
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.3, No.4, August 2013

DOI : 10.5121/ijcsea.2013.3403 25

ARCHITECTING IN THE CONTEXT OF AGILE
SOFTWARE DEVELOPMENT: FRAGILITY VERSUS

FLEXIBILITY

G. H. El-Khawaga 1, Prof. Dr. Galal Hassan Galal-Edeen 2, and Prof. Dr. A.M. Riad 1

1 Faculty of Computers and Information, Mansoura University, Egypt.
ghelkhawaga@acm.org

2 School of Sciences & Engineering, American University in Cairo, Cairo, Egypt.
Galal@acm.org

1 Faculty of Computers and Information, Mansoura University, Egypt.
amriad2000@mans.edu.eg

ABSTRACT

As the size and complexity of software systems increase, software development process couldn’t be bound
to just codifying some modules that serve needed functionality and finding the appropriate configuration of
these modules. Instead, a growing need emerges to sketch a big picture of the whole system that not only
identifies basic parts of functionality, but also harmonizes these parts internally, manages how these parts
will provide needed functionality, and paves the way for future adaptation. The answer to this need was
software architectures. The agile approach to software development wasn’t about introducing a magical
solution that will handle all development problems. However, the agile architecting approach is believed to
be a source of new problems. Through this paper, we are going to explore agile architecting problems and
what is needed to achieve an architecting approach that can be agile, while serving its purpose of
producing a stable architecture.

KEYWORDS

Software Architecting, Agile Software Development, Agile Architectures, Fragile Architectures.

1. INTRODUCTION

Over years, software architectures are believed to be the first step on moving from problem space
to solution space, as architectures provide an infrastructure for building scalable systems [1]
which can handle several complexity forms such as geographic distribution, number of
requirements and number of stakeholders [2]. Software architecture design not only encompasses
the whole system’s life but also it can sometimes affect other systems in case of product-lines
development or while reusing parts of a system in other systems. Software architecture paves the
way for achieving specific qualities of the system being developed, e.g. modifiability,
performance, and these qualities are critical for the system’s future as well as being critical for its
implementation and operation. It forms a map characterizing relations between whole system’s
parts.

Regardless of the growing need of having a big picture of the system under development and
despite the increasing criticism of agile methods for not offering suitable process for large-scale
systems; agilists view architecting work in light of traditional development [3]. They suppose that

mailto:ghelkhawaga@acm.org
mailto:Galal@acm.org
mailto:amriad2000@mans.edu

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.3, No.4, August 2013

26

architecting is a tedious work that requires upfront design and massive documentation [4].
Kruchten claimed that agile teams may consider agile values and good architecture practices to be
contradicting [5]; while in their survey, Falessi et al. concluded that the principles of architecture-
centric methods are believed to be supportive to agile values [2]. However, while agilists are
always concerned with delivering value more frequently, they believe that architecture’s value is
not visible or at least is not achievable on the short term [5].

However, agilists tried to tame architecting to acquire an agile flavour; therefore, they provide
some guiding architecting principles to consolidate agility in the resulting artefacts of the
architecting process. Leffingwell et al. concluded the agile architecting principles into phrases
like “the teams that code the system design the system”, “they build it, they test it”, “system
architecture is role collaboration” which emphasize the importance of role collaboration and
variation in experiences among team members to enhance self-organization among team
members [6]. Leffingwell et al. added a principle through the phrase “build the simplest
architecture that could possibly work” to cope with agilists’ chase of simplicity and doing only
work that would add tangible value frequently [6]. Leffingwell et al. added a principle calling
that “when in doubt, code it out” which comes very consistent with agilists’ belief that working
software is the main measure of success [6]. And finally, the last principle of agile architecting
Leffingwell et al. phrased shows that “the bigger the system, the longer the runway” [6]. This
runway means architectural fundamental elements developed in earlier iterations that would play
as an infrastructure for the coming parts of the system. It does not contain functionality but shows
framework [7]. By having an architectural runway; agilists bid on attacking the right system
requirements that are hard to incorporate late in the development cycle. The size of the system
determines the amount of work required in developing its runway; and here comes the challenge
for agilists’ belief and understanding of this principle. The more the team and the project are
larger, the more the effort required in developing an architecture’s runway; then –in our opinion-
the more agilists’ are likely to dismiss this principle and ignore long-term expected benefits of
constructing such runway in enabling incremental development and smooth accommodation of
further changes. We think that agilists disregarded this principle through their chase of frequent
delivery and short feedback cycles. Unfortunately, the agile architecting principles are
inconsistent with what is already done in architecting software products using an agile approach.

Driven by their trend to maximize the work undone, minimize the work done upfront, defer
decisions to the last responsible time, invest in code rework, and react to changes rather than
design for them as Coplien & Bjornvig explained, we argue that agilists are more likely to quit
investing in building the software architecture of a product and wait for it to emerge as the
product grows incrementally [8]. Software architectures are believed to be important to learn
about and preserve architectural knowledge. Jansen & Bosch showed that in absence of
knowledge about design decisions themselves, there is more possibility for violating architectural
decisions’ constraints, and this may lead to architectural degradation [9]. They also confirmed the
difficulty of tracing cross-cutting design decisions which are achieved through various
components; and consequently, architecture change and maintenance will be a difficult and
expensive process. Through sections two and three we are going to explore problems resulting
from their trend in architecting, and proposed solution directions to them, and our insights into
how to reach a balance between architecting while preserving process agility in section four.

