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ABSTRACT

A single two dimensional (2D) image does not contain depth information. An infinite number of points in
the three dimensional (3D) space are projected to the same point in the image plane. But a single 2D image
has some monocular depth cues, by which we can make a hypothesis of depth variation in the image to
generate a depth map. This paper proposes an interactive method of depth map generation from a single
image for 2D-to-3D conversion. Using a hypothesis of depth variation can reduce the human effort to
generate a depth map. The only thing required from a user is to mark some salient regions to be
distinguished with respect to depth variation. The proposed algorithm makes hypothesis of each salient
region and generates a depth map of an input image. Experimental results show that the proposed method
gives natural depth map in terms of human perception.
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1. INTRODUCTION

Thanks to the growth of three dimensional (3D) market including stereo vision, 3D graphics, 3D
visualization and so on, various 3D technologies have been realized. Lots of 3D devices, such as
television, mobile phone, and projector, have been developed. Accordingly, the demand for 3D
contents has been increased. Compared to making two dimensional (2D) contents, making 3D
contents requires special equipment like Rig, experts to produce 3D contents, and extra time to
editing 3D contents. Therefore, production of 3D contents is time-consuming and expensive
process. Instead of making 3D contents directly, 2D-to-3D conversion is used as an alternative to
meet user’s demand for 3D contents.

For successful 2D-to-3D conversion, depth information is needed. Based on a depth map, we can
generate stereoscopic image or another view image from a single image [1]-[3]. The depth
information is not included in 2D images. But human perceives a sense of depth from various
heuristic, monocular depth cues: focus/defocus [4], [5], relative height/size and texture gradient
[6], structural feature from occlusion [7], geometry and texture [8], [9], and so on. These
monocular depth cues make human perceive depth from a single-view image. Based on these cues,
many studies [4]-[9] have been done. Even though an image has various monocular cues, it is
difficult for these studies to estimate depth map from monocular cues alone. Lai et al. [4]
estimated depth from defocus. Zhuo and Sim [5] generated a defocus map by estimating defocus
blur at edge location and propagated the blur amount to get a dense defocus map. The defocus
map reflects depth information well but it is assumed that there exists some blur depending on
depth in the input image. In other words, the image should be taken from a camera with the
shallow depth of field of a lens and a large aperture. Jung et al. [6] made depth map using relative
height cue, in which a closer object in scene is shown in the lower part of the projected image.
They detected edge information and traced strong line with rules of the relative height cue. This
method is good for usual scenery images but the performance of depth estimation highly depends
on the composition of input image. Dimiccoli and Salembier [7] segmented an input image using
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depth ordering and T-junctions. T-junction is a structural feature from occlusion, which indicates
that an object exists partly in front of another object. This method is good for an image with
simple objects but the performance of depth ordering is degraded with the increase of ambiguous
T-junction features in outdoor images. Cheng et al. [8] produced depth map using depth
hypothesis. They analyzed a geometrical perspective of input image to make a depth hypothesis.
Han and Hong [9] constructed a hypothesis for depth map by using vanishing point detection. It is
not easy to form a hypothesis that matches with an input image.

There are some methods with prior information. Saxena et al. [10] applied supervised learning to
predict a depth map. They collected a training set of monocular image and ground truth depth
map of unstructured outdoor images.  This method provided satisfactory depth map for outdoor
images but it required a lot of training data. Liu et al. [11] presented a learning based method in
which seven semantic labels were used to estimate depth map.

These automatic methods are still limited to get enough performance from arbitrary input image.
Still in many parts of the 2D-to-3D conversion, progress proceeds with human interaction.
Recently, Ward et al. showed that if the estimated depth gives a shape similar to that of an object
even though the depth estimation is not accurate, then it is enough to generate 3D effect [12].
They proposed an interactive system for adding depth information to movies, in which depth
templates were used to form a 3D shape. This pseudo-3D technique is useful for reducing human
intervention.

We propose a depth map generation method for 2D-to-3D conversion using local depth
hypothesis. The proposed method is a semi-automatic and simple method with a little intervention
from a user.

The rest of the paper is organized as follows. Section 2 describes the proposed method of depth
map generation. Experimental results of the proposed depth map generation method are given and
discussed in Section 3. Section 4 describes the proposed extensions. Finally, in Section 5
conclusions and future research directions are given.

