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Abstract

Communication links in a sensor network are unstable such that running conventional 
TCP protocol over a high loss rate sensor networks will suffer from severe performance 
degradation. To handle a packet loss, conventional TCP retransmits the lost packet from 
its source. However, when error rate is high, it may have difficulty to deliver a packet to 
its destination. Considering that most applications on a sensor network prefer faster and 
reliable packet delivery to higher throughput, this paper proposes to use the Hop-by-
Hop TCP protocol for sensor networks aiming to accelerate reliable packet delivery. 
Hop-by-Hop  TCP makes every intermediate  node in the transmission path execute a 
light-weight local TCP to guarantee the transmission of each packet on each link. It 
takes less time in average to deliver a packet in an error-prone environment. The 
performance of our approach is evaluated by simulation using NS-2  simulator. Our 
experiments  show  that  Hop-by-Hop  TCP  outperforms  TCP  NewReno  in   both 
throughput and average packet delivery time. The fairness requirement is also achieved 
while Hop-by-Hop TCP coexists with other major TCP variants.
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1. Introduction

A wireless sensor network (WSN) is a  wireless network consisting of spatially 
distributed autonomous devices using sensors to cooperatively monitor physical or 
environmental conditions, such as temperature, sound, vibration,  pressure,  motion or 
pollutants, at different locations [12].

Each node in a sensor network is typically equipped with a radio transceiver or other 
wireless communications device, a small microcontroller, and an energy source, usually 
a battery. Size and cost constraints on sensor nodes result in corresponding constraints 
on resources such as energy, memory, computational   speed and communication 
bandwidth.
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A sensor network normally constitutes a wireless multi-hop ad-hoc network. Without 
loss of generality, we assume that the data to be transmitted by a sensor node is in the 
form of packet; node ID w.r.t. the network is IP address; and the network is equipped 
with an appropriate routing mechanism that can adapt to the network dynamic. In other 
words, from the viewpoint of a transport protocol, the underneath network is an IP 
based full functional network. To assure a data packet to be delivered to the destination 
reliably, a transport layer protocol must be embedded between application and network 
layer.

The most popular reliable transport layer protocol is  TCP. Unfortunately, it may 
perform  poorly  on   an  error-prone  sensor network.  In  such  an  environment, 
communication links are unstable due to various reasons such as interference of radio 
signal, radio channel contention, and survival rate of nodes. Furthermore, the multi-hop 
feature increases the channel contention significantly that in turn increases error rate. In 
summary, in a sensor network, error rate is much higher and bandwidth is smaller than 
those of fixed networks. As a consequence,  running conventional  TCP protocol on a 
sensor network will suffer from severe performance degradation [4]. To handle a packet 
loss, conventional TCP retransmits the lost packet from its source. However, when error 
rate is high, it may have to  take several retransmissions to  deliver a  packet to its 
destination successfully. Furthermore, packet losses may also activate TCP's congestion 
control causing too many what is so called  "slow start" that will further impair the 
performance of packet delivery. As a result, the effective throughput is much lower and 
the average packet delivery time will be much longer. In the worst cases, a TCP may 
even completely stall when error rate is too high.

In fact, most applications on a sensor network prefer faster and reliable packet delivery 
to higher throughput. However, most versions of TCP are all designed to achieve higher 
throughput, not faster packet delivery. It may even completely stall in a highly error-
prone environment. Therefore, it is beneficial to redesign a TCP by trading throughput 
for faster and reliable packet delivery.

Redesigning TCP may not be easy to implement  on a WAN (Wide Area Network) 
because upgrading a large number of routers in a WAN is almost a business impossible. 
However, a sensor network has no such concern so that it is easy for a sensor network to 
embrace any new approach. This paper studies the Hop-by-Hop TCP  protocol over 
sensor networks. Hop-by-Hop TCP was proposed by Lien [9] for Mobile Ad-Hoc 
Networks (MANET)  aiming to accelerate  reliable packet delivery. Hop-by-Hop TCP 
makes every intermediate node in the transmission path execute a  local TCP to 
guarantee the transmission  of each packet on each link. The retransmission of a lost 
packet is right at the sender end of the link where the packet is lost. It doesn't have to 
retransmit a lost packet all the way from its source node. It takes less time in average to 
transmit a packet to its destination in a high error rate environment.