2. TROUBLESOME AGILE ARCHITECTING: ORIGINS AND
IMPLICATIONS

Through the introduction we have presented how agilists communicate their beliefs about
architecting. How the proposed agile architecting principles are translated into practices is where
the problems reside. We argue that these practices haven’t helped in coming up with an

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.3, No.4, August 2013

27

architecture that can introduce a form upon which the structure of the product to be built can
emerge incrementally. Instead, these practices contributed to having a fragile architecture which
would have the problem of being expensive to fix. These problems can occur when early, simple
design decisions result in foreseeable changes that cause breakage in the design beyond the ability
of refactoring to handle [10]. Through the next subsection we are going to explore these practices
one by one and then we will discuss how they contributed into limiting the applicability of the
agile software development approach.

2.1 Agile Architecting Practices

Agile architecting revolves around three basic practices; using refactoring, getting to a
communicated metaphor about the architecture to be built, and developing spike solutions [11].

I. Architectural Refactoring

Agilists use refactoring as their main practice to accommodate changes as they come up during
software development life cycle, as well as design improvement. Refactoring is defined according
to Mens & Tourwe as: “The process of changing a software system in such a way that it does not
alter the external behaviour of the code, yet improves its internal structure” [12]. As Moser et al.
claimed, refactoring in the context of agile methods increases software understandability,
improves software design, and accelerates the coding process and finding bugs [13]. Refactoring
in higher levels of abstraction like architectural levels in called architectural refactoring [11].
Agilists use architectural refactoring to achieve quality attributes that are not provided by
ordinary refactoring.

However, Barbacci et al. argued that not all quality attributes such as security can be
accommodated later in implementation through refactoring [14]. They showed that some quality
attributes’ components and mechanisms must be designed early in the life cycle. Besides,
frequent non-systemic modifications to requirements can make the architecture fragile [15], and
can result in architectural degradation, which leads to a mismatch between the actual functions of
the system and its original design [16], and subsequently upgrades and fixes become expensive to
implement. This case is called architectural erosion [17]. Architectural erosion is defined as the
regressive deviance of an application from its original intended architecture resulting from
successive changes [18]. Architectural erosion leads to increasing resistance to change and
subsequently high cost of maintenance [19]. Architectural degradation causes are mainly mapped
to late-lifecycle changes, which are considered to be the most crucial, risky, and expensive when
they are changes to requirements [16]. Therefore, the earlier to make changes is the better.

Buschmann mentioned some characteristics of refactoring such as that it can improve only
developmental qualities such as maintainability of design, and it is not suitable for inserting new
functions or improve operational quality attributes, because such refactorings would alter a
system’s behaviour [20]. This claim sounds reasonable as long as the main aim of refactoring is
to alter internal structure without changing external behaviour, and it also raises critical questions
about the viability of refactoring –in the context of agile development- to leverage a system’s
architecture and alter it later to insert missed quality attributes. Coplien & Bjornvig firmly
emphasized the ineffectiveness of using refactoring to fix architectural problems, and Coplien &
Bjornvig proved the correctness of his claim by citing reports, which conclude not only that Test-
Driven Development (TDD) provided no architectural benefit of refactoring, but also TDD may
cause the architecture to deteriorate [8]. This opinion contradicts Breivold et al.’s claim that the
strength that TDD gives to architectural development, while not denying the increase in time and
effort and the loss of design and architecture decision traceability while adopting TDD [21].
Bohem & Turner claimed that experiences where cost of change remained low over time were

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.3, No.4, August 2013

28

associated only with small applications and expert programmers who know where to refactor
quickly and correct defects [10].

II. Metaphors

A metaphor is a shared story that guides development team on how the system should look like
and how it works [3]. A metaphor is defined according to West as: “A story that everyone –
customers, programmers, and managers –can tell about how the system works” [22]. Agilists
used metaphors to describe the logical architecture of the system in form of some stories which
are familiar for the development team [23]. A metaphor’s effectiveness is evaluated after
developing it. Agilists used metaphors sometimes to substitute lack of architecture [5].

Irit Hadar showed that despite creating metaphors to achieve concretion of abstract concepts,
metaphors sometimes don’t provide the desired clearance and cause confusion and meaning
distortion [24]. Metaphors were argued to be a methodological weak point [22], because they
usually don’t give precise or definite meaning and they become subject to how each member in
the team would understand its meaning and moral. In the study conducted by Tomayko &
Herbsleb, they concluded that metaphors were proved not to be costly, but useless in achieving
either communication of project’s idea or guidance through the architecture development process
[25]. This practice was widely ignored [25] because it has never been completely understood.
Even agilists like Fowler claimed being not able to understand what is meant by a metaphor and
how to use it [22]. Kent Beck, the godfather of XP, tried to explain the benefits of metaphors in
guiding developers through the exploration of system architecture but suddenly he surrendered to
his critics and re-explained a metaphor as a gained skill not as a practice [3], [26]. However,
practitioners like West & Solano argued about the necessity of having system metaphors because
not having them would enforce developers to employ default sets of metaphors and this would
impact the resulting design negatively [26], because there would be a demanding need to continue
in refactoring the resulting design to include the desired requirements. Despite their attempts to
increase advocacy of metaphors’ creation, we think that they provided weak propositions which
don’t qualify metaphors to substitute for lack of architectures.