2. PROPOSED DEPTH MAP GENERATION METHOD

We propose an interactive depth map generation method using local depth hypothesis. Figure 1
shows a block diagram of the proposed depth map generation method. It consists of four parts:
scene grouping, local depth hypothesis generation, depth assignment, and depth map refinement.
Let I be an input image and M denote a user input that indicates how to segment I into several
salient regions S. Hlocal is the local depth hypothesis and G represents the grouped image using a
graph-based segmentation algorithm [13]. Dinit signifies the initial depth map whereas Dfinal

denotes a refined final depth map. Description of each part is given in the following.
2.1. Scene Groupoing

Figure 1. Block diagram of the proposed depth map generation method.
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The local depth hypothesis Hlocal represents general depth transition across salient regions.
However, it is not enough to show details of depth variation inside the salient region; depth
discontinuities can exist between objects in each salient region. So we need a segmentation to
represent detailed depth variations inside the salient region. It is assumed that regions of similar
intensity are likely to have similar depth. We use a graph-based segmentation algorithm [13] in
grouping similar regions in order to improve salient segmentation and assign the same depth
value to the segmented region at the next stage. Figure 2(b) shows the scene grouping result G of
the input image in figure 2(a), in which the same group is represented by the same color. This
result can distinguish detailed depth variations in the scene.

2.2. Local Depth Hypothesis Generation
2.2.1. Salient region segmentation

In a scene, depth varies gradually. Due to this fact, we make a local depth hypothesis. In depth
hypothesis generation block in figure 1, depth hypothesis is generated with structural information
of the input image and user interaction. To divide regions of different depth variation, an input
image is segmented into two or more salient regions using an interactive graph-cut algorithm [14].
A user defines salient regions of an input image to distinguish depth discontinuity between
objects as shown in figure 3(a). As shown in figure 3(b), one of segmented regions (gray region)
represents a main object whereas the others (white region and black region) are background. This
step segments the input image with a much smaller number of regions compared to figure 2(b).
The result of scene grouping and salient segmentation can be different at boundaries. Because the
result of scene grouping reflects detail structure, we refine the salient segmentation using scene
grouping result. figure 3(c) shows the refined result of salient segmentation.

2.2.2. Salient region segmentation

Using structural information, we obtain a cue to build local depth hypotheses Hlocal. First, we
extract lines using Hough transform from an edge map of the input image and detect the
vanishing point of each salient region, V [15]. Edge map can be obtained using Canny edge
detector [16]. Lines corresponding to each salient region are used to determine a vanishing point.
Vanishing point is determined as a point that minimizes the sum of distances of detected lines
[15], which is expressed as
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(a) (b)
Figure 2. Segmentation results of scene grouping. (a) original image (450× 340), (b) scene
grouping result.
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where N is the number of detected lines, (ρi, θi) represents a set of detected lines, vi denotes the
number of times that i-th line pair is observed, and M signifies the total number of votes in polar
coordinate system. Figure 3(d) shows a detection result of lines and the vanishing point of the
gray region in figure 3(c).

Before we determine hypothesis of each region, depth information in depth map is expressed in
grayscale and the origin is assumed to be at the bottom center of the input image. The brighter the
region is, the closer it is located to a camera. The detected vanishing point represents the farthest
point in an image. The closer a point to the vanishing point, the farther the point locates from a
viewer or a camera. This property is represented in terms of the distance from the vanishing point.

2.2.3. Hypothesis generation

Based on the detected vanishing point, local depth hypothesis is formed according to gradual
depth variation. The depth hypothesis of each salient region will be determined by the Euclidean
distance [17] and relative height depth cue [9]. Euclidean distance is simple and easy to
generalize. It has isotropic directional characteristic unlike chessboard distance or city block
distance. The Euclidean distance hypothesis of k-th salient region, ),( yxH k

E
is determined from

the vanishing point as
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where ),( k
VP

k
VP yx represents the position of the vanishing point of k-th salient region.

Relative height depth cue represents that the closer a point in 3D world coordinate to a camera is,
the lower the point is projected in a 2D image plane [6]. Natural scene images are generally
composed of ground and sky. The ground is shown in lower part of the image whereas the sky in
the upper part. Therefore, relative height depth cue hypothesis ),( yxH R is determined by y
coordinate alone (independent of the detected vanishing point) as

(a) (b)

(c) (d)
Figure 3. Segmentation of depth salient regions and vanishing point detection. (a) original image
(450×340) with user input strikes, (b) salient region segmented image, (c) refined salient region
segmented image, (d) detected lines and the vanishing point of gray region in (c).
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where H is the height of the input image. This hypothesis reflects the gradual variation in depth
with the y coordinate value, that is, gray scale for depth representation changes gradually along
the y-axis.

