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ABSTRACT 

 
The nature has inspired several metaheuristics, outstanding among these is Ant Colony Optimization 

(ACO), which have proved to be very effective and efficient in problems of high complexity (NP-hard) in 

combinatorial optimization. This paper describes the implementation of an ACO model algorithm known as 

Elitist Ant System (EAS), applied to a combinatorial optimization problem called Job Shop Scheduling 

Problem (JSSP). We propose a method that seeks to reduce delays designating the operation immediately 

available, but considering the operations that lack little to be available and have a greater amount of 

pheromone. The performance of the algorithm was evaluated for problems of JSSP reference, comparing 

the quality of the solutions obtained regarding the best known solution of the most effective methods. The 

solutions were of good quality and obtained with a remarkable efficiency by having to make a very low 

number of objective function evaluations.  
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1. INTRODUCTION 

 
ACO is a metaheuristic that brings together concepts from fields such as Artificial Intelligence 

and Biology, inspired in the collective behavior of ants. These social insects form colonies of 

ants, which are self-organizing systems and decentralized which are considered as a Swarm 

Intelligence [12]. Thanks to that intelligence emerging from simple relationships between ants, a 

colony can solve complex problems in their environment, such as the problem of finding the 

shortest path between the colony and the food, which can be used to find the best solution for 

combinatorial optimization problems. 

 

In this paper, we apply the collective intelligence of many simple agents to the problem of Job 

Shop Scheduling [22], which consists of finding an optimal plan that minimizes the makespan, 

which is the time required to perform a finite number of tasks in a finite number of machines [13]. 

Each task is a sequence of operations, each one with a determined machine and processing time. 

Feasible solutions must comply with the restrictions that apply to the problem of Job Shop 

Scheduling, as respecting the precedence between operations determining the technological 
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sequence without interrupting any operations until completion [21]. The operations conform the 

graph nodes that represent the problem, united by edges in which ants are moving. Each 

individual only has local information of the system that shares through a hormone called 

pheromone. 

 

The update of the pheromone trail deposited on the edges can be done globally or locally. Ants 

build roads that represent feasible solutions, guided by the pheromone trails and the heuristic 

information of each edge [1]. For this reason the ant population performs a stochastic search, 

selecting the next node to visit only based on information available locally, used on a 

probabilistic approach where initially the ant decisions are completely random in the absence of 

pheromone trails.  

 

In the literature, several algorithms have been proposed following the ACO probabilistic 

technique for finding approximate solutions to complex optimization problems. The first ACO 

algorithm was Ant System (AS), proposed by Marco Dorigo in 1991 [26], and completed with the 

contributions of Maniezzo and Colorni [1]. New developments gave better results, like Ant 

Colony System (ACS) [2], the Max-Min Ant System (MMAS) [7], the Rank-based Ant System 

(ASrank) [8], among others. This article presents a variant of Elitist Ant System, also proposed by 

Dorigo as an improvement to SH [1], applied in JSSP instances widely used known as LA 

instances, that were raised by Lawrence [11]. 

 

2. JSSP PROBLEM FORMULATION 

 
The JSSP or resource planning problem (or jobs) consists in "accommodate resources over time 

to perform a set of jobs" [6], building plan or execution sequence of jobs j in a set of m machines 

[13], where an operation is every job that is processed in each machine (Operation(j, m)) and is 

assigned a specific processing time. 

 

This problem is presented in multiple human activities, taking applications to tasks such as 

scheduling for packet delivery (eg airway), computer networks (networking), computers 

(multitasking and multiprocessing), project management (agenda or plan), production and 

administrative processes (eg assembly lines, etc.) [20]. 

 

JSSP must comply with certain restrictions in the execution of jobs and the goal is to complete 

them in the shortest possible time. This time to optimize is known as makespan (CMAX) or 

Maximum Workflow which forms the objective function to minimize given as 

, where  is the job completion time. It is a combinatorial 

optimization problem because the number of candidate solutions is combinatorial in size with 

variables of discrete nature, therefore the representation of the solutions are permutations over the 

operations of each job, making it impossible to determine all possible solutions in a reasonable 

time. 