One may argue that  sensor network may not have sufficient computing power to 
implement the entire TCP/IP protocol. However, judging from the advancing speed of 
digital technology, we can anticipate  that the computing power of sensor nodes will 
eventually be capable to support TCP/IP protocol.
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The  rest  of this paper is organized as follow. In Section 2, we review the relative 
background and research regarding to  TCP over a MANET, whose environment is 
similar to many sensor networks. We introduce our Hop-by-Hop TCP in Section 3 and 
evaluate it against others by simulation  in Section 4. Finally, we conclude our main 
contribution of this paper and highlight some future work in Section 5.

2. Related Work

TCP is a  connection-oriented reliable data delivery protocol. It provides a reliable 
transport service between pairs of hosts using the network layer service provided by the 
IP protocol. Whereas the IP protocol deals only with packets, TCP enables two hosts to 
establish a connection and exchange streams of data. TCP guarantees the delivery of 
data and also guarantees that packets will be delivered in the same order in which they 
were sent.

Packets may be lost in the transmission path due to various reasons such as network 
congestion and radio channel error. TCP adopts a complicated protocol to guarantee the 
delivery of packets. TCP modules reside at the both ends of a connection which may 
have quite a  few intermediate nodes in  between. Thus, the source node of a TCP 
connection must determine appropriate data rates based on its own poor knowledge of 
network status. Because most hosts on the network do not have a good knowledge of the 
network status, it is impossible for them to have a perfect data rate control, network will 
be congested from time to time. Network elements including routers and end terminals 
must work hard to avoid network congestion. The congestion control within a TCP 
plays a critical role in adjusting data rate to reduce network congestion. Based on some 
window-adjustment algorithm, a TCP not only guarantees the successful packet delivery, 
but also maintains an "appropriate" data rate [11].

The two indicators of network status are packet traveling time and the success/failure of 
package delivery. Therefore,  most TCP variants count on these indicators to "guess" 
(estimate) the available bandwidth over the packet delivery path and to adjust its data 
rate accordingly. The accuracy and the  promptness of  bandwidth estimation are 
dependent on many factors such as traffic stability and path length. Not surprisingly, 
most TCP  variants are suffering from some  performance shortcomings, unnecessary 
network congestion and “slow start”. Unfortunately, a sensor network is generally slow 
and very unstable such that running TCP over sensor networks will suffer from even 
severe performance problems [4]. In summary, all TCP variants that are designed for 
conventional networks may not be appropriate for sensor networks. There is a need to 
redesign TCP protocol for sensor networks to improve its performance.

TCP-ELFN [5], TCP-F [1] and ATCP [10] are proposed to overcome the drawbacks of 
conventional TCP over MANET. They are mainly designed to improve throughput by 
dealing with the random packet losses caused by unreliable wireless links. They are 
based on the concept of freezing TCP states and  keeping large congestion window 
without decreasing the transmission rate at the occurrence of routing change.

TCP Muzha [8] uses the assistance  provided by routers to achieve better congestion 
control. To use TCP Muzha, routers are required to provide some information allowing
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the source node to estimate more accurately the remaining capacity over the bottleneck 
link on the packet delivery path. With this information, TCP Muzha is able to enhance 
the performance of both TCP and network. TCP Muzha shows that having intermediate 
nodes provide assistance to the control of TCP is beneficial and practically feasible. It 
leads to the development of Hop-by-Hop TCP, which will be detailed in Section 3.

Split-TCP [7] is very similar to our Hop-by-Hop TCP. It divides a long path into several 
shorter  segments and running a separated TCP in each segment. This approach can 
enhance the TCP  performance. One drawback of Split  TCP  is that it is difficult to 
handle path change. In a Split-TCP session, all sub-TCPs running on path segments 
must coordinate with the upper level TCP closely. If any segment fails, the entire setup 
has to be changed accordingly. Unfortunately, nodes in a sensor network may be too 
weak to handle such a complicated reconfiguration task caused by frequent path failures.