Our proposed method combines these two depth hypotheses to determine the depth hypothesis of
k-th region ),( yxH k as
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where k
Ew and k

Rw denote weight coefficients for two hypotheses: Euclidean distance hypothesis
and relative height depth cue, respectively. If some salient regions have no detected line or no
vanishing point, the depth hypothesis of each region will be determined by relative height depth
cue only, i.e., ),(),( yxHyxH R
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and k
Ew is computed as .1 k

R
k
E ww −= The larger y coordinate of vanishing point k

VPy is located inside

the image, the higher the contribution of relative height depth cue is. Using a combination of two
basic hypotheses HE and HR we can make a hypothesis that reflects both depth variation and the
location of the detected vanishing point.

Figure 4 shows how the depth hypothesis is determined. Figure 4(a) is Euclidean distance
hypothesis HE of gray salient region in figure 3(c). The vanishing point of the region is located in
the left outside the input image therefore the depth is deeper from right to left. Figure 4(b) shows
relative height depth cue hypothesis HR and figure 4(c) shows combined depth hypothesis H. The
top left part of figure 4(c) is darker than that of figure 4(a) because the relative height depth cue in
figure 4(b) affects depth hypothesis.

Figure 5 shows some examples of combined depth hypothesis H with respect to location of
vanishing point V. Depending on the location of vanishing point, the weighting factor and the
shape of Euclidean distance hypothesis are determined. If the detected vanishing point is far
outside of the input image along the positive y-axis, then the hypothesis is determined by the
relative high depth cue alone as shown in Figure 5(a). Figures 5(b)-5(f) show the combined
hypotheses which are determined from both basic hypotheses. Figures 5(g)-5(i) show hypotheses
that are determined by Euclidean distance alone because the y-coordinate of the detected
vanishing point is lower outside of the input image.
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With the salient region segmented image (figure 3(c)), we combine two types of depth hypotheses
(figures 4(a) and 4(b)) to reflect the general tendency of depth transition with salient features
preserved. Its result, i.e., the local depth hypothesis Hlocal is shown in figure 6(a). The local depth
hypothesis of other region is made by depth height cue alone because vanishing point is not
detected in that region.

2.3. Depth Assignment

Using the results obtained in previous steps, we generate initial depth map Dinit with Hlocal. We
assign a depth value to each segment group using the local depth hypothesis. The initial depth
value at given point ),( yxDinit

is assigned by local depth hypothesis Hlocal and the average depth

value in the scene group G, .
),( yxG

localH The average depth value of the scene group G, ),( yxG
localH is

computed as

(a) (b) (c)

Figure 4. Determination of depth hypothesis. (a) Euclidean distance hypothesis HE, (b)
relative height depth cue hypothesis HR, (c) combined depth hypothesis H.

H: height of input image
W: width of input image

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Combination of depth hypotheses depending on the location of detected vanishing
point, where the origin is at the bottom center of input image. Left image shows relative
position of detected vanishing point. (a) (–0.8W, 2.1H), (b) (0, 1.3H), (c) (1.2W, 1.1H), (d) (–
W, 0.3H), (e) (0, 0.5H), (f) (1.3W, 0.8H), (g) (–0.8W, –0.2H), (h) (0.2W, –0.3H), (i) (0.6W, –
0.1H).
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where NS(x,y) represents the number of pixels in a scene group S(x, y). In scene grouping process,
we assume that regions of similar intensity are likely to have similar depth values. This
assumption does not hold if depth variation is large within the same region. Usually, scene group
with a large number of pixels has large depth variation, where depth variation is measured in
terms of the depth difference between the maximum and minimum depth values. Therefore, we
check the size (number of pixels) of the region to classify scene groups. Initial depth map Dinit is
determined as
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where Nth denotes threshold to detect regions that have large difference between minimum and
maximum depth values within the same region. If the scene group is small enough to have the
uniform depth, the depth value of the scene group is determined only by the average value of the
local depth hypothesis. Otherwise, the depth value of scene group is determined using both the
average value of the local depth hypothesis of the scene group and the local depth hypothesis.

Figure 6(b) shows initial depth map Dinit of input image. The initial depth map, Dinit represents
depth information with regard to depth hypothesis while preserving detail information. A group
with wide depth range, as indicated by a box in figure 6(b), is not assigned to a constant depth
value. A depth value of point A is 153 while that of point B is 204. This result reflects that wide
variation of depth hypothesis is also considered as well.

