
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012

DOI : 10.5121/ijcsea.2012.2213 151

 Effective Sparse Matrix Representation for the
GPU Architectures

B. Neelima
1
 and Prakash S. Raghavendra

2

1
National Institute of Technology, Karnataka

reddy_neelima@yahoo.com

2
National Institute of Technology, Karnataka

srp@nitk.ac.in

ABSTRACT

General purpose computation on graphics processing unit (GPU) is prominent in the high performance

computing era of this time. Porting or accelerating the data parallel applications onto GPU gives the

default performance improvement because of the increased computational units. Better performances can

be seen if application specific fine tuning is done with respect to the architecture under consideration. One

such very widely used computation intensive kernel is sparse matrix vector multiplication (SPMV) in sparse

matrix based applications. Most of the existing data format representations of sparse matrix are developed

with respect to the central processing unit (CPU) or multi cores. This paper gives a new format for sparse

matrix representation with respect to graphics processor architecture that can give 2x to 5x performance

improvement compared to CSR (compressed row format), 2x to 54x performance improvement with respect

to COO (coordinate format) and 3x to 10 x improvement compared to CSR vector format for the class of

application that fit for the proposed new format. It also gives 10% to 133% improvements in memory

transfer (of only access information of sparse matrix) between CPU and GPU. This paper gives the details

of the new format and its requirement with complete experimentation details and results of comparison.

KEYWORDS

GPU, CPU, SPMV, CSR, COO, CSR-vector

1. INTRODUCTION

Graphics processing unit was tricked by the programmer to do general purpose computation than

doing only graphics related operations. The motivation behind the development of graphics

processor evolution, to general purpose computation processor, is different than that of the CPU

evolution, to multi core. Hence data formatting and optimizations designed with respect to CPU

and its evolutions have to be tailored to GPU specific architectures. Even though GPU gives

better performance of the accelerated applications than CPU and multi core, full utilization of the

processor for much better performance is possible by tailor made data formatting and

computations with respect to the architecture under consideration. Sparse matrix computations

and usage is very large in most of the scientific and engineering applications. In sparse matrix,

sparse vector multiplication is of singular importance in wide applications. This paper

concentrates on sparse matrix vector multiplication aspect of compute intensive applications and

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012

152

through a new format shows the memory transfer and performance improvements than the

existing data formats of sparse matrices. The results shown for proposed new data format are

applicable to GPU in general but the results are particular to NVIDIA GPU analyzed on GeForce

GT 525M.

Optimizing performance on GPU needs creation of thousands of threads, because it uses latency

hiding by using thousands of threads and gives high throughput. Few of the existing methods like

CSR, use row wise thread creation that cannot use global coalescing feature of GPU and GPU is

underutilized if the number of non-zero elements per row is less than 32, the size of a warp. CSR

vector is modified version of CSR that benefits from global coalescing by using fragmented

reductions. The proposed CSPR (Column only SPaRse format) reduces the sparse matrix vector

multiplication to constant time and threads can be launched continuously by parallelizing the

outer loop for creating many threads. CSPR can be applied to any sparse matrix in general but

better performances are seen for the matrices with large number of rows with minimum number

of non-zero values per row and centrally distributed few dense rows as shown in Fig. 3. For such

matrices, it can give 2x to 54x performance improvements compared to CSR, COO and CSR

vector format. CSPR embeds the row information into column information and uses a single data

structure; hence it can also optimize the memory transfer between CPU and GPU. CSPR format

uses only one data structure to access the sparse matrix hence it is a good format for the

internally bandwidth limited processors like GPU.

The paper is organized as follows. The next section gives the details of GPU architecture in

general and CUDA in particular. Section III gives the sparse matrix introduction and its

importance in scientific computation along with the introduction to data formats of sparse

matrices. Section IV gives related work with respect to data formats and sparse matrices. Section

V gives the working set up and introduction to sparse matrices considered for testing the new

format. Section VI gives the experimental results and analysis. Section VII gives the conclusions

and future work.

