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ABSTRACT

The paper presents a technique for construction of Cn interpolating rational Bézier spline curves by means
of blending rational quadric Bézier curves. A class of polynomials which satisfy special boundary
conditions is used for blending. Properties of the polynomials are considered. The constructed spline
curves have local shape control that make them useful in such geometric applications as real-time
trajectory generation and fast curve sketching.
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1. INTRODUCTION

Interpolating spline curves play important role in different geometric applications. This paper
presents an approach to construction of interpolating rational Bézier spline curves with local
control which have Cn continuity. This property makes the spline curves suitable for using in
different real-time geometric applications concerned with trajectory generation. A shape of
the constructed spline curve can be modified by means of weights which are assigned to knot
points of the spline curve. This feature enables using of the presented spline curves for fast
sketching.

Segments of the presented spline curves are constructed by means of blending rational
quadric Bézier curves represented in homogeneous coordinates. The blending is performed by
means of special polynomials which are considered in the paper. The polynomials ensure a
necessary parametric continuity of the designed spline curves. The presented approach can be
considered as generalization of the approach to construction of interpolating spline curves in
linear spaces considered by the author [1].

Firstly construction of spline curves by linear blending of parabolic arcs was proposed by
Overhauser [2] and considered by Rogers and Adams [3]. Using linear blending of conics for
construction of spline curves was considered by Chuan Sun [4]. Polynomial blending which
ensures Gn continuity is considered in other articles of Hartmann [5] and Meek, Walton [6].
Some other works concerned with interpolation with rational spline curves can be mentioned.
Tai, Barsky and Loe presented an interpolation method that is based on blending a nonuniform
rational B-spline curve with a singularly reparameterized linear spline [7]. Interpolating rational
spline curves of cubic degree with shape control are considered in works [8-10]. Rational
cubic spline curves with G2 continuity is considered in the work [11]. Weighted rational cubic
spline interpolation and its application are considered in the articles [12-15].



International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.4, October 2013

2

2. BLENDING POLYNOMIALS

The purpose of this section is to define polynomials which will be used for blending of parametric
curves. For this purpose consider the following knot sequences
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It follows from this definition that the polynomials wn(u) meet the following boundary conditions:
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The polynomials wn(u) have the following properties:
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of Bernstein polynomials. It follows from Equation (2.4) that the polynomials wn(u) are
symmetric with respect to the point (1/2,1/2).
Besides it can be proven that
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Proofs of the properties can be found in the paper [1]. Figure 1 shows graphs of the polynomials
wn(u).

The following polynomials of lower degrees:
uuw =)(1 ,

32
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5432
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are often used in geometric applications.

Figure 1.  Graphs of the polynomials )(uwn

The polynomials wn(u) were introduced by the author [16, 17]. The representation of these
polynomials wn(u) by means of Bernstein polynomials was proposed by Wiltsche [18].

3. BLENDING CONIC ARCS

Consider two conic arcs pi(u), i∈{1, 2}, which are represented by means of rational Bézier
curves and have common boundary points that is
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The problem is to construct a parametric curve p(u) which has the following boundary points:

01 )0()0( ppp == , 22 )1()1( ppp == (3.2)
and satisfies the following boundary conditions:
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where n∈N. The parametric curve p(u) which satisfies Equations (3.2) and (3.3) is called a
parametric curve blending the parametric curves p1(u) and p2(u).