III. Architectural Spikes

Agilists are seeking to eliminate possibilities of being mistaken or choosing the wrong parts to
implement. Spiking is one of their practices to assess risks resulting of design choices. Spikes are
defined according to Tomayko as: “A rapid development of a prototype that answers a single
question about requirements” [27]. A spike is a throw-away code that helps in estimating the
difficulty of a certain task and assessing technical risks resulting of advocating a certain
architectural design decision. Spikes are created to explore technically difficult portions of the
system that would be programmed and solved, while prototypes are used to validate the system to
be built [28]. We argue that architectural spikes can’t serve their purpose of ensuring the
suitability of architectural design decisions to achieving needed requirements. Mainly basic
architectural design decisions are made to satisfy driving requirements, especially quality
attribute-related requirements. So, constructing an architectural spike with a single user feature
can help measure an architecture’s achievement level of only design or quality attribute concerns
localized in the implemented feature, which can’t be used as a determinant of the whole
architecture achievement level of certain quality attribute. This can be explained by believing in
the fact that an architecture’s achievement level of a certain quality attribute is the cumulative
achievement level of different concerns related to this quality attribute across all the modules
interweaved together to form the structure fitting into the form introduced by the evaluated
architecture. Thinking that an architecture’s achievement level of a certain quality attribute can be
measured through a number of single architectural spikes and then generalized to the whole

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.3, No.4, August 2013

29

architecture is like thinking that a vertical slice of a not-uniformed soil can be used as a
determinant of characteristics of a vast desert.

2.2 Agile Architecting as Agile Development Applicability Hinderer

We believe that agilists’ trend in architecting has resulted in many problems, some of them show
on the short term, and others show on the long term. For example, agilists tend to do the simplest
work upfront and not to include requirements which are not acquired explicitly by customers, so
as not to stick into developing not needed features. Agilists’ tendency has caused them to ignore
even foreseen changes [10], like these changes needed to add quality attributes to a product under
development. Adding quality attributes through a software system’s life cycle introduces new
requirements, thus it can be considered some sort of perfective changes. As cited by Mohagheghi
et al., Lientz et al. reported that 60.3% of the maintenance effort was categorized as perfective
[29]. The challenges accompanying quality attributes’ accommodation -whether these challenges
are in general or are attributed to the usage of agile methodologies in software development- have
resulted in having perfective changes to be of the highest percentage of the total maintenance
efforts. Mockus & Votta’s study revealed that perfective changes -as well as being the highest to
add more lines of code- are more time consuming than adaptive and corrective changes [17].

Methodologists and process practitioners have highlighted some situations where agile methods
offered limited support. We have categorized these limitations according to: (1) their effects on
personnel involved in the project, including developers, stakeholders and customers and how to
organize the work environment for a project; and (2) their effects on choosing applications for
which agile methods would be suitable. We will not go through the details of the first category
because this type of limitations is out of scope for this study. The second category is about
application-oriented limitations. These limitations restrict the applicability of agile methods to
certain applications. Certain characteristics should be present in an application to ensure that
using an agile method for developing it would be a viable option. However; agile architecting
problems are believed to be the main stimulus of these limitations. Examples on these limitations
are [30]:

• Limited support for building reusable artefacts. Many agilists emphasized the need to set up
for the next development level where extending system or integrating it with another one is
important [31]. However; agile proponents have what they consider a golden design rule of
“YAGNI” meaning “You Are not Going to Need It” [3], [31]. This slogan implied that they do
not model, or implement what they are not going to need for the current time. They regarded
mainly specific-purpose applications while not giving the right share of attention to general-
purpose applications [30]. As a result, they did not produce reusable artefacts. Upcoming
development efforts are costly and complicated in the absence of reusable artefacts. Bohem &
Turner emphasize that YAGNI both throws away valuable architectural support for foreseeable
requirements and frustrates customers who want developers to believe their priorities and
evolution requirements are worth accommodating [10].

• Limited support for developing safety-critical software. Safety-critical systems are
believed to have tight constraints and many risks. Developing such systems requires high quality
control mechanisms, more order, in-depth requirements specification, more planning, and more
modelling and documentation [30]. Safety-critical systems demand high level performance and
reliability. As we’ve mentioned above, agile methods deal with quality attributes as
functionalities which can be added during iterative development. Whereas; these systems won’t
be easy to modify during implementation. Agile critics argued in many positions that agile
processes won’t be suitable to develop safety-critical software [10], [30] where an error would
cause direct damage to human lives.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.3, No.4, August 2013

30

• Limited support for developing large, complex software. While emphasized in many
positions that agile development methods are not suitable for developing large and/or complex
systems [10], [30]; Holler had a contradictory opinion about this issue [32]. Holler claimed that
the difficulty of handling large projects is common to all methodologies and not an agile
approach-specific problem, because as the size grows, the complexity, dependency and
massiveness of the components of a system increases [32]. Agilists depend on refactoring to
modify their architectures during development, while researchers emphasize that refactoring on
large-scale would affect resulting software quality [1]. Also, in large scale systems, refactoring
proved to be expensive as size grows [4], [31]. Scalability is an important issue for large software
systems, reusability is an important issue for product line systems. However, to obtain scalability
or reusability, quality attributes should be considered right from the beginning. To have a big
picture of a software system, and to consider quality attributes from the beginning and to have
techniques and forming structure to address these quality attributes; time should be spent ahead to
develop an architecture for the system to be developed. Large projects need traditional planning
and specification to deal with increased project complexity [10], [4]. Agile methods were proved
to be not suitable as the level of complexity and size of project scales.

