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ABSTARCT 

Privacy is one of the most important properties of an information system must satisfy, in which systems 

the need to share information among different, not trusted entities, the protection of sensible information 
has a relevant role. Thus privacy is becoming an increasingly important issue in many data mining 

applications. For that privacy secure distributed computation, which was done as part of a larger body 
of research in the theory of cryptography, has achieved remarkable results. These results were shown 
using generic constructions that can be applied to any function that has an efficient representation as a 

circuit. A relatively new trend shows that classical access control techniques are not sufficient to 

guarantee privacy when data mining techniques are used in a malicious way. Privacy preserving data 

mining algorithms have been recently introduced with the aim of preventing the discovery of sensible 
information. In this paper we will describe the implementation of cryptography in that data mining for 

privacy preserving. 
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1. INTRODUCTION 

Privacy preserving data mining is an important property that any mining system must satisfy. 
So far, if we assumed that the information in each database found in mining can be freely 
shared. Consider a scenario in which two or more parties owning confidential databases wish to 
run a data mining algorithm on the union of their databases without revealing any unnecessary 
information. For example, consider separate medical institutions that wish to conduct a joint 
research while preserving the privacy of their patients. In this scenario it is required to protect 
privileged information, but it is also required to enable its use for research or for other 
purposes. In particular, although the parties realize that combining their data has some mutual 
benefit, none of them is willing to reveal its database to any other party. 

The common definition of privacy in the cryptographic community limits the 
information that is leaked by the distributed computation to be the information that can be 
learned from the designated output of the computation. Although there are several variants of 
the definition of privacy, for the purpose of this discussion we use the definition that compares 
the result of the actual computation to that of an “ideal” computation: Consider first a party that 
is involved in the actual computation of a function (e.g. a data mining algorithm). Consider also 
an “ideal scenario”, where in addition to the original parties there is also a “trusted party” who 
does not deviate from the behavior that we prescribe for him, and does not attempt to cheat. In 
the ideal scenario all parties send their inputs to the trusted party, who then computes the 
function and sends the appropriate results to the other parties. Loosely speaking, a protocol is 
secure if anything that an adversary can learn in the actual world it can also learn in the ideal 
world, namely from its own input and from the output it receives from the trusted party. In 
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essence, this means that the protocol that is run in order to compute the function does not leak 
any “unnecessary” information.  

2. PRIVACY PRESERVING 

Explosive progress in networking, storage and processor technologies has led to the creation of 
ultra large database that record unprecedented amount of transactional information. Privacy 
issues are further exacerbated now that the World Wide Web makes it easy for the new data to 
be automatically collected and added to databases. Privacy preserving protocols are designed in 
order to preserve privacy even in the presence of adversarial participants that attempt to gather 
information about the inputs of their peers. There are, however, different levels of adversarial 
behavior. Cryptographic research typically considers two types of adversaries: A semi-honest 
adversary (also known as a passive, or honest but curious adversary) is a party that correctly 
follows the protocol specification, yet attempts to learn additional information by analyzing the 
messages received during the protocol execution. On the other hand, a malicious adversary may 
arbitrarily deviate from the protocol specification. (For example, consider a step in the protocol 
where one of the parties is required to choose a random number and broadcast it. If the party is 
semi-honest then we can assume that this number is indeed random. On the other hand, if the 
party is malicious, then he might choose the number in a sophisticated way that enables him to 
gain additional information.) It is of course easier to design a solution that is secure against 
semi-honest adversaries, than it is to design a solution for malicious adversaries.  

A common approach is therefore to first design a secure protocol for the semi-honest 
case, and then transform it into a protocol that is secure against malicious adversaries. This 
transformation can be done by requiring each party to use zero-knowledge proofs to prove that 
each step that it is taking follows the specification of the protocol. More efficient 
transformations are often required, since this generic approach might be rather inefficient and 
add considerable overhead to each step of the protocol. We remark that the semi-honest 
adversarial model is often a realistic one. This is because deviating from a specified program 
which may be buried in a complex application is a non-trivial task, and because a semi-honest 
adversarial behavior can model a scenario in which the parties that participate in the protocol 
are honest, but following the protocol execution an adversary may obtain a transcript of the 
protocol execution by breaking into a machine used by one of the participants. 