 

2.1. Computational complexity of JSSP 

 
In 1976 Michael Garey [17] provided evidence that this problem is NP-hard for m> 2, ie cannot 

be quickly found (polynomial-time) an optimal solution for JSSP with more than two machines. 

Along with David Johnson in 1979, they finished demonstrating that JSSP is NP-hard [18], unless 

in Computational Complexity Theory is proved that P = NP, if so, any problem that can be 

checked quickly by a computer, it could also be quickly resolved by that computer. 

 

The NP-hard complexity of JSSP lies in the vast number of possible combinations that arise 

because each sequence of operations on a machine can be permuted independently of the 
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sequence of operations on another machine, so with a few jobs and machines can have  

possible solutions which corresponds to the search space (S) of the problem. 

 

2.2. Formal definition of Job Shop Scheduling Problem 

 
Having [5]: 
 

 : Set of n jobs to be processed. 

  : Set of m machines or resources. 

 : Operation of the job  that must be processed in the machine  by . 

 : Uninterrupted period of processing time for each operation. 

 

Objective function: Minimize  

Subject to:  

 

Start times restriction for each operation   

Precedence constraint  if  preceding   

Disjunctive restriction   if  preceding , 

             in another case. 

Where: , with . 

 

The previous set of constraints of the JSSP is explained of this way [21]: 

 

Start restriction: The time when an operation starts are not specified, so work can start at any 

point in time as long as the required machine is available. 

 

Restriction of precedence: Each job must go through a particular sequence of operations that is 

predefined, so that operations cannot begin until the end of its predecessor, preventing the 

processing of two operations of the same job simultaneously. 

 

Restrictions disjunctive: A machine can process only one job at a time. Each operation must be 

fully processed on a single machine and cannot be interrupted even if there are jobs waiting for 

that machine to be available, for instance, no work may be processed more than once on the same 

machine. 

 

In addition to the above restrictions, we have determined that all operations have the same 

priority of processing, and all machines are the same and can be idle at any time. The fulfillment 

of these restrictions can be seen clearly by a Gantt chart (Figure 1), which shows an instance of 

JSSP (Table 1) matrix defined by [15], in which it has an additional column to indicate that each 

row of the matrix corresponds to a job (J1, J2 and J3). 

 
Table 1.  An instance of JSSP 3×3  

 

Job (J) Machine (time) 

Sequence: S1 S2 S3 

J1 3 (4) 2 (3) 1 (3) 

J2 2 (1) 3 (2) 1 (4) 

J3 2 (3) 1 (2) 3 (3) 
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Figure 1.  Gantt diagram of a 3×3 instance of JSSP 

 

The JSSP is usually represented as a disjunctive graph G = (V, C ∪ D) [14], where V is 

the set of nodes (Figure 2) representing the Operations (job, machine) with the exception 

of starting node (I) and ending nodes (F) of the graph, C is a set of directed graphs (→) 

linking operations corresponding to the same job (technological sequence), and D is a set 

of undirected graphs connecting operations running on a same machine. In addition 

the processing time of each operation is placed in the upper part of node. 

 

 
 

Figure 2.  Graph of a 3×3 instance of JSSP 

 

The problem of Job Shop Scheduling has been tackled with methods that can only solve 

instances of a limited number of operations, because they perform exhaustive searches to 

find the exact solution, as Branch and Bound (B&B) proposed in 1960 [23], can solve 

only up to 15 x 14, ie up to 220 operations [24]. So it must use approximate methods 

(Table 2 [9]) like simulated annealing (SA), Tabu Search (TS) [10], Iterative Local 

Search (ILS), GRASP, ACO, Evolutionary Algorithms (EA) as Artificial Immune System 

(AIS) and Cultural algorithm (CULT), etc. 
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Table 2.  The main features of metaheuristics  

 

Metaheuristic Features 

SA 
Acceptance criteria 

Cooling Time 

TS 
Choosing neighbor (tabu list) 

Suction Criterion 

EC 

Recombination 

Mutation 

Selection 

ILS 

Local search 

Initial movement 

Acceptance criteria 

ACO 
Construction probabilistic 

Update pheromone 

GRASP 
Local Search 

Restricted Candidate List (RCL) 

 

3.  ANT COLONY OPTIMIZATION 

 
This bioinspired algorithm is based on a population of ants that perform a cooperative search. In 

an experiment of the self-organization of Argentine ants made in 1989 [12], we observed the 

feeding behavior of a colony of ants, that were able to find the shorter branches of a bridge 

between the nest and the food (Figure 3), through the pheromone trail they leave behind when 

moving. 