It is clear now how the agile approach to architecting affect not only the agile software
development approach applicability on certain types of applications, but also on the short term on
percentage of maintenance spent in fixing what could have been handled if time was spent ahead
to get an initial version of the architecture of a software system to be developed. Through the next
section, we are going to highlight efforts exerted to redirect agilists and agile software
development towards getting a suitable approach to architecting software systems to be
developed.

3. WORKING AROUND AGILE ARCHITECTING PROBLEMS

Agilists and methodologists worked together to increase agile methods’ applicability and to
overcome application-oriented limitations while preserving benefits and advantages agile
methods can offer. Methodology practitioners believe that the amount of architecting done in the
design phase of an agile process is not enough to produce a flexible architecture -which would
begin as an initial one and evolve incrementally- and not a fragile architecture- which emerges by
chance in an unplanned manner and hence can’t provide a big picture of the software’s evolution
and change accommodation options through its lifetime. Through the coming subsections we are
going to discuss efforts exerted to come up with an architecting approach that suits flexibility
demanded by the agile approach to software development.

3.1 Altering the Existing Agile Architecting Approach

Methodology practitioners tried to insert more architecting practices into the design phase. These
practices aim at overcoming architecting problems especially those caused by not considering
quality requirements right from the beginning in the architecture.

I. Continuous Architectural Refactoring (CAR) & Real Architecture Qualification (RAQ)

As a way to discover inefficiencies that could mislead the system’s architecture toward an
unmanageable and unsuitable shape unless resolved as soon as possible; Sharifloo et al. suggested
the Continuous Architectural Refactoring (CAR) as a practice for identifying architectural smells
and deciding solutions to remove them. CAR is a practice that is applied in parallel with agile
iterations [11]. During an iteration, each team builds a model for the tasks they have already
finished. An architect will integrate models received with more recently received models and

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.3, No.4, August 2013

31

analyzes the resulting diagram carefully to identify smells and make decisions to solve them.
CAR aids well in supporting developer-related quality attributes while it cannot efficiently
analyze user-related quality attributes [11]. Sharifloo et al. suggested another practice to handle
user-related attributes; Real Architecture Qualification (RAQ) [11]. RAQ is applied at the end of
all iterations to test the working system and enables collaboration with stakeholders to identify
user-related quality attributes like performance. RAQ is a kind of a brainstorming session in
which the final architectural model is discussed and evaluated, and the result of this discussion is
reflected through refactoring decisions made.

CAR is advantageous of easily identifying architectural smells and improving developer-related
quality attributes, however it depends on the architect solely and this trend violates
communication and collaboration practices. Also, we argue that this practice requires extra
modelling efforts. Modelling remains an extra work, which may overload the development team
and require highly-skilled personnel. Also, this practice produces redundant models because
developers create models for the tasks they have already finished, while the more cost efficient is
to modify the original models according to what have been already achieved rather than creating
new models. RAQ seems to be a time consuming practice when considering the amount of time
consumed in holding brainstorming sessions and their subsequent sessions.

Unfortunately, in CAR & RAQ, there is no design for quality attributes in advance, so more
refactorings are triggered and this may be costly as the development process proceeds. Also, even
if the authors claim that CAR & RAQ are not time consuming practices because they are held in
parallel with the main development process [11], actually this parallelism could be disturbing and
dispersing of the development team. Jeon et al. tackled CAR & RAQ from another side [33].
They argue that these methods don’t provide guidance on how to analyze quality attributes. We
are totally with this opinion.

II. Quality Attribute Workshop (QAW) & Attribute-Driven Design (ADD)

Practitioners like Nord et al. argued about the necessity and viability of integrating architecture-
centric practices into agile methodologies, especially XP so as to insert and force designing for
quality attributes inclusion from the beginning, and to create the architecture for a software
product rather than depending on metaphors to have one, and to evaluate the architecture for its
strategies’ ability to achieve the required level of quality attributes addressed [34]. Up to the
moment we are writing this, there are no studies reporting applying QAW & ADD in the context
of an agile software development approach, but there are recommendations and arguments about
their applicability.