2.4. Depth Refinement

In the initial depth map Dinit, each region can have a depth value different from those of
neighboring pixels though they have similar depth values that belong to the same object in the
original image. If one region with the same depth in a real scene is divided into several sub-
regions with each different depth value, it can produce unnatural artifacts. So, using cross-
bilateral filter [8], [18], the proposed method refines the initial depth map as
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where p denotes coordinate (x, y) and q is the coordinate of its neighboring pixels, and the
normalization constant Wp is expressed as

(a) (b)

Figure 6. Depth hypothesis generation. (a) local depth hypothesis Hlocal, (b) initial depth map Dinit.
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where Dfinal represents refined depth map, G is the Gaussian function with mean p and scale

, )(pΩ denotes neighboring pixels of p. The input image is used as a reference image for cross-
bilateral filtering. This process can preserve discontinuities in depth, while smoothing regions of
similar intensity at the same time.

3. EXPERIMENTAL RESULT AND DISCUSSIONS

Experimental results give the intermediate result of the proposed method to show the performance
of the proposed method and its application.

Figure 7 shows experimental results with regard to vanishing point that lies inside the image.
Figure 7(a) is Hallmonitor sequence image used as an input image and figure 7(b) shows a scene
grouped image G and figure 7(c) shows refined salient segmentation result. Figure 7(d) shows
local depth hypothesis Hlocal. This result is obtained with two regions of salient segmentation,
people and background. The vanishing point of the background is located in the upper middle part
of the image. Figure 7(e) shows depth assignment result Dinit from local depth hypothesis (figure
7(d)). This depth map shows that the distance at the end of the corridor is the largest. The ceiling
is farther than floor from viewer. This result coincides with human perception.

Figure 8 shows experimental result of influence of salient region segmentation. Figure 8(a) is
Akko&Kayo sequence image used as an input image and figures 8(b) and 8(c) show a scene
grouped result G and refined salient segmentation result, respectively. In this test image,
vanishing point of the white salient region is not detected, thus the local depth hypothesis Hlocal is
determined by relative height depth cue HR alone as shown in figure 8(d). The initial depth map in
figure 8(e) shows that even the local depth hypothesis Hlocal is determined by relative height depth
cue HR alone, the initial depth map can distinguish object and background since the salient
segmentation result S is powerful information from user.

The visual quality of the proposed method depends on result of scene grouping G. In depth
assignment step, the depth is assigned according to scene grouping result. Because detail
structures of the depth map follow the result of scene grouping, the scene grouping should
segment an image to faithfully represent distinct detail structures.
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(a) (b) (c)

(e) (e)

Figure 7. Experimental results. (a) original input image (Hallmonitor, 352× 288), (b) scene
grouped image G, (c) refined salient segmentation, (d) local depth hypothesis Hlocal, (e) initial
depth map Dinit.

(a) (b) (c)

(d) (e)

Figure 8. Experimental results. (a) original input image (Akko&Kayo, 640×480), (b) scene
grouped image G, (c) refined salient segmentation, (d) local depth hypothesis Hlocal, (e) initial
depth map Dinit.
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Figure 9 shows simulation results of the proposed method compared with two existing 2D-to-3D
conversion methods [8], [9]. First row shows the depth maps in grayscale whereas second row the
depth maps represented by 3D plot. Figures 9(a) and 9(d) show the depth map by Cheng et al.’s
algorithm [8] that uses a single (right to left) depth hypothesis. Figures 9(b) and 9(e) show the
depth map by Han and Hong’s method [9], in which a depth hypothesis is estimated from
Gaussian distribution with a vanishing point and height depth cue. Because both methods are
global methods with a single depth hypothesis, the results cannot accurately reflect the local depth
discontinuity. In the result of Cheng et al.’s algorithm, the right part of the sky appears closer than
building. In figure 9(d), the right roof and middle wall is too pop-up rather than neighboring
region of wall. In the result of Han and Hong’s method, the building is closer along lower part of
the building. And two existing methods give a big difference in the right side of outer wall of the
building and the left side. On the other hand, as shown in figure 9(c), the proposed method can
effectively reflect the local depth transition by the salient segmentation. And figure 9(f) shows the
proposed method reflects human perception well. Therefore, the sky appears farther than building
and the depth changes gradually in the outer wall. With simple user interaction, we can generate a
depth map that preserves both the global and local transitions of depth.

Depth map is used to depth image based rendering. Figure 10 shows anaglyph image that is
generated by using input image and depth image. Anaglyph image provides a 3D effect when
viewed with red-cyan glasses. To generate an anaglyph image, a single input image and its depth
map are used. Using depth information, we can generate stereo pair images from the input image.

The proposed method generates depth map with simple user interaction. The proposed system
takes more computation than other methods because our method needs additional salient
segmentation process. However, these days cloud computing service is being started. Cloud
computing services can reduce the load of hardware implementation. It delivers computing data
via Internet to make server compute the process. Therefore, the proposed method can be applied
to such consumer devices or applications.