 

 
 

Figure 3.  Picture of a colony of ants that find the shortest path to the food [12] 

 

The ants initially move randomly in search of food and along the way back to the colony the 

pheromone is deposited. If another ant finds this trail, probably it will follow it increasing the 

amount of pheromone, which further stimulates other ants to follow this path (Figure 4). But over 

time the pheromone trail starts to evaporate and reduces its attractiveness, making more attractive 
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only the most used trajectories, causing convergence to an optimal solution that is the only path 

that eventually most ants will follow. By the long road less pheromone accumulates because of 

the low passing frequency of the ants when they spend more time completing their road. 

 

 
 

Figure 4.  A. ants in a pheromone trail between nest and food; B. an obstacle interrupts the trail; C. ants find 

two paths to go around the obstacle; D. a new pheromone trail is formed along the shorter path [19] 

 

In the ACO algorithms family, ant’s behavior is simulated with a virtual agent that has the 

capacity to explore a limited search space and obtain information about the surrounding 

environment. The artificial ant (k) moves from one node to another (from source node i to 

destination node j), building step by step solution to be written to the Tabuk memory (that stores 

information about the nodes sequence or route taken until time t), that ends when it reaches one of 

the accepting states defined by the objective of the problem. 

 

Thus, the ants can construct approximate solutions to complex problems such as sequencing, 

assigning, planning or programming. Each edge of the graph has two types of associated 

information that guide the movement of the ant [4] and whose values are modified by ants at each 

iteration: 

 

ηij Heuristic information that measures the heuristics preference  of moving from node i to node j, 

when touring the edge aij. Ants do not change this information during the execution of the 

algorithm. 

 

τij Information of artificial pheromone trails, that measures the "desirability learned" of the i to j 

movement. This information is modified during the execution of the algorithm depending on the 

solutions found by the ants to reflect the experience gained by these agents. 

Pseudocode of the ACO metaheuristic [3]: 

 

ACO procedure 

    Set parameters,Initialize the pheromone trails  

scheduled activities 

Construction of solutions by ants 

Server of actions (Optional) 

Updating pheromone 

End-Scheduled activities 

End-procedure 

 

The metaheuristic consists of a parameter initialization step and three algorithmic procedures 

whose activation is regulated by the builder Scheduled activities, in which is repeated until a 
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termination condition is met, such as reaching a maximum number of iterations or a maximum 

CPU time. The three algorithmic procedures submitted to the Scheduled activities consist of [25]: 

 

Construction of solutions by ants is the probabilistic construction of solutions by all the ants in a 

colony, which visit the adjacent states of the considered problem. The ants can move by applying 

a stochastic decision policy using information from the pheromone trails and the heuristic 

information, with which ants incrementally construct a solution to the problem. 

 

Server of actions are centralized actions that modify the behavior of the algorithm and cannot be 

developed by ants individually. The most common is the local optimization or improvement of 

the solutions with the application of a local search algorithm. The locally optimized solutions are 

then used to set the values of the pheromone to update. 

 

Updating pheromone is the process that updates the pheromone trails on each aij edge, called 

posteriori online update or offline because it is performed at the end of a road. The amount of 

pheromone that deposits each ant at the edges depends on the total length of the path (equation 3). 

It also can perform a step by step online update of the pheromone trails, that is a local update or 

in "real time" of the pheromone, performed when an ant moves from node i to node j. The 

pheromone trail value is reduced by a constant evaporation of pheromone, which prevents 

premature convergence of the algorithm by discarding the less frequented corners. 