In order to solve the problem represent the parametric curves pi(u), i∈{1, 2}, using
homogeneous coordinates as follows:
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where the points x0, xi,1 and x2 have the corresponding weight coordinates w0, wi,1 and w2. Then
define the parametric curve x(u) as follows:
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It follows from this definition that the corresponding parametric curve p(u) which is obtained
from the parametric curve x(u) by transition to Cartesian coordinates has the following
rational representation:
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It follows form the definition of the polynomials wn(u) that the parametric curve p(u) satisfies
conditions (3.2) because
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Derivatives of the parametric curve p(u) depend on derivatives of the numerator and
denominator of Equation (3.5). In order to simplify further considerations introduce the
following denotations:
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Now determine derivatives of the numerator r(u) and denominator r(u). It is obtained using
Leibnitz's formula that
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for any m∈N. Substitution of Equations (2.2) into these equations yields that the derivatives
have the following values at the boundaries of the interval [0,º1]:
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for any }1,,2,1{ −∈∀ nm  . Now show the derivatives of the order n also have necessary
values at the boundaries of the domain [0,º1]. It can be seen that
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Thus it is proved that
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Using obtained results compute higher order derivatives of the parametric curve p(u). It
follows form Equation (3.5) using introduced denotations for the numerator and denominator
that
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Differentiation of the last equation using Leibnitz's formula yields that
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Substitution of Equations (3.6), (3.8) and (3.7), (3.9) into the last equation yields the
following values of derivatives at the boundaries of the interval [0,º1]:
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On the other hand it follows from Equations (3.1) that
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and therefore derivatives of the parametric curves pi(u), i∈{1, 2}, satisfy the following
equations:
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Show that Equations (3.10) and (3.12) are equivalent. Consider the first derivatives of the
parametric curves p(u) and p1(u). It follows from Equations (3.10) and (3.12) that the first
derivatives satisfy the following two equations:
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is also fulfilled. Then consider the m-th order derivatives of the parametric curves p(u) and
p1(u). It follows from Equations (3.10) and (3.12) that the m-th order derivatives satisfy the
following equation:
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It follows from the last equation taking into account the assumption that
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Therefore the last equation is fulfilled for all m∈N by the principle of mathematical
induction. Analogously it can be proven using Equations (3.11) and (3.13) that
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for all m∈N. Thus Equations (3.3) are also fulfilled.

Figure 2 shows some curves constructed by means of blending two conic arcs with the
polynomials wn(u).

Figure 2.  Blending conic arcs by means of the polynomials wn(u)

4. BÉZIER REPRESENTATION OF BLENDED CONIC ARCS

The purpose of this section is to obtain a rational Bézier representation of the blending
parametric curve p(u) described by Equation (3.5). In order to solve the problem consider a
homogeneous representation x(u) of the parametric curve p(u) which is described by Equation
(3.6). Using Equation (2.3) the homogeneous representation can be transformed as follows:
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It follows from the last equations that the parametric curve x(u) has the following Bézier
representation:
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Then transition to Cartesian coordinates yields that the blending parametric curve p(u) has the
following rational Bézier representation:
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For example, the numerator and denominator of cubic and quintic blending parametric curves
have the following Bézier representations:
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5. CONSTRUCTION OF TWO SMOOTHLY JOINED CONIC ARCS

The purpose of this section is to introduce analytical expressions for construction smoothly joined
conic arcs. The expressions will be used for construction spline curves in the next section.
Consider three distinct points p0, p1, and p2 with the corresponding weights w0, w1 and w2. The
problem is to construct two conic arcs pi(u), i∈{1, 2}, which are represented by means of
rational Bézier curves
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and are smoothly joined at the common point p1 that is
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In order to find control points p1,1, and p2,1 which ensure the necessary smooth junction represent
the conic arcs arcs p1(u) and p2(u) using homogeneous coordinates as follows
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The conic arcs arcs x1(u) and x2(u) are smoothly joined at the point x1 only provided that the
following two conditions:
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are fulfilled. Resolution of these equations yields the following values of unknown control
points x1,1 and x2,2 of the quadric Bézier curves x1(u) and x2(u):
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The values of knot points p1,1, and p2,1 can be obtained from these equations by transition to
transition to Cartesian coordinates as follows:
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Show that in this case the conic arcs arcs p1(u) and p2(u) are also smoothly joined at the point p1.
For this purpose represent the conic arcs p1(u) and p2(u) as follows:
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It follows from Equations (5.4) that the first two derivatives of the numerators ri(u) and
denominators ri(u) satisfy the following conditions at the common point p1:
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and
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It is obvious that any of all other higher order derivatives of the numerators ri(u) and
denominators ri(u) is equal to zero. Now transform Equation (5.7) as follows:
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and find the first derivatives of the equation parts. It is obtained that
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It follows from these equations taking into account Equations (5.8) and (5.9) that
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Analogously it can be proven that
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Now notice that all higher order derivatives of the conic arcs pi(u) at the common point p1