3.  PRIVACY PRESERVING COMPUTATION 

In this section we will describe the various computation techniques which we are using for 
data. 

3.1 Classification  

Alice has a private database D1 and Bob has private database D2. How can Alice and Bob 
build a decision tree based on D1� D2 without disclosing the contents of their private database 
to each other? Several algorithms like ID3, Gain Ratio, Gini Index and many other can be used 
for Decision Tree.  

3.2 Data Clustering 

Alice has a private database D1 and Bob has private database D2. Alice and Bob want to jointly 
perform data clustering on D1� D2. This is primarily based on data clustering principle that 
tries to increase intra class similarity and minimize interclass similarity. 

 3.3 Mining Association Rules 

Let Alice has a private database D1 and Bob has private database D2. If Alice and Bob wish to 
jointly find the association rules from D1� D2 without revealing the information from 
individual databases.  
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3.4 Data Generalization, Summarization and Characterization  

Let Alice has a private database D1 and Bob has private database D2. If they wish to jointly 
perform data generalization, summarization or characterization on their combined database 
D1� D2, then this problem becomes an Secure Multiparty Communication problem. 

3.5 Profile Matching 

Alice has a database of hacker’s profile. Bob has recently traced a behavior of a person, whom 
he suspects a hacker. Now, if Bob wants to check whether his doubt is correct, he needs to 
check Alice’s database. Alice’s database needs to be protected because it contains hacker’s 
related sensitive information. Therefore, when Bob enters the hacker’s behavior and searches 
the Alice’s database, he can’t view his whole database, but instead, only gets the comparison 
results of the matching behavior. 

3.6 Fraud Detection 

Two major financial organizations want to cooperate in preventing fraudulent intrusions into 
their computing system, without sharing their data patterns, since their individual private 
database contains sensitive data. 

4. SECURE COMPUTATION AND PRIVACY PRESERVING 
DATA MINING 

There are two distinct problems that arise in the setting of privacy-preserving data mining. The 
first is to decide which functions can be safely computed, where safety means that the privacy 
of individuals is preserved. For example, is it safe to compute a decision tree on confidential 
data in an organization and publicize the resulting tree? For the most part, we will assume that 
the result of the data mining algorithm is either safe or deemed essential. Thus, the question 
becomes how to compute the results while minimizing the damage to privacy. For example, it 
is always possible to pool all of the data in one place and run the data mining algorithm on the 
pooled data. However, this is exactly what we don't want to. Thus, the question we address is 
how to compute the results without pooling the data, and in a way that reveals nothing but the 
final results of the data mining computation. This question of privacy-preserving data mining is 
actually a special case of a long-studied problem in cryptography called secure multiparty 
computation. This problem deals with a setting where a set of parties with private inputs wish 
to jointly compute some function of their inputs. Loosely speaking, this joint computation 
should have the property that the parties learn the correct output and nothing else, even if some 
of the parties maliciously collude to obtain more information. Clearly, a protocol that provides 
this guarantee can be used to solve privacy-preserving data mining problems of the type 
discussed above. 

5.  CRYPTOGRAPHY: OBLIVIOUS TRANSFER 

We describe here results of a body of cryptographic research that shows how separate parties 
can jointly compute any function of their inputs, without revealing any other information. As 
we argued above, these results achieve maximal privacy that hides all information except for 
the designated output of the function. This body of research attempts to model the world in a 
way which is both realistic and general. While there are some aspects of the “real world” that 
are not modeled by this research, the privacy guarantees and the generality of the results are 
quite remarkable. 