3. Hop-by-Hop TCP

The design objectives of Hop-by-Hop TCP for sensor networks are as follows:

1.  minimizing end-to-end packet delivery time without too much throughput 
degradation;

2.  minimizing the number of retransmissions;
3.  minimizing the occurrence of network congestion;
4.  providing fairness service.

Fig. 1 Protocol Stack of Hop-by-Hop TCP

Hop-by-Hop TCP consists of two parts: an End-to-End TCP working on the source and 
destination nodes, and a One-Hop TCP working on every node as shown in Figure 1. 
The sender module of a One-Hop TCP is working at the sender end of a link, and the 
receiver module is working at the receiver end. Each link needs only one pair of One-
Hop TCP for all End-to-End TCP sessions. However, for simplicity, we assume there is 
a One-Hop TCP for each End-to-End session in the following description.
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3.1 End-to-end TCP

To avoid reinventing the wheel, we reuse an existing popular TCP protocol, NewReno, 
for the End-to-End TCP with several modifications. In fact, it can be replaced with any 
other version easily.

1.   Instead of interacting with IP Layer, the sender module forwards packets to the 
One-Hop TCP module, and the receiver module receives packets from the One-
Hop TCP module. One-Hop TCP in each node forwards data packets hop by hop 
to the destination node.  Similarly, ACK packets for End-to-End TCP,  called 
End-to-End ACKs, are forwarded to the source node using One-Hop TCP in the 
opposite direction.

2.  Set a maximum threshold on the size of CWND to prevent it from over growth.
The data rate of most sensor networks is extremely low and throughput is 
usually not a concern. Thus, there is no need to use a large CWND.

3.  Set a larger initial RTO (Retransmission Time Out) value.

3.2 One-Hop TCP

One-Hop TCP is a  light-weight version of TCP running on  each node to forward 
received packets to the next node packet by packet reliably. Major modifications are as 
follows:

1.  add the IP address (or alternative sensor ID) of current node to the packet header 
such that the receiver knows where to send Local ACK;

2.  set the local RTO based on link characteristics;
3.  set CWND to 1;
4.  remove all CWND adjustment mechanisms;
5.  set the upper threshold for the number of retransmissions.

Since the resource of a sensor node is usually very limited and the speed of One-Hop 
TCP is very critical to the performance of the entire TCP, One-Hop TCP must be very 
efficient and light weighted. Many TCP features, such as packetization and congestion 
control, are removed from One-Hop TCP. It is more like an enhancement to the link 
layer protocol to accommodate link failures. Furthermore, as mentioned earlier, only 
one session of One-Hop TCP is sufficient to manage all End-to-End TCP sessions that 
pass through the same link. Much overhead can be saved.

CWND is set to 1 for two reasons. First, the main reason that  the sliding window 
mechanism is used in conventional TCPs is to allow more than one packet pending in 
the intermediate routers. However, there is no such need for a one-hop link. Secondly, if 
a  succeeding packet were allowed to transmit before the ACK of the previously 
transmitted packet is  received, the  transmissions of the  two packets will have to 
compete to each other for the radio channel. Thus, CWND is set to 1. In other words, 
after transmitting a packet, the sender module has to wait for the ACK packet before it 
can transmit next packet. In this way, complicated CWND size adjusting mechanisms 
become useless in One-op TCP and are all removed.
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A packet is assumed lost if the corresponding ACK is not received before the local RTO 
expired. Once the link to the next node fails and the network layer performs a reroute, 
One-Hop TCP retransmits the packet  transparently. Once the upper threshold of the 
number of retransmissions is reached, the retransmission stops. After the source node is 
aware of a packet loss (RTO expires or receiving of three duplicate ACKs), all 
corresponding actions will be taken.

3.3. Reduction of Control Messages

All control messages incurred by  One-Hop TCP are extra overhead and must be 
minimized. Four different packet streams are flowing between source and destination 
nodes: (1) data packets, (2) local ACKs for data packets, (3) End-to-End ACKs, (4) 
local ACK for End-to-End ACKs.