2. GPU ARCHITECTURE

GPU is the co-processor on the desktop. It is connected to host environment via peripheral

component interconnect (PCI Express 16E) to communicate with the CPU. The GPU used for

the experimentation here is NVIDIA Geforce GT 525M, but the format proposed is in general

applicable to all types of sparse matrices and all processor architectures including CPU. The

proposed format is better suited and gives better performance on latency hiding based throughput

oriented processors like GPU for specific class of sparse matrix structure. The third generation

NVIDIA GPU has 32 CUDA cores in one SM (Streaming Multiprocessor). It supports double

precision floating point operations. NVIDIA GPU has compute unified device architecture that

uses the unified pipeline concept and the latest GPU supports up to 30000 co-resident threads at

any point of time. GPU uses latency hiding to increase parallelism that is when active threads are

running other threads will finish pending loads and become active to execute. It uses single

instruction multiple threads concepts (SIMT) and executes the computation in warps that consists

of 32 threads [1-3].

GPU has architectural optimizations like hardware multithreading that supports global memory

access coalescing for more than half warp(16) access and memory optimizations like using

texture cache for read only and reusable data like vector values in sparse computation. Global

coalescing is accessing continuous memory locations for continuous threads. In CSR format each

thread is assigned to a row. For a 30k row matrix 30k threads are launched in the first iteration

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012

153

and in the second iteration second element of each row are considered for all 30k rows and the

process continues till the largest row finishes. Global coalescing is not used as every iteration

accesses one element from each row. In the proposed CSPR format threads are launched per non-

zero element and continuous threads access the continuous data and hence the global coalescing

(16 threads (half warp) or 32 threads (one warp) access single memory segment) is used [4-5].

GPU texture cache can be used for x vector to be multiplied with the sparse matrix that can be

reused from cache and hence the performance improvements. The results shown in this paper are

without using the texture cache for x vector.

3. SPARSE MATRIX

Sparse matrix is one in which number of non zero elements are less. Hence sparse matrices are

represented using different format to avoid zero multiplications. Sparse matrices will have

different variety of sparsity (distribution of non-zero elements in the entire matrix) i.e. the

distribution of non zero elements make sparsity based data representation to further optimize the

performance of sparse based computations. Sparse based computations also consist of sparse

matrix to dense matrix computations, sparse matrix to sparse matrix multiplication and sparse

matrix to dense vector multiplication. This paper particularly concentrates on sparse matrix

vector multiplication which is of high importance in most of the scientific and engineering

applications that needs solving large linear systems (Ax=b) and Eigen value problems (Ax=Yx),

where, A is a sparse matrix and x is a dense column vector. As sparse matrices are represented in

a new format to remove unnecessary zero computations, accessing sparse matrix elements is not

direct. Hence the sparse matrices are memory bound and any new format or new optimization

that is specific for the architecture is of great importance.

Fig 1: Sample data format representation of sparse matrix A in CSR, COO and CSPR formats

There are different standard formats like DIA (diagonal), ELL, CSR and COO explained here in

brief to give a comparison for the new format proposed. DIA is structure specific data format

representation that is suitable for the matrices that have non-zero elements spread across the

diagonals of the matrix. DIA format uses two data structures to represent the sparse matrix. One

data structure is used to store the data of the size equal to the number of rows multiplied by the

number of diagonals that have non-zero elements. Another data structure is to store indices of

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012

154

diagonals of size equal to number of diagonals. ELL or ELLPACK format that is applicable to

the matrices with uniform row lengths. It uses two data structures to store data and indices of the

size equal to the number of rows multiplied by max number of elements per row.

CSR (compressed row format) and COO (coordinate format) are applicable to unstructured

matrices that have non uniform row lengths in specific but they are more general data format

representations of the sparse matrix. CSR uses three data structures, one to represent data, second

to represent column index, both of size equal to number of non-zero elements and third data

structure is used to store pointer to the row of size equal to number of rows. COO also uses three

data structures, same as CSR except the third one is direct row representation of size equal to

number of non-zero elements. If DIA and CSR data formats are compared for more structured

matrices then DIA will give better performance, because CSR is more general format and DIA is

more structure specific and give better performance than the general format. Bell and Garland

give a detailed analysis of the data formats with respect to GPU in [6].

