
 International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.2, March 2015

DOI : 10.5121/ijcnc.2015.7210 123

WHITE SPACE STEGANOGRAPHY ON TEXT

BY USING LZW-HUFFMAN DOUBLE

COMPRESSION

Gelar Budiman and Ledya Novamizanti

Electrical Engineering Faculty, Telkom University, Bandung, Indonesia.

ABSTRACT

Privacy, especially in a cellphone, is an important thing and should be protected. Steganography is a

method used to protect a sensitive information. The issue tried to be discussed in this study is the issue on

inserting technique in a text through a simple method of White Space Steganography on android. The

inserted message has been compressed through a double compression method by using LZW and Huffman

so that the size of message to be inserted can be minimized while the capacity of the inserted message can

be minimized. The compression shows that the compression ratio much depends on the type of text input to

the text to be sent; the more the repetition or duplication found on the message, the smaller the

compression ratio will be. The compression process using Android based smartphone is relatively fast with

the average duration of 0.045 seconds, either for the insertion or extraction.

KEYWORDS

White Space Steganography, teks, android, compression, LZW, Huffman Coding

1.INTRODUCTION

Difficulties in protecting one’s privacy is getting challenging along with the development in
digital communication technology. One of the popular communication technologies that
consistently develops is cellphone, particularly android. Cellphone is often used as a medium to
save and send sensitive information. As cell phone is an accessible device, the protection towards
sensitive information within the cellphone becomes essential.

One of the methods that can be taken as to protect the information is by using steganography, i.e.
a technique to hide information by inserting a message into another message[4], so that it is only
the intended person who will aware about the message. One of the recent studies on
steganography is the one conducted by Ratna E. and V.K. Govindan, i.e. the unlimited payload
steganography[4]. However, the study on LZW and Huffman compression has also been
conducted, as that one of Linawati and Henry P. Panggabean[6]. Compression is usually conducted
on the watermarking technique towards cover image after the inserting process is taken, as
conducted by Dr. Ajit Singh and Meenakshi Gahlawat[9]. Meanwhile, all of the studies have not
been implemented on android.

In this study, double compression will be conducted by using LZW-Huffman technique on textual
data which is then hidden through white space steganography. The system will then be
implemented on android. By using LZW and Huffman techniques on the compression process, it
is hoped that the capacity of the hidden textual data can be bigger than the previous study.

International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.2, March 2015

124

2. THEORETICAL BACKGROUND

2.1 White Space Steganography

Steganography is derived from Greek–Steganós which means hide and Graptos which means
writing - that in general it can be defined as hidden writing[7]. In general, steganography is an art
and knowledge in hiding a message into a medium in a way that it is only the sender and the
receiver who know or realize that there is actually a secret message[10].

Steganography in digital era has been much developed. The media that can be used for
steganography are text, picture, audio, and video. One of the simple media that can be used is
steganography on texts through White Space Steganography method. White Space Steganography
is a simple steganography method by using “space” and “tab” characters as to show hidden
message bits. “Space” and “tab” can be used since it is difficult to recognize and is not reflected in
text viewer.

2.2 LZW Compression Method

The storage of big size data or files takes up a big storage capacity. Pertaining to this,
compression technique can be used to minimize the data size. Compression is a process in
encrypting a group of data into a code as to optimize the storage space, as well as the transmission
time[3].

Lossless compression method is data compression method which can generate data identical to
the original one, i.e. by reconstructing the compressed data[1]. One of the examples of lossless
compression is by using LZW algorithm.

LZW (Lempel Zev Welch) algorithm is developed by using compression method developped by
Ziv and Lempel in 1977. This algorithm carries out the lossless compression by using dictionary,
where the text fragments are replaced by the index derived from a “dictionary”. Character String
is replaced by table code created for each string coming. Table is made for the input reference for
the upcoming string[4].

The whole LZW compression algorithm is as follow:

1) Dictionary is initialized by all basic existing characters : {‘A’..’Z’,’a’..’z’,’0’..’9’}.
2) P ←the first character in character stream.
3) C ←the upcoming character in characterstream.
4) Isstring(P + C) found in dictionary ?

• If yes, soP ←P + C (combine P and C into a new string).
• If not, so :

i. Output a code to replace string P.
ii. Add string (P + C) into dictionary and give the next number/code that has not been

used indictionary to the string.
iii. P ← C.

5) Is there still any upcoming character remained in character stream ?
• If yes, return to step 2.
• If not,output the code that will replace string P, and terminate the process (stop).