Oblivious transfer is a basic protocol that is the main building block of secure 
computation. It might seem strange at first, but its role in secure computation should become 
clear later. (In fact, it was shown by Kilian [11] that oblivious transfer is sufficient for secure 
computation in the sense that given an implementation of oblivious transfer, and no other 
cryptographic primitive, one could construct any secure computation protocol.) 



International Journal of Database Management Systems ( IJDMS ) Vol.2, No.3, August 2010 

60 

 

Oblivious transfer is often the most computationally intensive operation of secure 
protocols, and is repeated many times. Each invocation of oblivious transfer typically requires a 
constant number of invocations of trapdoor permutations (i.e. public-key operations, or 
exponentiations). It is possible to reduce the amortized overhead of oblivious transfer to one 
exponentiations per a logarithmic number of oblivious transfers, even for the case of malicious 
adversaries [15]. 

The problem of “oblivious polynomial evaluation” (OPE) involves a sender and a 
receiver. The sender’s input is a polynomial Q of degree k over some finite field ƒ and the 

receiver’s input is an element z ε ƒ (the degree k of Q is public). The protocol is such that the 
receiver obtains Q (z) without learning anything else about the polynomial Q, and the sender 
learns nothing. That is, the problem considered is the private computation of the function (Q, z) 

→ (λ,Q (z)). This problem was introduced in [14], where an efficient solution was also 
presented. The overhead of that protocol is O (k) exponentiations (using methods suggested in 
[15]). (Note that this protocol maintains privacy in the face of a malicious adversary. In the 
semi-honest case a simpler OPE protocol can be designed based on any homomorphic 
encryption scheme, with an overhead of O (k) computation and O( k | ƒ | ) communication.) 

The main motivation for using OPE is to utilize the fact that the output of a k degree 
polynomial is (k + 1)-wise independent. Another motivation is that polynomials can be used for 
approximating functions that are defined over the Real numbers.  

6. THE TWO-PARTY CASE 

Yao’s two-party protocol is pretty efficient, as long as the size of the inputs, and the size of the 
circuit computing the function, are reasonable. In fact, for many functions the efficiency of 
Yao’s generic protocol is comparable to that of protocols that are targeted for computing the 
specific function. We describe here a distributed scenario of computing the ID3 algorithm, 
where Yao’s protocol is obviously too costly. On the other hand, a specialized protocol can be 
designed for computing this algorithm, which uses Yao’s protocol as a primitive. 

We are interested in a scenario involving two parties, each one of them holding a 
database of different transactions, where all the transactions have the same set of attributes (this 
scenario is also denoted as a “horizontally partitioned” database). The parties wish to compute a 
decision tree by applying the ID3 algorithm to the union of their databases. 

A naive approach for implementing a privacy preserving solution is to apply the 
generic Yao protocol to the ID3 algorithm. This approach encounters two major obstacles. 
First, the size of the databases is typically very large. As each transaction can have many 
attributes, and there might be millions of transactions, the encoding of each party’s input might 
require hundreds of millions of bits. This means that the computational overhead of running an 
oblivious transfer per input bit might be very high. 

Most cryptographic protocols, however, compute functions over finite fields. Even if 
the circuit computes an approximation to the logarithm, this computation involves evaluating 
polynomials and therefore requires computing multiplications and exponentiations. An 
additional problem is that running ID3 involves many rounds. The part of the circuit computing 
the i

th
 round depends on the results of the previous i−1 rounds. A naïve  implementation could 

require an encoding of many copies of this step, each one of them corresponding to a specific 
result of the previous rounds. 