Fig. 1 gives the representation of sparse matrix ‘A’ in CSR, COO and CSPR formats considered

in this paper. The proposed data format, CSPR, concentrates on unstructured matrices with non-

uniform row lengths. CSPR use two data structures, one to represent the data and the other to

represent the column and row indices, both of size equal to number of non-zero elements. CSPR

embeds the row information into the column information and hence the reduction in the data

structure. This introduces extra computation in extracting the embedded data while performing

the sparse matrix vector computation. But in a throughput oriented processor like GPU where

1000s of threads run, this computation will not affect the performance. Hence this format is

suitable for computation intensive processor like GPU and hence the performance and memory

benefit also. The results shown are considering the formats of unstructured sparse matrix like

COO, CSR.

Fig. 2 gives the SPMV implementation algorithm of CSR and CSPR format. As CSPR is using

the single data structure that embeds row and column information, it needs extra computation to

extract the same in SPMV computation. These extra computations introduced into SPMV are not

considered for performance evaluation as they are integer operations. But if these two integer

operations are considered for only performance evaluation, then CSPR gives much better

performance than that shown in this paper. CSPR needs threads to be synchronized for the row-

wise computation values.

Fig. 2: CSR and CSPR SPMV implementations based on the formats given in Fig. 1

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012

155

The process of synchronization is hidden by the latency hiding mechanism of the GPU and gives

higher performance for matrices with large number of rows. It gives comparatively equal or

better performance for matrices with very less number of rows that are highly dense; because of

the synchronization process takes time for the larger row. Any data format specific to one class

of sparse matrix gives best performance for that class and regular performance for the other class

of matrices like DIA and ELL format. Bell and Garland [6] have proposed new HYB format that

improves performance for the matrices that can take best of both ELL and COO format. HYB

gives high performance improvement for those sparse matrices that fit into ELL and COO

combination. CSPR is not suited for the structured matrices that can be well represented using

ELL and DIA and hence performance comparison cannot be done.

Table 1 represents the data structures required and their sizes for the different formats discussed

above. The paper considers square matrices only. If M is the size of the matrix, total number of

elements are M*M, including zeros. N is the number of non- zero elements in the given matrix. R

is the structure variable representation for the structured matrices like R is number of diagonals

with non-zero elements in diagonal format or R is the maximum elements in a row for uniform

row lengths in ELL etc. CSPR method reduces the computation time complexity to constant time

compared to CSR format, giving abundant data parallelism and memory usage is less and

optimizes memory transfer from CPU to GPU than any of the existing methods.

Table 1: Data structure requirements of different data formats of SPMV

4. RELATED WORK

The initial work related to improving application performance that have sparse based operations

has started with deriving different representations like CSR, ELLPACK, COO, DIA etc., instead

of loading the entire matrix on to the memory and do zero computations [7-8]. Later these

formats have been optimized with respect to memory systems and different architectures and

combination of different formats have been derived to get the maximum performance. Formats

like blocked CSR uses memory tiling to improve performance of the applications. Most

optimization and parallelization methods are initially derived for the dense matrix and the same is

automatically used for the sparse matrix also. For example, blocked or tiled access of dense

matrix, when used for sparse matrix, may not be effective as the structure of sparse matrix is

different from dense matrix [9-15].

Vuduc, et al. [16-18] has given list of optimizations that can be done with respect to sparse

matrices. Then with the advent of multi core era, there is a need to optimize the sparse

computations with these new architectures. William, s., et al. [19] show new ways of

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012

156

optimizations required with respect to new architectures. William, s., et al. has given new

optimizations for the multi core architectures and shown huge performance improvements in the

applications. Their work has not considered GPUs.