International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.2, March 2015

125

The decompression process in LZW is conducted through the principles similar to those in
compression process. In the beginning dictionary is initialized by all existing basic characters. In
each step, the code is then read one by one from code stream and taken from string in dictionary
which corresponds to the code. A new string is then added into dictionary. The following is the
full decompression process:

1) Dictionary is initialized by all the existing characters : {‘A’..’Z’,’a’..’z’,’0’..’9’}.
2) CW ←the first code stream (referring to one of the basic characters).
3) Consult dictionary and output string of the code (string.CW) into character stream.
4) PW ←CW; CW ←the upcoming code ofcode stream.
5) Is string.CW found in dictionary ?

• If yes, then :
i. output string.CW to character stream
ii. P ←string.PW

iii. C ←the first character of string. CW

iv. Add string (P+C) into dictionary

• If not, then :
i. P ←string.PW

ii. C ←the first character of string.PW

iii. output string(P+C) into character stream and add the string into dictionary(it finally
can correspond with CW);

6) Is there any other code in code stream?
• If yes, back to the step 4.
• If no, terminate the process (stop).

2.1 Huffman Compression Method
[2]

Huffman coding is a popular method for data compression. It serves as the basis for several
popular programs run on various platforms. Some programs use just the Huffman method, while
others use it as one step in a multistep compression process. The Huffman method generally
produces better codes when the probabilities of the symbols are negative powers of 2. Huffman
constructs a code tree from the bottom up (builds the codes from right to left). Since its
development, in 1952, by D. Huffman, this method has been the subject of intensive research into
data compression.

The algorithm starts by building a list of all the alphabet symbols in descending order of their
probabilities. It then constructs a tree, with a symbol at every leaf, from the bottom up. This is
done in steps, where at each step the two symbols with smallest probabilities are selected, added
to the top of the partial tree, deleted from the list, and replaced with an auxiliary symbol
representing the two original symbols. When the list is reduced to just one auxiliary symbol
(representing the entire alphabet), the tree is complete. The tree is then traversed to determine the
codes of the symbols.

3.SYSTEM DESIGN

3.1 Analysis and Design

Problem to be studied is the insertion technique on text by using a simple method of White Space
Steganography. The message inserted has been compressed by using a double compression
method of LZW and Huffman so that the size of the message is smaller and the capacity of the
inserted message is bigger.

International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.2, March 2015

126

Figure 2 General Model of the System

3.2 System Flow Chart

INPUT MESSAGE

HUFFMAN

DECOMPRESSION

LZW DECOMPRESSION

WHITE SPACE STEGANOGRAPHY

EXTRACTION

EXTRACTED

MESSAGE

Figure 3 Flow Chart of the Compression-Embedding and Decompression-Extraction Process

The message input is a text used as the secret message that will be inserted into white space
steganography. The text input should be in the list of LZW dictionary, if not, there will be a
warning to reinput the text. The input text will then be compressed by using LZW (Lempel Zev
Welch) technique. LZW technique uses dictionary as its reference. LZW priorinitial dictionary
consists of 66 initial dictionaries comprising the characters usually used, which can be developed
into 128 dictionaries. The 128 dictionaries are used to get a maximum result in the upcoming
Huffman compresion. Table 1 in the appendix shows the prior initials of the LZW dictionary.

LZW compression results in the numbers representing dictionary index used. LZW dictionary has
a range of 0 and 127where each numbers requires the number of bits as to represent it. The
numbers have been compressed by using Huffman algorithm with a static Huffman tree table
which has been determined previously. Static tree table is used if it is difficult for the receivers to
redecompress the steganography message by using adaptive tree table as they do not have

Input message, lzw

and huffman

compression,

conduct white space

steganography

Input message, lzw

and huffman

compression,

conduct white space

steganography

Message extraction

and decompression
Message extraction

and decompression

International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.2, March 2015

127

the adaptive tree table. Table2 in appendix shows the example of Huffman tree table used with
different probability of occurrence of LZW dictionary index.

The Huffman compression results in representation bits. These bits will be inserted into the cover
text by altering bit ‘1’ into ‘Tab’ and ‘0’ into ‘space’. By using Tab and space characters, the
message can be difficult to be recognized. The message output comprises the text cover along
with the result fromwhite space steganography. The text output will be reproceeded as to obtain
the secret message inserted previously. The text cover and the inserted message using ‘tab’ and
‘space’ included in the message generated from steganography will be separated first.