A key observation is that each node of the tree can be computed separately, with the 
output made public, before continuing to the next node. In general, private protocols have the 
property that intermediate values remain hidden. However, in the case of ID3 some of these 
intermediate  values (specifically, the assignments of attributes to nodes) are actually part of the 
output and may therefore be revealed. Once the attribute of a given node has been found, both 
parties can separately partition their remaining transactions accordingly for the coming 
recursive calls. This means that private distributed ID3 can be reduced to privately finding the 
attribute with the highest information gain. (This is a slightly simplified argument as the other 
steps of ID3 must also be carefully dealt with. However, the main issues arise within this step.) 
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The overhead of the protocol described above involves: 

• Alice and Bob engaging in an oblivious transfer protocol for every input wire of the 
circuit that is     associated with Bob's input,  

• Alice sending Bob tables of size linear in the size of the circuit,  

• Bob decrypting a constant number of cipher texts for every gate of the circuit (this is 
the cost incurred in evaluating the gates). 
The computation overhead is dominated by the oblivious transfer stage, since the 

evaluation of the gates uses symmetric encryption which is very efficient compared to 
oblivious transfers that require modular exponentiations (this holds for small circuits; if the 
circuit is large then the circuit computation may begin to dominate). The computation overhead 
is therefore roughly linear in the length of Bob's input. The number of rounds of the protocol is 
constant. (namely, the variant described here has two rounds using the two-round oblivious 
transfer protocols of [5, 6, 15]). 

The communication overhead is linear in the size of the circuit. (The variant of the 
protocol described in [22], which provides security against malicious adversaries, requires 
sending s copies of the circuit in order to limit the probability of cheating to be exponentially 
small in s. See also [17] for a different variant, which provides security against malicious 
adversaries at the cost of applying public key operations for every gate.) 

A major factor dominating the overhead is, therefore, the size of the circuit 
representation of f. There are many functions for which we do not know how to create linear 
size circuits (e.g. functions computing multiplications or exponentiations, or functions that use 
indirect addressing). However, there are many other functions, notably those involving 
additions and comparisons, which can be computed by linear size circuits. The size of the input 
should also be reasonable. For example, we cannot expect that two parties, each of them 
holding a database with millions of entries, could run the protocol for computing a function 
whose inputs are the entire databases. 

7. THE MULTI-PARTY CASE 

The multi-party case involves three or more parties that wish to compute some function of their 
inputs without leaking any unnecessary information. In the multi-party scenario, there are 
protocols that enable the parties to compute any joint function of their inputs without revealing 
any other information about the inputs. That is, compute the function while attaining the same 
privacy as in the ideal model. This was shown to be possible in principle by Goldreich, Micali 
and Wigderson [10], Ben-Or, Goldwasser and Wigderson [3], and by Chaum, Crepau and 
Damgard [4], for different scenarios. These constructions, too, are based on representing the 
computed function as a circuit and evaluating it. The constructions do have, however, some 
additional drawbacks, compared to the two-party case: 

• The computation and communication overhead of the protocol is linear in the size of 
the circuit, and the number of communication rounds depends on the depth of the 
circuit1, unlike the two-party case where the number of rounds is constant. 
Furthermore, the protocol that is run for every gate of the circuit is more complex than 
the computation of a gate in the two-party case, especially in the malicious party 
scenario, and requires public-key operations (although the overhead is still 
polynomial). 

• The multi-party protocols require each pair of parties to exchange messages (in order to 
compute each gate of the circuit). The required communication graph is, therefore, a 
complete graph, whereas a sparse communication graph could have been sufficient if 
no security was required. In many applications, for example applications run between a 
web server and many clients, it is impossible to require all pairs of parties to 
communicate. 

• The security of the multi-party protocols is assured as long as there is no corrupt 
coalition of more than one half or one third of the parties (depending on the scenario). 
In many situations, however, it is impossible to ensure that the number of corrupt 
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parties is smaller than such a threshold (for example, consider a web application in 
which anyone can register and participate, and which, therefore, enables an adversary 
to register any number of corrupt participants). In such cases the security of the 
protocol is not guaranteed.  

Compared to the two-party case, however, it is harder to apply the generic constructions to 
actual scenarios. To illustrate this point we consider the case of running a secure computation 
for computing the result of an auction, where there is an obvious motivation for privacy and 
security, and also certain restrictions on the operation of the parties. The auction application, 
discussed in [16], is not related to data mining, but it does exemplify some of the difficulties of 
the multiparty case. The discussion below applies for any function that can be computed by a 
circuit of reasonable size. 