If we regarded QAW independently, it is believed to enhance customer collaboration by
involving stakeholders in quality attributes definition process. It also bases planning and story
generation processes on business goals; this helps deliver more business value. The architect can
use resulting stories to design the architecture including quality requirements. This would lessen
the number of refactorings and help plan for foreseen changes. If we regarded ADD
independently, we would find that it prepares the architecture to accommodate quality attributes
right from the beginning, and this would reduce the number of refactorings through the system
development life cycle. Also, ADD encourages incremental development as it decomposes the
system into smaller elements. QAW/ADD lessens required refactorings and does not handle
quality attributes as functionalities. It is also worth mentioning that ADD contains a verification
step which takes place at the end of the ADD, so whenever a change occurs, the design can be
adjusted in the verification step. QAW/ADD conforms to agile values in facilitating change
accommodation by continuous analysis and planning, increases customer engagement and gained
feedback, maximizes business value, and enables incremental development.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.3, No.4, August 2013

32

3.2 Replacing Currently Adopted Architecting Approach

In this solution path, agilists suggested replacing the whole design process with a modified
subprocess that inherits agile methods’ advantages accompanied with another software
development approach and at the same time avoids shortcomings of the standalone approaches.

Agile Model Driven Development

AMDD is the agile version of Model Driven Development (MDD) [35]. While the moral of MDD
contradicts with the value of agile development, which confirms that working software is the
primary artefact; Ambler explained that agile models are those which are barely good enough
[35]. This means that AMDD’s trend is not to go far in extensive modelling but it is to create
models which are at the most effective point they could possibly be at. AMDD’s target is to guide
developers and stakeholders throughout an effective design process. In his introduction to
AMDD, Ambler advocated providing a big picture at the beginning of each release through the
envisioning activity [35]. However, this big picture would be at the level of a project release.
While claiming that AMDD is a critical strategy for scaling agile software development beyond
the small, co-located team approach seen in the first stage of agile adoption [36], lack of a big
picture at the project level would cause challenging integration problems [37] if applied for
larger, more complex projects.

While MDD is referred to as a set of approaches in which code is automatically or semi-
automatically generated from more abstract models [38], Ambler has argued that using modelling
tools would require modelling skill set and specialized expertise [39]. However, Zhang & Patel
showed through a case study that the productivity in number of source code lines per staff month
increased in case of high percentage of automatically generated code compared to hand coding
[40]. Also, Ambler argued that with AMDD, a little bit of modelling is done and then a lot of
coding [36]. This declaration seems to be a clear violation of the basic idea of MDD, which aims
at moving the development efforts from programming to the higher level of abstraction and
concentrate efforts on modelling and generating needed code from these models [38]. AMDD can
also be affected by MDD’s problems such as requiring high expertise, moving complexity rather
than reducing it and other problems [38], provoked by using UML as the standard modelling
language enabling MDD.

4. DEFINING ELEMENTS OF AGILE ARCHITECTING

Now, we can collect the elements of a desired agile architecting approach. Let’s first talk about
what is needed to have an agile approach. An approach to develop software architecture should
follow both of top-down and bottom-up approaches. It should adopt minimalist approach to
architecture while the highest priority architectural drivers are identified are identified and the
simplest design effort is done to achieve them. An initial architecture is achieved at the beginning
to serve as the base for a final form that will emerge through continuous evolution and as a result
of growing and accumulated understanding of business goals and user requirements that either
come up or change through the project’s lifetime. An initial version of the architecture enables
project management to organize work assignments, and configuration management to setup
development infrastructure; and the product builders to decide on the test strategy [41]. It should
also enable further changes to affect the architectural level as the whole product development
lifecycle proceeds. Agilists believe that nothing can be done right from the beginning [31], so this
rule applies also to architecting. If the resulting architecture won’t be right and at its final form
from the beginning as Isham believed, then incremental architecting won’t be a waste of time
[42]. Instead; incremental architecting would enable synchronizing the system with changing
conditions rather than adopting a single straight direction from the beginning [4]. To be agile, an

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.3, No.4, August 2013

33

architecting trend should adopt simplicity in design, and waiting till more uncertainty about user
requirements is reduced. This way, it enables keeping architecture design decisions to the
minimum while ensuring meeting user requirements. Changes in user required functionalities are
not to be constrained or prohibited. Therefore, changes in quality attributes are to be managed
properly through building an architecture where insights into changes’ impacts on quality
attributes –if any- can be provided. Concentrating on driving the resulting architecture by quality
attribute requirements reduces the need for architectural refactoring to include quality attributes.
An agile architecting approach should praise and encourage individuals and interactions among
them through brainstorming sessions and joint decision making facilitated by discussions and
voting. It should also produce the minimal amount of documents, provided that ideas and needed
values of design decisions are communicated among team members.

To explore what is needed to have an architecting approach to be inserted into an agile software
development process, we need to define elements of architecting and insist on their existence in a
light yet value-producing form. To have an agile architecting approach, architectural drivers –
especially quality attributes- should be clearly identified in definitive forms so as not to leave the
decision of accommodating them for afterthought. Architecting to include quality attributes from
the beginning offers a long-term value concerning lessening the number of refactorings conducted
through software development lifecycle, and enables scalability of a system provided that the
effects and interactions between quality attributes, concerns, and user preferences are known
ahead. Besides, guidance is desired as to how to come up with an architecture that satisfies all
architectural drivers present up to the moment in a flexible design. This need can be achieved by
offering mappings between business goals and user requirements, and the resulting architectural
artefacts which are supposed to be reflecting these goals and drivers, to make sure that a
development team is always having business goals as their main reference to develop an
architecture and to adhere to agile development mindset that always keeps business value as a
main motive. Another aim is to have a balance between architectural concerns and context. From
agilists’ tend in handling quality attributes, it can be concluded that agilists consider the context
while specifying quality attributes more than spending time in analyzing concerns. This
represents a clear violation of their beliefs that every project is a unique case that besides having
an associated contextual and domain knowledge, there are also concerns specific to the case in
hands, and these concerns need to be carefully considered. There is a need for achieving an
architecture design based on a set of drivers derived while relying on considering context as well
as concerns.