Bell and Garland [20-25] show the implementation of SPMV on GPU and give optimizations to

make these computations more effective. Their work has given a new data format from the

combination of existing standard formats. Their new format name HYB is a combination of ELL

and COO. They did not considered restructuring of the matrix to give another new format. Their

work also does not consider the memory transfer between CPU and GPU. They defense their

statement by saying that the data structures can be created on the device. If we are using the true

data and not creating the data on the device, entire data including the zero and non zero elements

has to be transferred on to the device to create the desired data structure. CSPR is designed with

respect to GPU architecture, to reduce memory transfer between CPU and GPU and also reduce

the memory requirement in the internal GPU architecture. GPU computation power is abundant,

so a format that can use less memory and if required with extra computation can give better

performance on GPU processor. One such format is CSPR. CSPR work can be considered as the

extension of the work by Bell and Garland [6] (shows performance improvement with a new

format HYB) and CSPR results show that if GPU specific formats are designed, they can give

better improvements in the performance even though applicable to some class of sparse

structures. CSPR can be further optimized by considering data layout at the fine grain level and

computation mapping at the coarse grain level for the given class of sparse matrix structure and

GPU architecture.

5. EXPERIMENTAL SETUP

 The data format algorithm implementations are tested on Intel corei7-2630QM CPU with

NVIDIA GeForce GT 525M with 1GB-DDR3 memory. The sparse matrices considered here are

taken from sparse matrix collection of University of Florida [26]. The matrices selected are same

as used by William, s., et al. and Bell and Garland [6, 19]. These set of matrices are taken only

because they represent the real data set and results will be more genuine than the synthetic

matrices. Table 2 represents the general characteristics of the selected matrices. Fig. 3 to Fig. 5

shows the undirected or bipartite graph representation of the selected matrices. These figures are

given to differentiate between the structures of sparse matrices and based on that performance

analysis for the new format is explained. The algorithm works with any GPU in general but the

implementation is done with respect to CUDA architecture v3.2. The results shown are for

single precision and without using the texture cache for the x vector. CSPR can also use the

texture cache for index, as every value is accessed twice depending on the optimization possible.

Table 2: Characteristics of the matrices used in the evaluation of CSPR

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012

157

Fig. 3 represents the graph structure of a sparse structure that has few rows very dense and all

other rows are medium dense. CSPR needs synchronization of row values. In these types of

matrices that have large row computations, synchronization overhead is overcome by latency

handling mechanism and gives the best performance than CSR and COO.

Fig. 3: Graph representation of (a) mc2depi and (b) shipsec1-best suited sparse structure for CSPR

Fig. 4 shows the graph structure of consph and cop20k_A that have dense like matrix structure.

CSPR gives good performance than CSR and COO in this case also but percentage of variation in

performance is less than the Fig. 3 type graphs. Because of the little synchronization overhead

involved for the last few rows when there is no computation.

Fig. 4: Graph representation of (a) consph and (b) cop20k_A that have little synchronization overhead for

performance lag

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012

158

Fig. 5 shows the graphs of another sparse matrix structure represented by matrices pwtk and cant.

These matrices have many rows with very less dense values. Here CSPR gives performance

almost equal to COO or CSR (scalar) because computation time is dominated by synchronization

time.

The implementations do not consider any GPU specific optimizations or global matrix

transformations like transpose etc. Implementations for COO or CSPR do not use parallel

reduction or segmented scan for performance improvements as suggested by Bell and Garland

[6]. To create parallelization for multiple threads CSPR implementation uses an explicit parallel

loop instead of the CUDA idioms. Hardware managed features like global coalescing and

execution divergence are handled accordingly by the hardware. CSPR embeds additional

information into the existing column indices because of which memory alignment usage is

required for some large matrices. Results with memory alignment implementations are not shown

in this paper and relative values are used to show the results and analysis. This paper do not use

persistent or block oriented programming as used by Bell and Garland [6].

Fig. 5: Graph representation of (a) pwtk and (b) cant that have non dense rows and give high

synchronization overhead

6. RESULTS AND ANALYSIS

The results and analysis are done and comparisons are given for the proposed CSPR method to

CSR (scalar), CSR (vector) and COO data formats. As CSPR is also more generalized format and

gives better performance for more unstructured matrices with small dense rows and large less

dense rows. Comparisons or results are not shown with respect to DIA(diagonal) or ELL format

that are tailor made for more structured matrices. The results are discussed with respect to three

aspects of evaluation for the four data formatting methods of sparse matrix, namely CSR (scalar),

COO, CSR (vector) and the proposed method CSPR. The analysis is done with respect to number

of floating point operations per second. The performance shown are not the maximum

computation capability of the device as GPU specific optimizations are not used to the fullest in

the current implementation. All the four algorithms implemented are compared for the

performance evaluation and the analysis is valid as they use the same target platform and same

programming environment. Hence most of the results are comparative. Some of the results of the

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012

159

matrices are not shown to avoid much deviation of the graphs and project the other prominent

results.