(a) (b) (c)

(d) (e) (f)

Figure 9. Final depth map. From left to right, Cheng et al.’s method [8], Han and Hong’s
method [9], and proposed method. (a)-(c) depth map represented by grayscale, (d)-(e) depth
map represented by 3D plot.
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The proposed method can be applied to key frame interpolation for 2D-to-3D video conversion
[19]. It generates frame. The depth sequences of non-key frames are interpolated using depth
maps of key frames.

4. EXTENSIONS

The proposed method uses user interactions only for distinct depth discontinuities. Based on the
proposed method, we can extend the proposed method with more active use of user interaction.
For extensions of basic structure of the proposed methods, we consider using user information
more explicitly or obtaining more information for depth hypothesis generation. If we use more
active user interaction, some processes can be replaced or eliminated. Then, the use of user
interaction can be done more efficiently.

First extension is to use the user interaction that can replace the vanishing point detection and
hypothesis generation process. With no additional user input, we can consider defining some
basic hypotheses. Many scenery scenes can be categorized by several hypotheses. We can
consider some hypotheses as basic linear hypotheses that are modified version of relative height
depth cue with the direction of gradual depth variation is changed. In [8], five basic hypotheses
are proposed. In addition to these basic hypotheses, uniform hypothesis for planar region and
Euclidean hypotheses can be used. Figure 11 shows these basic hypotheses. Figures 11(a)-11(c)
show three types of linear hypotheses. Figures 11(d) and 11(e) are two types of Euclidean
distance hypotheses: convex type and concave, respectively. Figure 11(f) shows uniform
hypothesis for background that can be used for the case in which relative emphasis is on an object
in the background [20]. When user inputs seeds, user determines which basic hypothesis is
matched to the stroked region. This can be easily done in user stroke step with no additional input
of different color strokes. This extension directly obtains 3D information from user. Therefore, it
prevents errors due to incorrect estimation from vanishing point detection or hypothesis
generation.

Or, we can consider taking the vanishing point with additional user input. User can easily provide
position of the vanishing point by pointing a position or input a coordinate. This can eliminate the
vanishing point detection step.

Figure 12 shows experimental results of the proposed methods: basic structure (figures 12(a)-
12(d)), extension 1 (figures 12(e)- 12(h)), and extension 2 (figures 12(i)-12(l)). In extension 1,
user selects bottom to top (figures 11(a)), right to left (figures 11(b)), and uniform (figures 11(f))
hypothesis for Building image whereas concave Euclidean and uniform hypothesis for
Akko&Kayo sequence image. In extension 2, user gives location of vanishing point that is left
outside of the image for gray salient region of building image. For Akko&Kayo sequence image,

(a) (b)

Figure 10. Stereo view depth image based rendering result. (a) Building, (b) Hallmonitor.
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user selects location of vanishing point of whiter region which is inside the white salient region.
As we use user interaction actively, the performance of the proposed method is enhanced with the

viewpoint of human perception.

(a) (b) (c)

(d) (e) (f)

Figure 11. Basic hypotheses. (a) bottom to top linear hypothesis (same as relative height depth
cue), (b) right to left linear hypothesis, (c) left to right linear hypothesis, (d) convex Euclidean
hypothesis, (e) concave Euclidean hypothesis, (f) uniform hypothesis for background.

Methods
Building Akko&Kayo

Hlocal Dfinal Hlocal Dfinal

Basic
structure

(a) (b) (c) (d)

Extension 1

(e) (f) (g) (h)

Extension 2

(i) (j) (k) (l)

Figure 12. Comparison of experimental results of basic structure and extensions.
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Table 1 shows a comparison of the proposed method (basic structure) and its extensions.
Extension 1 gets hypotheses information from user whereas extension 2 acquires vanishing point
information from user. To get prior information directly from user can reduce some process to
determine hypothesis. It significantly improves the accuracy of depth hypothesis without unduly
increasing user interaction.

5. CONCLUSIONS

This paper proposes a depth map generation method from a single image for 2D-to-3D
conversion with user interaction. The proposed method combines depth hypotheses with the
salient segmented image, and refines the initial depth map using a cross-bilateral filter. The
proposed depth map maintains salient depth values and local transition of depth. It can generate
natural depth map from the viewpoint of human perception and be easily applied to video
interpolation for 2D-to-3D conversion. With additional considerations of the use of user
interaction, the proposed method can be extended in many ways. Future research will focus on
reducing human intervention, so that ultimately, the proposed depth map generation method can
be automated.
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