The auction scenario is that of a “sealed bid” auction, and consists of an auctioneer and 
many bidders. Each bidder submits a single secret bid (i.e. the bid is sealed in an envelope). 
There is a known decision rule, whose inputs are the submitted bids, and whose output is the 
identity of the winning bidder and the amount that this bidder has to pay. For example, in an 
“English auction” the winning bidder is the bidder who offered the highest bid, and he has to 
pay the amount of his bid. In the second-price, or Vickrey, type of auction (which has some 
nice properties that are outside  the scope of this paper) the winner is the highest bidder and he 
has to pay the amount of the second highest bid. Bidding is allowed until some point in time, 
and at that stage the decision rule is applied to the submitted bids. 

 In the physical world bids are submitted in sealed envelopes that are kept secure until 
the end of the bidding period, and are then opened by the auctioneer. In the virtual world we 
would like to keep the bids secret during the bidding  period, but we could also attempt to hide 
all information afterwards, except for the identity of the winning party and the amount he has to 
pay. For example, in the case of a Vickrey auction the auctioneer’s output could be limited to 
the identity of the highest bidder (but not the value of his bid), and the value of the second 
highest bid (but not the identity of the second highest bidder). This is more privacy than can be 
achieved in the physical world. (In fact, some of the suggested explanations for the 
unpopularity of second price auctions are based on possible attacks that a malicious auctioneer 
can mount if he learns the bid value of the highest bidder. This phenomenon is inevitable in the 
real world, but can be avoided if a privacy preserving protocol is used to compute the result of 
the auction.)  

Privacy preserving multi-party computation can be reduced to the two-party case. 
Namely, it is possible to use the generic two-party protocol to compute a function in the multi-
party scenario. Such a reduction is described in [16]. Before describing the highlights of the 
reduction we first describe the advantages of this approach. 

7.1 Trust 

In order to use the two-party construction it is assumed that there are two special parties, and 
privacy is preserved as long as these two parties do not collude. Namely, a collusion of any 
number of parties (even a majority of the parties) that does not include both special parties does 
not affect the privacy and security of the protocol. Protocols with this security assurance might 
seem weaker than protocols that are secure against collusions of say, any coalition of less than 
one half of the parties. After all, there is a coalition of just two parties – the two special parties, 
is able to break the security of the system. Consider however a scenario where most of the 
parties are users (e.g. bidders) that have not established trust relationships between themselves, 
and there are one or more central parties that are more established. For example, in the auction 
scenario we can assume that the two special parties are the auctioneer and another party which 
we denote as the “issuer”, and which can be, for example, an accounting firm. We know that an 
adversary can register many fake bidders in order to control a majority of the participating 
parties. It seems harder, though, for the adversary to be able to control insiders of both special 
parties, i.e. in the auctioneer’s organization and in the accounting firm. 
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7.2 Independence of Inputs 

Corrupted parties must choose their inputs independently of the honest parties' inputs. This 
property is crucial in a sealed auction, where bids are kept secret and parties must fix their bids 
independently of others. We note that independence of inputs is not implied by privacy. For 
example, it may be possible to generate a higher bid, without knowing the value of the original 
one. Such an attack can actually be carried out on some encryption schemes. 

7.3 Communication  

We can design the reduction such that each of the “simple” participating parties should only 
communicate with one of the special parties (e.g. the auctioneer), and should only send a single 
message to this party. This property greatly simplifies the required communication 
infrastructure, and enables to run the protocol without requiring all parties to be online at the 
same time (in fact, compared to a protocol that provides no security at all, the only new 
communication channel that is introduced by the secure protocol is the channel between the 
two special parties). When all the “simple” parties finish sending their messages, the two 
special parties run a short protocol to complete the computation of the function.  