The performance evaluation is done by taking number of non-zero elements of the matrix

multiplied by two, for the two floating point operations, divided by the total average time of

execution taken for 500 trials. CSPR includes extra computation in terms of extracting the access

information which is embedded into single data structure. If we consider all these integer

operations as single floating point operation, then the performance improvement is much higher.

But as these are introduced computations but not the actual sparse computation, they are not

considered in the results shown here.

In general, the performance of the COO matrix is almost constant irrespective of the matrix

structure. CSR scalar gives better performance when the number of elements per row is high, i.e

for matrices with highly dense rows with less number of rows. CSR (vector) gives better

performance for very large number of non-zero values per row.

0

10

20

30

40

50

60

consph cant
pw tk

rm
a10

webbase_1M

mac_econ

mc2depi

pdb1HYS
cop20k

sh ipsec1
scirc

u it

P
er

ce
n

ta
g

e
im

p
ro

v
em

en
t

CSR (scalar)

COO

CSR(vector)

Fig. 6: Percentage improvement of performance of CSPR compared with the three formats under

consideration

CSPR gives very high performance when matrices have very large number of rows with less non

zero values per row and very few dense rows dominated in the center part of the matrix. When

middle rows are dense, by the time dense row computation finishes the previous rows

synchronization will also be done. The performance of CSPR is very high than all the other

methods considered here for such matrices. If the number of non-zero values per row is medium

then the performance is still good. But for highly dense large rows, the performance decreases

than the best suited because of synchronization effect of last few rows. If the number of non-zero

elements per row is very less, irrespective of whether number of rows is large or small, the

performance decreases because computation time is dominated by synchronization time. Hence

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012

160

CSPR can be considered for high performance gains for matrices that are unstructured, have very

large number of rows with very minimum zero values per row and very few dense rows. The

details of performance variation are shown in Fig. 7.

0

0.2

0.4

0.6

0.8

1

1.2

con sph can t
pw tk

rm
a1 0

w ebb ase_ 1M

m ac_ econ
m c2d ep i

pd b1H YS
cop2 0k

sh ips ec1
sc ircu it

ra il24 28

G
F

lo
p

/s
CSR(vector)

COO

CSPR

CSR(scalar)

Fig. 7: Throughput comparison for the SPMV computation

12 matrices considered here are analyzed with respect to the new data format and performance

analysis. The matrix mc2depi (shown in Fig. 3) which has 530K rows with an average of

3.9elements/row gives the highest performance (not shown) than any other format and any other

matrix considered here. The performance improvements seen are 54x than the other methods.

The overhead of synchronization is overcome by the maximum number of rows and its

distribution of non-zero elements in rows. It also gives high performance than other three

formats, for matrices scircuit, shipsec1 and rail2428 that have large rows with minimum

distribution of elements and few rows with dense distribution. The matrices mac_econ, rma10,

webbase_1m are more suited for the matrices with structure that fall in Fig. 3 and hence the

performance improvement because of the same computation and synchronization behavior.

Matrices consph and cop20k_A have large number of dense rows and introduces synchronization

overhead especially for the last row computations. Hence decrease in performance than CSR

(vector). For the matrices cant and pwtk the performance is better than COO and CSR (scalar)

but less than the CSR (vector), because there are large numbers of rows that are sparse and

computation time is very less that is dominated by the synchronization time. Hence there is a

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012

161

decrease in performance improvement. These results are given in Fig 7. CSPR format gives 2x to

5x performance improvement compared to CSR (compressed row format), 2x to 54x performance

improvement with respect to COO (coordinate format) and 3x to 10x improvement compared to

CSR vector format for the class of application that fit for the proposed new format. The results of

comparison are shown in Fig. 6.