 

4.  ELITIST ANT SYSTEM (EAS)  

 
This version of the ACO implements a simple change to the Ant System that improves the results, 

simply reinforcing the pheromone trail of the best path that is found in each iteration. At the 

edges of the best generated solution by an ant, more pheromone is deposited through all the other 

ants. 

 

In this algorithm artificial ants perform a probabilistic construction of solutions in each cycle, for 

which they require represent the problem by means of a graph in which the ants move along each 

edge from one node to another to build roads that represent solutions from a randomly chosen 

initial node, the following choice is the next node in this path is done according to the state 

transition rule (equation 1). 

 

 

 

Equation 1 

 

Where α and β parameters determine the influence of the values of the pheromone information 

and from the heuristic information ( ) respectively, over the decision of each ant (k). It seeks 

that the edges with large amount of pheromone to be the most visible, having a higher transition 

probability to the edges of the other nodes of the set of achievable operations. To have a balanced 

algorithm (with an appropriate adjustment), α and β parameters must have appropriate values, 

avoiding close to zero values, because if α = 0, only the heuristic information would indicate that 

possible elements of the solution will have a higher probability of being selected, which 

corresponds to a stochastic greedy algorithm (greedy), and if β = 0, will only be relevant the 

amount of pheromone. In both cases the ants might get stuck in a local optimum, generating the 

same solution in each iteration, without opportunities to find a better solution which could be the 
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global optimum solution. These parameters are normally set to integer values between 1 and 5, 

but in this case we will relate them as follows  with . 

 

The amount of  pheromone present at each edge of the road in the  generation is given by 

the equation 2. 

 

 
Equation 2 

 

Where  is the contribution of the  ant to the total pheromone of the  generation and  is 

the evaporation rate of the pheromone. The reason for including the evaporation rate is that old 

pheromone should not have much influence on future decisions of the ants. The amount of 

pheromone that each ant is contributing depends on the quality of the solution obtained which is 

inversely proportional to the cost of the solution of the objective function (equation 3). 

 

 
Equation 3 

 

Where  is a constant and  is the length of the makespan of the solution obtained by the  ant. 

To accelerate the convergence of the algorithm, increasing the visibility of the pheromone trail on 

all edges of the shortest path, passing all elitists ants (e) of the system.  Therefore, the equation 3 

for the best path built in each cycle is replaced by the equation 2. 

 

 
 

Equation 4 
 

5.  EAS IMPLEMENTATION FOR JSSP 

 
The rapid convergence of this algorithm can reduce the scanning capability since the ants soon 

will end in a single way, which can be a local optimum. To compensate this, is allowed to include 

in the set of achievable operations (point 3.3 of pseudocode), operations that makes the machines 

wait (on pause) some units of time to begin execution because the corresponding job is still active 

on another machine. But this operation that delay or retards the onset of the machines will only be 

selected if the edge that reaches the node, has enough pheromone to make the probability to be 

greater than the operations that have immediately available jobs. That will only be given with 

large amounts of pheromone, because having idle machines is not adequate and is penalized 

lowering the visibility of the operation.  

 

This method further explores the search space in order to obtain many solutions, from which it 

can be obtained solutions that exceed the local optima found in the first iterations. These optimal 

are the ones limiting the search, stopping it on solutions distant up to a 5% the global optimum. 

The initial diversity of the algorithm is the one that ensures that the ants move towards the search 

space where the path corresponding to the overall optimal solution is found. The following is the 

pseudocode implemented to solve the JSSP: 
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Pseudocode Description: 

 

1. The best results were obtained with the parameters initialized in , 

the number of cycles (or iterations) is fixed at 1000 and the amount of ants (K) is calculated 

according to the number of jobs, which is the amount elements that the J set has, thereby: 

 

 
 

Equation 5 
 

2. The pheromone trail of all edges is started in a small positive constant. 

3. The Probabilistic Construction Phase of solutions begins by K ants. 

3.1 The first operation is selected randomly between nodes initially visited according to the 

constraints of the problem. 
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3.2 The selection of the decidability rule is done randomly, with equal probability between the 

rule with the shortest processing time SPT (Shortest Processing Time) or the rule with the longest 

processing time LPT (Longest Processing Time) of the operations [30]. 