7.4 Privacy  

No party should learn anything more than its prescribed output. In particular, the only 
information that should be learned about other parties' inputs is what can be derived from the 
output itself. For example, in an auction where the only bid revealed is that of the highest 
bidder, it is clearly possible to derive that all other bids were lower than the winning bid. 
However, this should be the only information revealed about the losing bids. 

 7.5 Correctness  

Each party is guaranteed that the output that it receives is correct. To continue with the example 
of an auction, this implies that the party with the highest bid is guaranteed to win, and no party 
including the auctioneer can alter this. 

7.6 Efficiency 

 The protocol evaluates a circuit representation of the function. The overhead per gate and per 
input bit is as in the two-party construction, and is lower than in the multi-party constructions.  

7.7 Guaranteed Output Delivery 

 Corrupted parties should not be able to prevent honest parties from receiving their output. In 
other words, the adversary should not be able to disrupt the computation by carrying out a 
“denial of service” attack.  

7.8 Fairness  

Corrupted parties should receive their outputs if and only if the honest parties also receive their 
outputs. The scenario where a corrupted party obtains output and an honest party does not 
should not be allowed to occur. This property can be crucial, for example, in the case of 
contract signing. Specifically, it would be very problematic if the corrupted party received the 
signed contract and the honest party did not. 

The protocol is run with the two special parties taking the roles of the two parties in the 
two-party case. The issuer prepares a circuit for computing the function. This circuit might 
have many inputs of different parties – for example, the inputs might be the bids of the different 
bidders. The issuer encodes the circuit as in the two-party case, by choosing garbled values for 
the wires and preparing tables for every gate. The other special party (the auctioneer) is 
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responsible for computing the result of the circuit. In order to do that it should receive the 
tables that were prepared by the issuer, and one garbled value for every input wire, namely the 
value that corresponds to the input bit associated with that wire. Once it receives the garbled 
values of all input wires it can compute the output of the circuit. 

Given the proxy oblivious transfer protocol, the rest of the implementation is simple. 
Each bidder engages in a proxy oblivious transfer for each of its input bits. The input of the 
bidder to this protocol is the value of the input bit. The sender is the issuer, and its two inputs 
are the two garbled values that are associated with the corresponding input wire. The receiver is 
the auctioneer, and it learns the garbled value that corresponds to the input bit. This protocol 
consists of a single message that is sent from the bidder to the auctioneer, and then a round of 
communication between the auctioneer and the issuer. The auctioneer can actually wait until it 
receives messages from all the bidders before it runs the round of communication with the 
issuer in parallel for all input bits. The main computational overhead of the protocol is incurred 
by the proxy oblivious transfers, and is the same as in the two-party case – a proxy oblivious 
transfer must be executed for every input wire. Estimates in [16] show that this method can be 
used to securely implement Vickrey auctions that involve hundreds of bidders. 

8.  CONCLUSIONS 

Cryptographic protocols for secure computation achieved remarkable results: it was shown that 
generic constructions can be used to compute any function securely and  it was also 
demonstrated that some functions can be computed even more efficiently using specialized 
constructions. Still, a secure protocol for computing a certain function will always be more 
costly than a naive protocol that does not provide any security. By making use of cryptographic 
techniques to store sensitive data and providing access to the stored data based on an 
individual’s role, we ensure that the data is safe from privacy breaches. This paper was 
intended to demonstrate basic ideas from a large body of cryptographic research on secure 
distributed computation, and their applications to data mining. We described in brief the 
definitions of security, and the generic constructions for the two-party and multi-party 
scenarios. We showed that it is easier to design an implementation based on the constructions 
for the two-party case than it is to design one based on the multi-party constructions. The main 
parameter that affects the feasibility of implementing a secure protocol based on the generic 
constructions is the size of the best combinatorial circuit that computes the function that is 
evaluated. We believe that further research in this area is crucial for the development of secure 
and efficient protocols in this field. 
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