0

20

40

60

80

100

120

140

consph pwtk rma10 webbase_1M mac_econ mc2depi cop20k shipsec1 rail2428

P
e

rc
e

n
a

tg
e

 o
f

v
a

ri
a

ti
o

n
CSR

COO

CSR(vector)

Fig. 8: Percentage variation of CPU-GPU memory transfer w.r.t. CSPR

Next evaluation criteria considered is effect of memory transfer from CPU to GPU. As the

proposed method reduces the number of data structures required form two to one for the

accessing information of the sparse matrix. Percentage variation of these memory transfers with

respect to CSR, COO and CSR vector are given in Fig. 8. As it has reduced the data structures

required it gives 10% to 133% improvement in only memory transfer time. This may be

negligible if the data structure created on the device but if number of data structures required is

reduced, the GPU architecture internal memory access optimization can also be made effective

(not considered in this paper). This memory transfer is considered only for the access

information transfer only and data value transfer time is not considered. The comparison is given

in terms of percentage of variation. The memory transfer time is calculated as number of non-

zero elements divided by the time taken for respective data structure transfer time and the

computation time. Then these times are compared for the CSPR format against all the other three

formats considered here. These results are encouraging and show that other new formats with

respect to GPU can be created to improve sparse matrix computation.

Next evaluation considered is effective bandwidth utilization in terms of GBytes/s. It is computed

as total number of reads and writes in bytes divided by average execution time. Number of reads

and writes are taken as number of nonzero elements and the corresponding accesses from the data

structure. The results are shown in Fig. 9. In most of the case CSPR is better than CSR-scalar and

COO data formats.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012

162

0

5

10

15

20

25

co
nss

ph
ca

nt
pwtk

rm
a10

webbase
_1m

mac_
eco

n

mc2
depi

pdb1HYS

co
p20k

sh
ipse

c1

sc
irc

uit

ra
il2

428 (L
P)

G
B

y
te

/s

CSR

COO

CSR(vector)

CSPR

Fig 9: Effective bandwidth comparison w.r.t CSPR

The above method was not scalable to very large matrices. The scalable implementation of

CSPR has lead to the following results: The memory copy (memCopy for short) time between

CPU and GPU is compared for all the matrices given in the workload. They are compared by

considering the time of memCopy in milliseconds. Fig. [10], shows that CSPR takes less time for

memCopy in all the cases. CSPR is up to 107% better than CSR, 204% better than COO and

217% better than HYB when compared for memCopy time of sparse matrix data from CPU to

GPU. The percentage of variations in memory transfer time of COO, CSR and HYB with respect

to BLSI is shown in Fig [11].

Fig. 10: Comparison of Memory copy time from CPU to GPU

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012

163

Fig. 11: Percentage variation of CSPR with respect to COO, CSR, HYB for memory copy time between

CPU and GPU

By taking the memCopy time and kernel execution time as total time, for all these formats, CSPR

is still better than other formats considered. As explained earlier, this format was proposed to

reduce the CPU to GPU communication, this optimization has resulted in overall better

performance also. CSPR is 80% better than CSR, 164% better than COO and 161% better than

HYB (as shown in Fig [12]) when both the memory transfer time and kernel time is taken

Fig. 12: Comparison of memory copy and kernel time of CSPR, COO, CSR and HYB data structures of

sparse matrices

7. CONCLUSIONS AND FUTURE WORK

GPU processor evolution as general purpose computation processor has given challenges and

opportunities to the scientific community. It is challenging in effective and efficient way of

utilizing the processor. It gives high performance opportunities to increase the application

performance using massive data parallelism. The implementation of CSPR is to tackle the

challenges and increase the opportunities of GPU in high performance computing. SPMV

computation optimization is of utmost importance for the scientific community in any form i.e.

by new data formats or new optimization techniques. Results and analysis of CSPR shows that it

can give 2x to 54x performance improvement for various matrices compared to CSR, COO and

CSR vector formats. It gives 10% to 133% improvement in CPU to GPU memory transfer time.

Effective memory bandwidth utilization is also on par with the other methods.

