000 10 3830 

T40I10D100K 100000 775 40 15038 

Retail 88162 16470 10 4070 
 

Table 6: Description of benchmark databases 
 

     It shows the number of items, the number of transactions, the average size of transactions 

and the size of each database. Through these experiments, we have a twofold aim: first, we have 

to stress on the performance of our proposal by the variation of MinSup on the one hand and the 

variation of the cardinalities of initial and incremental databases on the other hand. Second, we 

put the focus on the efficiency of our approach vs. that proposed by the related approaches of 

the literature. 

 
 

Fig 2. The user-interface design of IUPCAR 

 

6.1 PERFORMANCE ASPECT 

 

� Minimum support variation 
In the carried out experimentations, we divided database in two partitions: DB is the initial 

database and db is the incremental one. Firstly, the DB is constituted of 70% of the size of the 

benchmark dataset and db is constituted of the remainder namely the 30%. Secondly, we 

increase the size of the initial database to achieve 80% from the size of the benchmark dataset 
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so the db presents only 20%. To finish with an initial database representing 90% and an 

incremental one providing only 10%.  

 

 
 

Fig 3. Experimental results of IUPCAR for an 

incremental database =10%, 20% or 30% 

 
Considering the given parameters: the MinConf =50%, the length of cycle =30, we present the 

variation of MinSup and the corresponding runtime of IUPCAR in figure 3. 

Indeed, by varying the support, it is obvious that the more support is increasing the more 

runtime of IUPCAR decreases. For the T10I4D100K dataset, having DB=70% and db=30%, the 

runtime of IUPCAR increases from 926,295 seconds for 1% as a MinSup to 482,726 seconds for 

50% as a MinSup, to stabilize at around 400, for MinSup exceeding 50%. As expected, this fact 

is similarly conceivable for T40I10D100K and Retail datasets. 

As shown figure 3, we assume worthily that on whatever the size of the initial and increment 

database, the more support increases the more runtime required for IUPCAR goes down. 
 

� Variation of the size of updated database 

In this part, we concentrate on the effect of variation of initial and incremental databases sizes. 

Indeed, fixing parameters as follows: MinConf equal to 50% and length of cycle=3, according to 

the figure 4, we perceive regarding the T40I10D100K dataset for the same 

value of support equal to 50%, with DB=70% and db=30% the update operation requires 

1571,541 seconds but this value goes down if we rise the size of the initial database and we 

diminish the size of the increment one. Identically, we notice 1102,84 seconds if the DB=80% 

and db=20% by far 904,254 seconds if the DB=90% and db=10% of the whole dataset. 

Therefore, it is crucial to deduce that the least is the size of the incremental database, the least is 

the runtime required to update the cyclic rules and this can be noted for the two other datasets 

namely retail and T10I4D100K. 

 

 

 
 

Fig 4. Comparing the runtime of IUPCAR with different incremental databases  

10%, 20% and 30%. 
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6.2 EFFICIENCY ASPECT 

In order to evaluate the efficiency of our algorithm, we conducted comprehensive experiments 

to compare IUP AR with the most efficient classical algorithm dedicated to cyclic association 

rules extraction namely PCAR algorithm. 

      The following values of parameters are set during the several experiences: the minimum of 

confidence equal to 50%, the length of the cycle equal to 30 and the runtime of the algorithms 

regarding the T10I4D100K, T40I10D100K and Retail datasets. The results of varying the 

minimum support on running the PCAR algorithm and the IUPCAR one are shown by figure 5. 

It indicates that the update operation of DB by the increment db=10% with a minimum support 

=100%, requires 511,388 seconds by running PCAR an only its half 288,62 seconds by running 

IUPCAR for T10I4D100Kdataset. For T40I10D100K, the original database DB =90% with the 

increment database db =10% required with a minimum support=100% for T40I10D100K by 

running PCAR 1776,12 seconds and interestingly its half 686,884 seconds for IUPCAR 

running. Similarly for Retail, the updating operation of the initial database by adding 10% of its 

size with a minimum support=100% requires 1894,416 seconds by running PCAR and 

efficiently 791,9 seconds for IUPCAR running.  

Obviously, IUPCAR amply outperforms the PCAR algorithm in the context of maintenance of 

cyclic association rules and proves its efficiency in various test cases. 

 

 
 

Fig 5. Comparing the runtime of IUPCAR and PCAR with incremental database 

 

7. CONCLUSION 
In this paper, we introduced the problem of incremental maintenance of cyclic association rules. 

Thus, the flying over the pioneering approaches handling the incremental update of association 

rules issue [13] conducted us to introduce a new proposal called IUPCAR algorithm dedicated 

particularly to update the cyclic association rules. To evaluate its efficiency, several 

experimentations of the proposed method are carried out. So that, encouraging results are 

obtained. 

Future work will focus mainly on: (i) the quality of the generated cyclic association rules. In 

fact, we plan to study deeply the significance of the extracted cyclic association rules for human 

experts [14] [15], (ii) tackling the change support threshold in the incremental update operation 

of cyclic association rules [16], (iii) using database vertical representation (Eclat (Zaki et al, 

1997) [18]) to improve the IUPCAR results. 
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