Having the rationale of architectural decisions is an aim to be pursued. A clear obvious rationale
is necessary not only to trace decisions back to their reasons, but also to leverage the learning
curve of a team of a project’s team members. Also, offering change impact information in
advance is an aim to be achieved, so as to enable developers to assess a change’s associated risks
and to identify the suitable techniques to deal with changes based on these changes’ similarities
especially those changes affecting architecture and quality attributes. The effect of changing a
component, a connector, or a relationship between them, or inserting a new component in
response to either a functional or quality requirement should be clear ahead; so as not to have a
design that apparently swallowing all changes as they come up, while in fact it suffers severe
mess in its architecture, which degrades gradually. Obtaining change impact information is
considered to be cost beneficial because assessing the effect of changes on the architectural level
solely reduces the costs associated with the whole software evolution process as many
implementation details need not to be considered are eliminated [43].

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.3, No.4, August 2013

34

Having an explicit architecture, even if an initial incomplete version of it, is necessary for a
process adopts an incremental and iterative development trend like an agile software development
process. In this context, an architecture provides insights into what the next step or the next chunk
to develop will be. Architecting practices used to produce this initial architecture should be
integrated into the development process so as to ensure workflow between development steps,
always tracking business value and being driven by customer needs, and tracking architectural
decisions implications and rapidly handling conflicts between requirements especially
architectural drivers. The architecture of a software product should be put in place to act as a firm
foundation for responding to upcoming changes.

5. CONCLUSION

As agility is more about a mindset more than being about practices; once the morals and value
behind each architecting activity are reached, architecting activities can be tackled in numerous
ways and can serve their purposes without violating agile values. Architecting activities can be
lightened and can yield architecting artefacts that can build a stable yet flexible architecture.
While the battle between agilists and architects is going harder, rationalists from both camps
believe that agile development and architecting are not at odds. Our basic concern through this
paper was to highlight problematic trends in currently adopted agile architecting and provide
insights into how to come up with an approach which is truly agile and can truly yield an
architecture that can accommodate changes while not being eroded.

REFERENCES

[1] Ramakrishnan, S., (2010), “On Integrating Architecture Design into Engineering Agile Software
Systems”, proceedings of the Informing Science & IT Education (InSITE) conference, Cassino, Italy,
21-24 June, Informing Science Institute (ISI), pp. 9-25.

[2] Falessi, D., Cantone, G., Sarcia, S. A., Calavaro, G., Subiaco, P. & D’amore, C., (2010), “Peaceful
Coexistence: Agile Developer Perspectives on Software Architecture”, IEEE Software, vol. 27, no. 2,
pp. 23-25.

[3] Jensen, R. N., Moller, T., Sonder, P. & Tornehoj, G., (2006), “Architecture and Design in eXtreme
Programming; Introducing Developer Stories”, proceedings of Extreme Programming and Agile
Processes in Software Engineering, 7th International Conference (XP 2006), Oulu, Finland, 17-22
June, Springer Verlag, pp. 133-142.

[4] Erdogmus, H., (2009), “Architecture Meets Agility”, IEEE Software, vol. 26, no. 5, pp. 2-4.
[5] Abrahamsson, P., Babar, M. A. & Kruchten, P., (2010), “Agility and Architecture: Can They

Coexist?”, IEEE Software, vol. 27, no.2, pp. 16-22.
[6] Leffingwell, D., Martens, R. & Zamora, M., (2008), “Principles of Agile Architecture”, Leffingwell,

LLC . & Rally Software Development Corp.
[7] Faber, R., (2010), “Architects as service providers”, IEEE Software, vol. 27, no. 2, pp. 33-40.
[8] Coplien, J. O. & Bjornvig, G., (2010), Lean Architecture: for Agile Software Development, Wiley

Publishing, Indianapolis, Indiana, USA
[9] Jansen, A. & Bosch, J., (2005), “Software Architecture as a Set of Architectural Design Decisions”,

proceedings of the 5th IEEE/IFIP working conference on software architecture (WICSA 2005),
Pittsburgh, PA, USA, 6-10 November, Nord, R., Medvidovic, N., Krikhaar, R., Stafford, J. & Bosch,
J. (Eds.), IEEE, pp. 109-120.

[10] Bohem, B. & Turner, R. (2004) Balancing Agility and Discipline: A Guide for the Perplexed,
Addison Wesley Professional, Indiana, USA.

[11] Sharifloo, A. A., Saffarian, A. & Shams, F., (2008a), “Embedding Architectural Practices into
Extreme Programming”, proceedings of the 19th Australian Conference on Software Engineering
(ASWEC'08) Perth, WA, Australia, 26-28 March, IEEE, pp. 310-319.