The white space steganography extraction process is quite simple, i.e. by changing the ‘Tab’
character into bit ‘1’ and ‘Space’ character into bit ‘0’. Huffman decompression is same with the
one used in the compression by using static Huffman tree table which has been determined
previously. Since it uses static Huffman tree table, the receiver is not required to ask the huffman
table to the sender since the static tree table is included in the program. LZW decompression
process is conducted by adapting the adaptive dictionary so that the inserted secret message can
be generated.

4. APPLICATION PERFORMANCE ANALYSIS

The test in the study is aimed at:

1. Finding out the sytem perfomance in the form of compression ratio
2. Finding out the system performance in accordance with the compression and

decompression time.
3. Finding out and analyzing the system performance towards different inputs

4.1 Test Setting

The test is taken to be set on android smartphone Samsung S Advance device, with the following
specification :

1) Processor Dual Core 800 MHz.
2) Internal Memory: 4 GB Storage.
3) RAM 768 MB
4) External Memory: 16 GB
5) OS Android 2.3 Gingerbread.
6) PLS TFT capacitive touchscreen, 16M colors (480 x 800 pixels, 3.8 inches (~246 ppi

pixel density))

Message input to be inserted are comprised by different input samples as can be seen in table 3 in
appendix. The scenario used in the test is as follow:

1. Testing the compression calculation by using the manual calculation and comparing it by
using the program made.

2. Measuring the compression ratio of the message input with different sum of characters
and symbols.

3. Measuring the time used in the compression and decompression

International Journal of Computer Networks & Communications

Parameters used in the application test are compression time and compression ratio. The process
time is an important factor in compresion and decompression process. Ratio in percentage is
calculated using the following equation

Ratio = (original file size

4.2 Test Result

4.2.1 Test on the Compression Ratio Manual Calculation and the Calculation using

Program

The following is the explanation on the compression result obtained from the manual calculation
compared with the calculation using program. Meanwhile, the LZW compression process with
that input can be seen in table 4 in appendix.
compression will be compressed by using Huffman compression with static tree table.

Manual calculation :
Input message = “makan makan”
The number of characters in the input message = 11 characters
The number of bits in the input message = 11*8 = 88 bits
LZW Compression Result = 9 dictionary indexes.
LZW Compression Ratio = (11
Huffman Compression Result = 1111100 1111000 1111010 1111000 1111101 001011
1000011 1000101 1111101
The number of bit obtained from lzw+huffman compression = 62 bits
LZW+huffman compression ratio = (88

The test result on the program showing the application interface can be seen in figure 4.

Figure 4 The application interface on the test of input compression and the decompression result

It can be seen that the LZW compression ratio is 18.18% and the
It means that the result generated from the program is same withthat one resulted from the manual
calculation.

International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.2, March 2015

d in the application test are compression time and compression ratio. The process
time is an important factor in compresion and decompression process. Ratio in percentage is
calculated using the following equation[5]:

size – compressed file size) / initial size * 100 %

Test on the Compression Ratio Manual Calculation and the Calculation using

The following is the explanation on the compression result obtained from the manual calculation
with the calculation using program. Meanwhile, the LZW compression process with

that input can be seen in table 4 in appendix. The dictionary index generated from LZW
compression will be compressed by using Huffman compression with static tree table.

Input message = “makan makan”
The number of characters in the input message = 11 characters
The number of bits in the input message = 11*8 = 88 bits
LZW Compression Result = 9 dictionary indexes.
LZW Compression Ratio = (11-9)/11*100% = 18.18%
Huffman Compression Result = 1111100 1111000 1111010 1111000 1111101 001011

The number of bit obtained from lzw+huffman compression = 62 bits
LZW+huffman compression ratio = (88-62)/88*100% = 29.55%

program showing the application interface can be seen in figure 4.

Figure 4 The application interface on the test of input compression and the decompression result

It can be seen that the LZW compression ratio is 18.18% and the Huffman+LZW ratio is 29.55%.
It means that the result generated from the program is same withthat one resulted from the manual

(IJCNC) Vol.7, No.2, March 2015

128

d in the application test are compression time and compression ratio. The process
time is an important factor in compresion and decompression process. Ratio in percentage is

(1)

Test on the Compression Ratio Manual Calculation and the Calculation using

The following is the explanation on the compression result obtained from the manual calculation
with the calculation using program. Meanwhile, the LZW compression process with

The dictionary index generated from LZW
compression will be compressed by using Huffman compression with static tree table.