The first and last types of messages are in the same direction. The other two types are in 
the opposite  direction. Multiple messages in the same direction can be piggybacked 
together to reduce the number of messages. In a sensor network, each message may 
have to compete for radio channel such that the reduction of messages is very beneficial. 
To further reduce the number of messages, the packets of different End-to-End  TCP 
sessions in the same link can all be piggybacked together as long as they are in the same 
direction. The piggybacking mechanism is shown in Figure 2.

Fig. 2 Piggybacking Mechanism

The State Transition T able of One-Hop TCP at the sender end of a link is shown in
Table 1.

3.4 Reduction of Duplicated Packets

The sender end of a TCP will transmit duplicated packets if they "thought" a packet is 
lost. However, the judgment of packet loss may not always accurate since a packet that 
were thought lost may be actually delayed for various reasons. Thus, the receiver end 
may  receive duplicated packets. The receiver end of an End-to-End TCP is able to 
distinguish duplicated packets and to discard them. However, for efficiency reason, the 
receiver end of a One-Hop TCP doesn't memorize the sequence numbers of all received 
and forwarded packets such that it doesn't have the capability to distinguish duplicated 
packets. Although duplicated packets will eventually be discarded by the receiver end of 
the End-to-End TCP, they waste precious radio resources. Thus, we propose to
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implement a short term memory to memorize necessary information of received packets 
and use it to distinguish duplicated packets.

Table 1 State Trans. Table of One-Hop TCP at Sender End

Event
Current

State
Actions Taken

Next
State

Receive a packet when the 
flag no_packet_outgoing
is false

Ready
buffer the new packet; if there is any 
packet to be sent in another direction, 
piggyback it; if not, return LACK

Ready

Receive a packet and no 
packet is outgoing

Ready

buffer the new packet; if there is any 
packet to be sent in another direction,

Wait
piggyback it; if not, return LACK, send 
the packet, and start Local RTO timer

Local RTO timer expires 
and retry count < 6

Wait
retransmit the lost packet; restart Local
RTO timer

Wait

Local RTO timer expires 
and retry count > 5

Wait
purge the packet that retransmits over five 
times from buffer; stop Local RTO timer

Done

Receive a LACK from 
downstream node

Wait
purge the packet from buffer; stop Local
RTO timer

Done

Other Packet in buffer Done
send next packet from buffer; start Local
RTO timer

Wait

Buffer empty Done
set the flag no_packet_outgoing to true;
wait the next packet

Ready

3.5 Network Fault Recovery

A sensor network is very unstable that a sensor node may be up and down according to 
various reasons such as power control. A transport protocol must be able to cope with 
this problem. Although a MAC layer protocol may be built-in with a reliable packet 
forwarding mechanism by local retransmission at each link, it will not be able to cope 
with link breakage. A reliable MAC protocol can coexist with Hop-by-Hop TCP. 
Assuming a packet is lost on a link due to a transient error, the Hop-by-Hop TCP will 
see a “good” link if the MAC layer protocol can recover from the error by 
retransmitting the lost packet. If the link can’t be recovered, e.g. next node is dead, the 
Hop-by-Hop TCP won’t receive the anticipated Local ACK in time. It will then 
retransmit the packet again and again until network routing protocol finishes its 
rerouting and updates its routing table. Nevertheless, Hop-by-Hop TCP may fail to
retransmit the lost packet in extreme cases such as severe network breakage. In this case, 
the sender has to retransmit the packet after the corresponding End-to-End ACK misses 
its deadline.

4. Performance Evaluation

Hop-by-Hop TCP over sensor networks is evaluated using NS-2 network simulator 
under various conditions such as network topology, link reliability, network size, and
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link bandwidth. Evaluation metrics in performance test are average packet delivery time, 
average throughput, average number of retransmissions, and the stability  of CWND. 
Fairness test is executed in two different ways: coexistence  with different version of 
TCP and coexistence with the same TCP of different initiation time. Hop-by-Hop TCP, 
TCP NewReno, TCP Vegas and TCP SACK are compared in the evaluation. Fig. 3 is 
the topology used in the performance test. Only one TCP session  is injected to the 
network. The parameters used in the performance test are shown in Table 2.