[12] Mens, T. & Tourwe, T., (2004), “A survey of software refactoring”, IEEE Transactions on Software
Engineering, Vol. 30, No. 2, pp. 126-139.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.3, No.4, August 2013

35

[13] Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A. & Succi, G., (2007), “A Case Study on the
Impact of Refactoring on Quality and Productivity in an Agile Team”, Proceedings of the second IFIP
TC 2 Central and East European Conference on Software Engineering Techniques, (CEE-SET’07),
Poznan, Poland, 10-12 Oct., Meyer, B., Nawrocki, J. R. & Walter, B. (Eds.), Springer-Verlag Berlin,
Heidelberg, pp. 252-266.

[14] Barbacci, M., Ellison, R., Lattanze, A., Stafford, J., Weinstock, C. & Wood, W., (2003), “Quality
Attribute Workshops (QAWs)”, CMU Software Engineering Institute, Pittsburgh, PA, USA.

[15] Khan, S. S., Greenwood, P., Garcia, A. & Rashid, A., (2008), “On the Impact of Evolving
Requirements-Architecture Dependencies: An Exploratory Study”, Proceedings of the 20th
International Conference on Advanced Information Systems Engineering (CAiSE'08), Montpellier,
France, 16-20 June, Bellahsene, Z. & Leonard, M. (Eds.), Springer, pp. 243-257.

[16] Williams, B. J. & Carver, J. C., (2007), “Characterizing Software Architecture Changes: An Initial
Study”, proceedings of the First International Symposium on Empirical Software Engineering and
Measurement, (ESEM'07), Madrid, Spain, 20-21 Sept., IEEE, pp. 410-419.

[17] Mockus, A. & Votta, L. G. (2000), “Identifying reasons for software changes using historic
databases”, Proceedings of the International Conference on Software Maintenance, San Jose, CA,
USA, 11-14 Oct., IEEE, pp. 120-130.

[18] Taylor, R., Medvidovic, N. & Dashofy, E., (2009), Software Architecture: Foundations, Theory, and
Practice, Wiley publishing, Indianapolis, Indiana, USA.

[19] Perry, D. & Wolf, A., (1992) “Foundations for the study of software architecture”, ACM SIGSOFT
Software Engineering Notes, Vol. 17, No. 4, pp. 40-52.

[20] Buschmann, F., (2011), “Gardening Your Architecture, Part 1: Refactoring”, IEEE Software, Vol. 28,
No. 4, pp. 92-94.

[21] Breivold, H. P., Sundmark, D., Wallin, P. & Larsson, S., (2010), “What Does Research Say about
Agile and Architecture?”, Proceedings of the Fifth International Conference on Software Engineering
Advances (ICSEA), Västeräs, Sweden, 22-27 Aug., IEEE, pp. 32-37.

[22] West, D., (2002), “Metaphor, Architecture, and XP”, proceedings of the third International
Conference on Extreme Programming and Agile Processes in Software Engineering (XP 2002),
Sardinia, Italy, 26-30 May, pp. 101- 104.

[23] Khaled, R., Barr, P., Noble, J. & Biddle, R., (2004), “Extreme programming system metaphor: A
semiotic approach”, proceedings of the 7th International Workshop on Organizational Semiotics,
Setúbal, Portugal, 19-20 July, pp. 152-172.

[24] Mancl, D., Hadar, E., Fraser, S., Hadar, I., Miller, G. R. & Opdyke, B., (2009), “Architecture in an
Agile World”, proceedings of the ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPLSA 09), Orlando, Florida, USA, 25-19
October, ACM, pp. 841-844.

[25] Tomayko, J. & Herbsleb, J., (2003), “How Useful Is the Metaphor Component of Agile? a
preliminary study”, school of Computer Science, Carnegie Mellon University.

[26] West, D. & Solano, M., (2005), “Metaphors be with you”, proceedings of Agile Development
Conference (ADC'05), Colorado, USA, 24-29 July, IEEE, pp. 3-11.

[27] Tomayko, J. E., (2002), “Engineering of Unstable Requirements Using Agile Methods”, International
Workshop on Time-Constrained Requirements Engineering (TCRE'02), Essen, Germany, 9
September.

[28] Dögs, C. & Klimmer, T., (2004), “An Evaluation of the Usage of Agile Core Practices , Software
Engineering and Computer Science, Blekinge Institute of Technology, Ronneby, Sweden.

[29] Mohagheghi, P. & Conradi, R., (2004), “An empirical study of software change: origin, acceptance
rate, and functionality vs. quality attributes”, Proceedings of the 2004 International Symposium on
Empirical Software Engineering, (ISESE '04), Redondo Beach, CA, USA, 19-20 Aug, IEEE, pp.7-16.

[30] Turk, D., France, R. & Rumpe, B., (2002), “Limitations of Agile Software Processes”, the third
International Conference on Extreme Programming and Agile Processes in Software Engineering (XP
2002), Sardinia, Italy, 26-30 May.

[31] Cockburn, A. (2006), Agile software development: The Cooperative game, 2nd Edition, Addison-
Wesley, Boston, US.