depends only values of these parametric curves at the common point and the first two derivatives
of the numerators ri(u) and denominators ri(u) at the common point. Then taking into account
the last two equations it can be stated that Equations (5.3) are also fulfilled. Thus it is obtained
that the conic arcs p1(u) and p2(u) are smoothly joined at the common point p1.
Since spline curves will be constructed by means of blending conic arcs it is reasonable to
consider shape modification of the conic arc by means of changing weights of its knot points.
This modification behaves just opposite to the modification of a weight of the conic control point.
That is if a weight of the conic control point increases then the conic pulls toward the control
point. Otherwise if a weight of the conic control point decreases then the conic pushes away from
the control point. Figure 3 shows modification of a conic shape depending on a weight of its
control point. Values of the weight are depicted near the knot points.

On the other hand if a weight of the conic knot point increases then the conic pushes away from
the control point. Otherwise if a weight of the conic knot point decreases then the conic pulls
toward the control point. Figure 4 shows modification of a conic shape depending on a weight of
its knot point.

Now it is clear how weights of knot points influence on shape of two smoothly joined conics.
Figure 5 shows modification of two smoothly joined conic shape by means of the weight which is
prescribed to the knot point.

Figure 3.  Modification of conic shape by means of a control point weight
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Figure 4. Modification of conic shape by means of a knot point weight

Figure 5. Modification of two smoothly joined conic shape by means of weights

More detailed considerations concerned with modification of rational curve shape by means of
weights are presented in the works of Piegl [19], Sánchez-Reyes [20] and Juhász [21].

6. RATIONAL BÉZIER SPLINE CURVES WITH LOCAL SHAPE CONTROL

The purpose of this section is to present a technique for construction of a rational spline curve
p(u)∈Cn, n∈N, which interpolates a sequence of knot points pi, i∈{0, 1, 2,..., k}, k∈N, with the
corresponding weights wi. In order to solve the problem construct a segment pi(u), 0 < i < k, of the
parametric curve p(u) by means of blending two conic arcs pi,1(u) and pi,2(u) as was proposed in
Section 3. Figure 6 explains construction a segment pi(u) of the spline curve p(u).

Figure 6.  Construction of a spline curve segment



International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.4, October 2013

12

In order to ensure Cn smoothness of the spline curve p(u) it is necessary to ensure that that the
conic arcs pi-1,1(u) and pi,2(u) are smoothly joined at the common point pi. This can be obtained by
constructing the conic arcs pi-1,1(u) and pi,2(u) as was proposed in Section 5. Taking into account
these considerations define the conic arcs pi,1(u) and pi,2(u) as follows:
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for i∈{1, 2,..., k} where the control points pi,1 and pi,2 with the corresponding weights wi,1 and wi,2

are defined using Equations
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Then a segment pi(u) of the spline curve p(u) can be defined using Equation (3.5) as follows:
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1
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It follows from Equations (3.3) and (5.3) that in this case segments of the parametric curve p(u)
satisfy the following condition:

)0()1( )(
1

)( n
i

n
i += pp , Nn ∈ .

Figure 7 shows how a shape of the spline curve depends on the weight prescribed to the knot
point of the spline curve. Weights of all other knot points of the spline curve are equal to the
unity.

Figure 7.  Modification of a spline curve shape by means of weights
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7. CONCLUSIONS

The approach to construction of Cn continuous interpolating spline curves by means of blending
rational quadric Bézier curves is introduced. Spline curves are constructed locally which
implies local shape control of them by means of weights which are assigned to the knot
points of the constructed spline curve. Bézier representation of the considered spline curves is
introduced. The presented technique can be used for fast prototyping rational spline Bézier.
Besides since the spline curves are constructed locally the presented technique can be also
used in real-time geometric applications connected with computer graphics and animation.
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