CSPR results are encouraging to work towards any other possibilities of new formats specific to

GPU that can give better data parallelism and also optimizes for the internal memory architecture

of GPUs. CSPR needs large data type to represent the new data structure. This can be overcome

by memory align. This also can be optimized by using multi kernel merge launch that can reduce

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012

164

this large data type requirement. Other formats like embedding the information into bits and

extracting from bits can also be looked-in with respect to GPU. This work will be extended by

considering optimizations for data layout optimization in internal architecture of GPU at the fine

grain level and thread assignment mapping tailored to requirement of the application to give

much desired performance benefits from the GPU.

REFERENCES

[1] G. O. Young, “Synthetic structure of industrial plastics (Book style with paper title and editor),” in

Plastics, 2nd ed. vol. 3, J. Peters, Ed. New York: McGraw-Hill, 1964, pp. 15–64.

[2] www.drdobbs.com/supercomputingforthemasses (Jul. 28, 2010)

[3] http://developer.nvidia.com/ (Dec., 2010)

[4] Ryoo, S., et al. (2008). “Optimization Principles and Application Performance Evaluation of a

Multithreaded GPU Using CUDA.” Proceedings of the 13th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programing (PPoPP’08). ACM New York, NY, USA

[5] Ryoo, S., et al. (2008). “Program Optimization Space Pruning for a Multithreaded GPU.” Proceedings

of the 2008 International Symposium on Code Generation and Optimization.195–204. ACM New

York, NY, USA

[6] Nathan Bell and Michael Garland (2009). “Efficient sparse matrix-vector multiplication on CUDA.”

Proceedings of ACM/IEEE Conf. Supercomputing (SC-09). ACM New York, NY, USA

[7] Eduardo, F. D., Mark, R. F. and Richard, T. M. (2005). “Vectorized sparse matrix multiply for

compressed row storage.” In Proc. Int’l. Conf. Computational Science (ICCS), LNCS: 3514/2005 :

99–106. Springer Verlag.

[8] Richard, W., Vuduc, R. and Hyun-Jin, M. (2005). “Fast sparse matrix-vector multiplication by

exploiting variable block structure.” In Proc. High- Performance Computing and Communications

Conf., LNCS 3726/2005: 807–816. Springer Verlag.

[9] Blelloch, G. E., Heroux, M. A. and Zagha, M. (1993). “Segmented operations for sparse matrix

computations on vector multiprocessors.” Technical Report, CMU-CS-93-173, Department of

Computer Science, Carnegie Mellon University (CMU), Pittsburgh, PA, USA.

[10] Geus, R. and Röllin, S. (2001). “Towards a fast parallel sparse matrix-vector multiplication.”

Proceedings of the International Conference on Parallel Computing (ParCo).

[11] Mellor-Crummey, J. and Garvin, J. (2002). “Optimizing sparse matrix vector multiply using unroll-

and-jam.” International Journal of High Perfromance Computing Applications, 18 (2). Sage

Publications, CA, USA.

[12] Nishtala, R., Vuduc, R., Demmel, J. W. and Yelick, K. A. (2007). “When cache blocking sparse

matrix vector multiply works and why.” Journal of Applicable Algebra in Engineering,

Communication, and Computing, 18 (3).

[13] Temam, O. and Jalby, W. (1992). “Characterizing the behavior of sparse algorithms on caches.”

Proceedings of the 1992 ACM/ IEEE Conference on Supercomputing (SC-92). IEEE Computer

Society Press, Los Alamitos, CA, USA.

[14] Toledo, S. (1997). “Improving memory-system performance of sparse matrix-vector multiplication.”

Peoceeding of Eighth SIAM Conference on Parallel Processing for Scientific Computing.

[15] Vastenhouw, B. and Bisseling, R. H.(2005). “A two-dimensional data distribution method for parallel

sparse matrix-vector multiplication.” Journal of SIAM Review, 47 (1): 67–95, 2005. Philadelphia, PA,

USA.

[16] Im, E. J., Yelick, K. and Vuduc, R. (2004). “Sparsity: Optimization framework for sparse matrix

kernels.” International Journal of High Performance Computing Applications, 18(1):135–158, 2004.