[32] Holler, R., (2010), “Five myths of agile development”, VersionOne, http://pm.versionone.com/5-
agile-development-myths-whitepaper.html, last access: 26 March 2013.

http://pm.versionone.com/5-

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.3, No.4, August 2013

36

[33] Jeon, S., Han, M., Lee, E. & Lee, K., (2011), Quality Attribute Driven Agile Development, in
proceedings of 2011 ninth International Conference on Software Engineering Research, Management
and Applications (SERA), Baltimore, MD, USA, IEEE, pp. 203-210.

[34] Nord, R., Tomayko, J. & Wojcik, R., (2004a), Integrating Software-Architecture-Centric Methods
into Extreme Programming (XP), Pittsburgh, Pennsylvania, USA, Software Engineering Institute,
CMU.

[35] Ambler, S. W., (2007a), “Agile Model Driven Development (AMDD)”, XOOTIC, Vol. 12, No. 1, pp.
13-21.

[36] Ambler, S., (2007b), “Agile Model Driven Development (AMDD): The key to scaling agile software
development”, available at: http://www.agilemodeling.com/essays/amdd.htm , last access: 26 March
2013.

[37] Elssamadisy, A. & Schalliol, G., (2002), “Recognizing and responding to bad smells in extreme
programming”, proceedings of the 24th International Conference on Software Engineering (ICSE'02),
Orlando, Florida, USA, 19-25 May, ACM, pp. 617- 622.

[38] Picek, R. & Strahonja, V., (2007), “Model Driven Development – Future or Failure of Software
Development?”, proceedings of the 18th International Conference on Information and Intelligent
Systems (IIS2007), Varaždin, Croatia, 12-14 September, pp. 407-414.

[39] Sharifloo, A. A., Saffarian, A. & Shams, F., (2008b), “Toward Empowering Extreme Programming
from an Architectural Viewpoint”, proceedings of the 9th International Conference on Agile
Processes in Software Engineering and eXtreme Programming (XP 2008), Limerick, Ireland, 10-14
June, Springer Verlag, pp. 222-223.

[40] Zhang, Y. & Patel, S., (2011), “Agile Model-Driven Development in Practice”, IEEE Software, Vol.
28, No. 2, pp. 84-91.

[41] Bass, L., Clements, P. & Kazman, R., (2003), Software Architecture in Practice, Addison-Wesley
Professional, Boston, USA.

[42] Isham, M., (2008), “Agile Architecture IS Possible -You First Have to Believe!”, proceedings of
Agile 2008, Toronto, Ontario, Canada, 4-8 August, IEEE, pp. 484- 489 .

[43] Zhao, J., Yang, H., Xiang, L. & Xu, B., (2002), “Change impact analysis to support architectural
evolution”, Journal of Software Maintenance and Evolution: Research and Practice, Vol. 14, No. 5,
pp. 317–333.

Author 1:

G. H. El-Khawaga
Teaching Assistant, Department of information systems
Faculty of computers and information
Mansoura University, Egypt.
ghelkhawaga@acm.org

Biographical note: Ghada Hesham El-Khawaga is working as a teaching assistant and researcher for more
than 6 years. She is involved in the fields of information systems analysis and design, and software
engineering with active participation and positive motivation. Her main interests are in the areas of
software architecting, information systems development methodologies, and software engineering. She is a
member of the ACM and IEEE. Ghada is seeking to be a contributor academic information systems’
researcher on the short term and a consultant on the long term.

Author 2:

Prof. Dr. Galal Hassan Galal-Edeen
Computer Science Department,
School of Sciences & Engineering,
American University in Cairo,
Cairo, Egypt.
Galal@acm.org

http://www.agilemodeling.com/essays/amdd.htm
mailto:ghelkhawaga@acm.org

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.3, No.4, August 2013

37

Biographical note: "Professor Galal Hassan Galal-Edeen is currently a Professor of Computer Science at
the American University in Cairo, where he is on secondment from Cairo University, Egypt. His main
technical interests are in the areas of methodologies for software and information systems design,
architectures and architecting. Prof.Galal-Edeen has consulted and trained widely in the areas information
systems, software engineering, usability evaluation and innovation for clients in the UK, USA, the Middle
East and Egypt. He holds a BSc in Management Sciences (Computing and Information Systems stream)
with magna cum laude, from the Sadat Academy for Management Sciences, Cairo. He also holds a
Master’s degree in Systems Analysis and Design, from the City University, London, a PhD in Information
Systems Engineering from Brunel University, UK, a BA in Architecture from the University of Greenwich,
UK and finally a Master in Advanced Architecture Studies from the Bartlett Graduate School, the
University of London. He is a full professional member of the British Computer Society and the ACM. He
can be corresponded with by email at: Galal@acm.org"

Author 3:

Prof. Dr. A.M. Riad
Dean of the faculty of computers & Information,
Mansoura University,
Mansoura, Egypt.
amriad2000@mans.edu.eg

Biographical note: "Professor Alaa El-Din Mohammed Riad is currently the Dean of the faculty of
computers and information, Mansoura University in Egypt where he is a professor of information systems.
His main technical interests are in the areas of information systems and software engineering. He has
offered consultation services for many Commercial and Industrial Institutions, besides supervising more
than 22 MSc researches, and four PhD researches.

mailto:Galal@acm.org
mailto:Galal@acm.org
mailto:amriad2000@mans.edu