 

3.3 While tabúk memory has not finished filling, it means that the ant has not completed the plan 

generation therefore it continuous traveling the graph until completing the total operations 

( ). The tabuk list restricts the choice of operations to prevent a return to recently 

visited nodes. In the set of visited operations are included operations that generate a delay in the 

machines less or equal to five time units. To maintain the balance affected by the delay generated, 

visibility of the node is reduced on a percentage point per unit of time lost.  

 

3.4 Once each ant has built a solution, the pheromone actualization process is started, reviewing 

the traveled path to add the appropriate amount of pheromone according to equation 3 or 4, to the 

pheromone accumulator of the current cycle. If the makespan of the solution is expensive, less 

importance is given to the way, thus depositing few pheromone on edges. 

 

3.5 Update pheromone trails of the visited edges using a process known as posteriori online 

update, which is a global update performed offline, that is, after the execution of each cycle of the 

algorithm. It is deposited in the pheromone trails of each of the edges of the graph, what the ants 

have been added in the respective pheromone accumulator. Then the actual pheromone 

accumulator is restarted at zero for not to redeposit this pheromone in the next cycle. 

 

3.6 The best quality plan of the current cycle is saved with its respective makespan. 

3.7 Memory (tabuk) is erased on each ant to start building new plans in the next cycle. 

4. Shows the best plan of all cycles performed by the algorithm. 

 

 6.  ANALYSIS AND COMPARISON OF RESULTS  

 
Results shown in Table 3 were obtained in 30 executions of the algorithm (1000 iterations) for 

each of the 40 JSSP instances  raised by Lawrence [11], that are of different sizes and difficulty, 

and because of its wide use, we can compare the results with other techniques that generate the 

best known solution (BKS) taken from [13] and [27] The table shows, the name of the instance of 

Lawrence, its size and BKS, the best makespan found and their percentage relative error respect 

al BKS, the makespan average, standard deviation, and finally the average number of evaluations 

of the objective function. 

 
Table 3.  Experimental results   

 

Instance Size BKS 
Best 

Cmax 

Relative 

Error (%) 

Cmax 

Average 

Standard 

deviation 

#Eval. 

Average 

LA01 10 x 5 666 666 0 667.8 2.3 2375 

LA02 10 x 5 655 669 2.13 689.7 6.2 2809 

LA03 10 x 5 597 623 4.36 644.8 8.0 2230 

LA04 10 x 5 590 611 3.56 617.7 5.0 2257 

LA05 10 x 5 593 593 0 593.0 0.0 101 

LA06 15 x 5 926 926 0 926.0 0.0 531 

LA07 15 x 5 890 890 0 898.2 5.6 3443 

LA08 15 x 5 863 863 0 863.1 0.4 2251 

LA09 15 x 5 951 951 0 951.0 0.0 391 

LA10 15 x 5 958 958 0 958.0 0.0 637 

LA11 20 x 5 1222 1222 0 1222.0 0.0 1504 
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LA12 20 x 5 1039 1039 0 1039.0 0.0 1752 