Sage Publications, CA, USA.

[17] Vuduc, R. (20030. “Automatic performance tuning of sparse matrix kernels.” Doctoral Dissertation,

University of California, Berkeley, Berkeley, CA, USA.

[18] Vuduc, R., James, W. D. and Katherine, A. Y. (2005). “OSKI: A library of automatically tuned

sparse matrix kernels.” Proceedings of SciDAC, J. Phys.: Conf. Series, IOP Science. 16: 521–530,

2005.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.2, April 2012

165

[19] Williams, s., et al. (2007). “Scientific computing kernels on the Cell processor.” Proceedings of the

2007 ACM/IEEE Conference on Supercomputing (SC’07), International Journal of Parallel

Programming, 35(3):263–298, 2007. Kluwer Academic Publishers Norwell, MA, USA.

[20] Lee, B. C., Vuduc, R., Demmel, J. and Yelick, K. (2004). “Performance models for evaluation and

automatic tuning of symmetric sparse matrix-vector multiply.” Proceedings of the International

Conference on Parallel Processing (ICPP’04). IEEE Computer Scoiety, Washington, DC, USA.

[21] Muthu Manikandan Baskaran and Rajesh Bordawekar (2008). “Optimizing sparse matrix-vector

multiplication on GPUs using compile-time and run-time strategies.” Technical Report RC24704

(W0812-047), IBM T.J.Watson Research Center, Yorktown Heights, NY, USA, December 2008.

[22] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schr¨oder (2003). “Sparse matrix solvers on the

GPU: Conjugate gradients and multigrid.” Proceedings of Special Interest Group on Graphics Conf.

(SIGGRAPH), San Diego, CA, USA, July 2003.

[23] Matthias Christen and Olaf Schenk (2007). “General-purpose sparse matrix building blocks using the

NVIDIA CUDA technology platform.” Proceedings of Workshop on General-Purpose Processing on

Graphics Processing Units (GPGPU).

[24] Michael Garland (2008). “Sparse matrix computations on manycore GPUs. ” Proceeding of

ACM/IEEE Design Automation Conf. (DAC),2–6. Anaheim, CA, USA.

[25] Roman Geus and Stefan R¨ollin. (2001). towards a fast sparse symmetric matrix-vector multiplication.

Journal of Parallel Computing, 27 (7):883–896.

[26] http://www.cise.ufl.edu/research/sparse/matrices/Williams/index.html

Authors:

B. Neelima is working as Asst. Professor in Dept. of Computer Science and

Engineering at NMAMIT, Nitte, Karnataka. She is also pursuing her research at NITK

surathkal under the guidance of Dr. Prakash S. Raghavendra, in the area of High

Performance Computing. She has around 11 years of teaching and research experience.

She is instrumental in getting a Department of Science and Technology (DST) R&D,

Govt. of India project with 16lakhs funding.

She also brought in various industry associations to the college like IBM center of excellence, NVIDIA

CUDA Teaching Center, Intel and AMD University programs etc to name a few. She has guided 6 PG

projects and around 40 UG projects till today. She has around 20 publications in various International and

National Journals and conferences. She is also instrumental in bringing in various new electives into the

curricula of NMAMIT, Nitte, an autonomous college.

Dr. Prakash Raghavendra is a Faculty at Depatment of information Technology,

NITK, Surathkal from Feb 2009. He received his Doctorate from Computer Science

and Automation Department (IISc, Bangalore) in 1998, after graduating from IIT

Madras in 1994.

Earlier, Dr. Prakash was working in Kernel, Java and Compilers Lab in Hewlett-

Packard ISO in Bangalore from 1998 to 2007. He was exposed to some of the area in

Computer systems, during this period. Dr. Prakash also was working for Adobe

Systems, Bangalore from 2007 to 2009 before joining NITK. At Adobe, Prakash was

working in the area of Flex Profilers.

Dr. Prakash's current research interests include Programming for Heterogeneous Computing, Web Usage

Mining and Rich Internet Apps. Dr. Prakash has been honoured with 'Intel Parallelism Content Award' in

2011 and 'IBM Faculty award' for the year 2010.