Fig. 3 Topology of Performance Test

Table 2 Parameters in Performance Test
Parameter Value

Packet Size 50 bytes

Buffer Size 10 packets

Buffer Management Scheme DropTail

CWND Upper Bound 4

Link Bandwidth 5~10 Kbps

Error Rate 0.0~0.5

Number of TCP sessions 1

Number of Nodes 5~11

MAC Protocol 802.11

Routing Algorithm DSR

4.1. Results of Performance Test

The results of performance test are shown in Fig. 4 to Fig. 7. As we can see from Fig. 4, 
the CWND of Hop-by-Hop TCP is kept at its upper bound, 4, for most of the time while 
others are fairly unstable. They even barely have a chance to reach 4. The stability of 
CWND at its upper bound implies high throughput and short delay time (packet deliver 
time) as we can see from Fig. 5 to Fig. 6. When error rate is high (0.4), Hop-by-Hop 
TCP not only have a higher throughput, its delay time is significantly  lower than its 
counterparts when the number of hops is high. The number of retransmissions is 
significantly reduced as shown in Fig. 7.
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(a)

(b)

Fig. 4 Changes of CWND (a) error rate=0.2 (b) error rate=0.4
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(a)

(b)

Fig. 5 Average Delay Time in Performance Test (a) error rate=0.2 (b) error rate=0.4
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(a)

(b)

Fig. 6 Average Throughput in Performance Test (a) error rate=0.2 (b) error rate=0.4
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(a)

(b)

Fig. 7 Number of Retransmissions (a) error rate=0.2 (b) error rate=0.4
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4.2. Results of Fairness Test

Fig. 8 is the topology used in the fairness test. Two TCP sessions are injected into the 
network. One is from left to right and the other with different TCP version is injected 
from top to  down. Both Hop-by-Hop TCP and TCP Vegas are tested under the 
coexistence of TCP NewReno.  Jain's index [3], shown in Eq. 1, is used to measure 
fairness. The parameters used in the performance test are shown in Table 3.

2
� �
� x i    �
�      i = 1 �

n

n ∑ 2

i = 1

(1)

As shown in Fig. 9, Jain's fairness index is very close to 1, when NewReno and Hop-
by-Hop TCP are coexistent. TCP Vegas is obviously compromised if it coexists with 
NewReno. The second fairness test is to test self-synchronization capability. In this test, 
three streams of the same TCP are injected into the network at 0, 10, and 20 seconds to 
see how they are synchronized. Jain's index in every second is calculated and is shown 
in Fig. 10. From Fig. 10 we can see that NewReno has a very poor self-synchronization 
capability and Hop-by-Hop TCP has the highest one. There are two possible reasons 
that contribute to the high self-synchronization capability of Hop-by-Hop TCP. First, it 
has shorter RTT such that it can have faster and better congestion control. Secondly, it 
set an upper bound on the CWND window such that no TCP session can use excessive 
network resource.

Fig. 8 Topology of Fairness Test

Table 3 Parameters in Fairness Test

Parameter Value

Packet Size 50 bytes

Buffer Size 10 packets

Buffer Management Scheme DropTail

Error Rate 0.4

Link Bandwidth 10 Kbps

Number of hops 4, 6, 8, 10

MAC Protocol 802.11

Routing Algorithms DSR
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Fig. 9 Fairness Test 1

Fig. 10 Fairness Test 2
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5. Concluding Remarks

In this paper, we apply the Hop-by-Hop TCP protocol to the sensor networks. Hop-by-
Hop TCP makes every intermediate node in the transmission path of a TCP execute a 
local TCP (One-Hop TCP) to guarantee the transmission of each packet on each link.
The retransmission of a lost packet is right at the transmitting end of the link where the 
packet is lost. It takes less time in average to deliver a packet in a high error rate and 
long path environment. The performance of our approach is evaluated by simulation 
using NS-2 simulator. Our experiments  show that our proposed protocol outperforms 
TCP NewReno in throughput and average transmission time. The fairness requirement 
is also achieved while our proposed protocol coexists with other major TCP variants.

In the future, we can use One-Hop TCP to serve all TCP and even UDP so that the 
number of packets transmitted on the air can be greatly reduced.
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