LA13 20 x 5 1150 1150 0 1150.0 0.2 2952 

LA14 20 x 5 1292 1292 0 1292.0 0.0 471 

LA15 20 x 5 1207 1212 0.41 1245.6 9.9 3836 

LA16 10 x 10 945 1005 6.35 1020.1 10.1 2700 

LA17 10 x 10 784 812 3.57 836.1 10.9 2401 

LA18 10 x 10 848 885 4.36 904.8 9.8 2946 

LA19 10 x 10 842 875 3.92 881.7 4.7 2394 

LA20 10 x 10 902 912 1.11 936.8 9.6 2496 

LA21 15 x 10 1046 1107 5.38 1162.3 16.4 3658 

LA22 15 x 10 927 1018 9.82 1050.2 14.2 2938 

LA23 15 x 10 1032 1051 1.84 1069.2 10.0 3826 

LA24 15 x 10 935 1011 8.13 1033.5 8.3 3097 

LA25 15 x 10 977 1062 8.7 1093.3 14.1 3632 

LA26 20 x 10 1218 1296 6.4 1339.6 16.2 5955 

LA27 20 x 10 1235 1362 10.28 1379.8 9.6 4450 

LA28 20 x 10 1216 1330 9.38 1363.8 13.9 3938 

LA29 20 x 10 1157 1339 15.73 1374.4 11.9 4532 

LA30 20 x 10 1355 1410 4.06 1443.2 15.0 5186 

LA31 30 x 10 1784 1798 0.78 1825.8 12.5 7098 

LA32 30 x 10 1850 1868 0.97 1906.0 20.7 8016 

LA33 30 x 10 1719 1731 0.7 1771.0 15.1 5796 

LA34 30 x 10 1721 1788 3.89 1823.9 13.9 6811 

LA35 30 x 10 1888 1913 1.32 1974.1 22.8 7357 

LA36 15 x 15 1268 1396 10.09 1430.4 18.5 3405 

LA37 15 x 15 1397 1517 8.59 1544.2 12.7 2142 

LA38 15 x 15 1196 1315 9.95 1343.8 10.1 4051 

LA39 15 x 15 1233 1304 5.76 1359.5 16.2 3266 

LA40 15 x 15 1222 1307 6.96 1323.7 9.2 2655 

Average: 3.96  9.09 3307.15 

 

Although the efficacy of the algorithm to find the optimum isn't high, reaching the BKS in 27.5% 

of the LA instances, the average relative error in the 40 instances is only 4%, which is a good 

approximation to the optimal of JSSP. And the highlight is the low average number of objective 

function evaluations, which is much lower compared to the methods that obtained the BKS (Table 

4). The AIS on average takes 52 times more evaluations our algorithm and Cultural algorithm 

(CULT) has 137 times more evaluations. Compared with Tabu Search (TS) the number of 

evaluations is only three times lower, because it is not included the number of evaluations 

performed by the INSA algorithm that gives the TS base  solution [28]. So we can state that our 

algorithm has a high computational efficiency, reducing costs in time and memory, something 

very important in this type of problems where getting an "economic" solution is as important as 

the quality of it. Furthermore, EAS is an algorithm stable because its standard deviation is very 

low. 

 

The following table compares the average number of objective function evaluations made by 

EAS, with those made by TS, AIS and CULT [29]: 
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Table 4.  Number of evaluations of objective function 

 

Algorithm N° of Average evaluations 

EAS 3307 

AIS 175058 

CULT 454525 

TS 11108 

 

Table 3 shows that on the problems of size 10 x 5 did not have trouble finding the BKS, with the 

exception of the instance LA04 until LA02l, where the best obtained result is close to the BKS 

(less than 5%). Also for instances of size 15 x 5 and 20 x 5, with the exception of the LA15 that 

only moves away from BKS in 5 units of time. In the other instances (size 10 x 10, 15 x 10, 20 x 

10, 30 x 10 and 15 x 15), which have 5 or 10 machines more than the previous, complexity is 

quite high because of the considerable number of operations to be performed, this means lower 

quality solutions obtained. For example, to instances of size 30 x 10, 300 operations must be 

performed, and the total number of possible combinations is (30!)10, that is approximately 2.65 x 

10
42

. However, the algorithm achieves to present high quality solutions on instances of 30 x 10 

(Figure 5). In general, 65% of executed instances approaches less than 5% of BKS and 47.5% 

deviate by less than 3% of the BKS.  

 

 
 

Figure 5.  Relative Error average by instance size 

 

7.  CONCLUSIONS 

 
The Ant Colony Optimization is a technique of swarm intelligence, which is applied for 

combinatorial optimization problems as JSSP. The algorithm implemented, Elitist Ant System, 

has proven to be competitive by find good quality solutions to JSSP in a low number of objective 

function evaluations, although requires improvements to obtain the best known solution in all LA 

instances. Therefore, ACO is a metaheuristic that has the potential to obtain efficiently solutions 

of scheduling problems, with minimal cost of time and computational resources. 
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