Huffman Compression Result = 1111100 1111000 1111010 1111000 1111101 001011

program showing the application interface can be seen in figure 4.

Figure 4 The application interface on the test of input compression and the decompression result

ratio is 29.55%.
It means that the result generated from the program is same withthat one resulted from the manual

International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.2, March 2015

129

4.2.2 Compression Ratio

The test is taken with ratio of the number character with input message symbol number 0. Table 5
in appendix shows compression ratio as the test result on several processes conducted in the
implemented system. Table 5 can be presented in the analysis graphic as can be seen in figure 5.

Figure 5 Graph of Compression Ratio of Input Message with Difference in Sum of Characters and

Symbol 0

The test above shows that the number of characters and symbol is equal that causes no repeating
character pair defined that causes LZW compression ratio of 1:1. The scenario above shows that
it is only Huffman compression that works, where the compression ratio will increase if the input
message character has a small bit representation in static Huffman tree table. A non letter symbol
has a big bit representation so that the ratio is small.

The following test is the test on the differenceof the input message of 30 characters that has
different total number of symbols. The test can be seen in table 6 in appendix. Table 6 can be
summarized into the graphs in Figure 6.

0

5

10

15

20

25

5 10 15 20 25

P
e

rc
e

n
ta

g
e

 o
f

co
m

p
re

ss
io

n
 r

a
ti

o
 (

%
)

Sum of characters and symbols input message

LZW compression ratio Huffman compression ratio

LZW + Huffman compression ratio

International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.2, March 2015

130

Figure6Graphs of compression ratio with the input message of 30 characters and variousdifference
of the sum of characters and symbols

From the test, it can be seen that with the same total number of characters, the bigger difference in
the sum of character and the sum of symbol, the bigger LZW+ Huffman will be. It is because that
big difference means that there are many repeating symbols and as a consequence, LZW
compression is getting better. Unfortunately,Huffman compression ratio is getting smaller if there
are many repeating high bit symbols. However, LZW compression value will exceed the Huffman
compression if the repeating symbols are found more, which also means that even if the
difference is getting bigger, the Huffman+LZWdouble compresion ratio is still better.

The following test is the test using input message with repeating character pair. The test process
can be seen in table 7 in the appendix. From the table, it can be concluded in the graphs in figure
7.

Figure7Graphs of compression ratio with the input message that has repeating character pairs and

different sum of input message

0

10

20

30

40

50

5 10 15 20 25
P

e
rc

e
n

ta
g

e
 o

f
co

m
p

re
ss

io
n

 r
a

ti
o

(%
)

Difference beetwen sum of symbols and sum of characters

LZW compression ratio Huffman compression ratio

LZW + Huffman compression ratio

0

10

20

30

40

50

60

15 19 27 43 44

P
e

rc
e

n
ta

g
e

 o
f

co
m

p
re

ss
io

n
 r

a
ti

o

(%
)

Sum of input message

LZW compression ratio Huffman compression ratio

LZW + Huffman compression ratio

International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.2, March 2015

131

The test shows that the Huffman+LZW double compression ratio is getting bigger if the number
of input characters as well as the number of repeating character pairsare also getting bigger. It is
influenced by the LZW compression which is getting better if the number of repeating characters
is increasing. Meanwhile, for Huffman, the size of compression depends on the number of bit
given for each character.

4.2.3 Process Time

Table 8 in the appendix is the result of process time used as to create and read messages involving
20 samples. However, figure 8 shows the visualization in accordance with table 8.

Figure8 Process time result

The process time used is almost same for all the tests conducted since all of the tests have a
similar process. However, the input message with more characters requires a longer time. The
process time cannot be separated from thehardware used in the experiment.

5. CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Based on the implementation of steganography of text using double compression with LZW-
Huffman, it can be concluded that:

1. From the compression ratio obtained, it can be seen that the system is able to produce

different ratio depending on the input used. If the message input consisting of several
repeating character pairs, the compression ratio will be big. If the input message involves few
repeating words, the compression ratio will be smaller due to the LZW compression
algorithm. If the input message is only comprised by symbol, instead of letter, the
compression ratio will be small since in the static huffman tree table, the bit for non letter
character is represented to be big and the compression ratio will be big if the input message
comprises many letter characters.

2. The speed in the process time as to generate text stego is relatively fast and the influence of
the input that has many repeating words as well as the one that has few repeating words is

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ro

ce
ss

 t
im

e
 (

se
co

n
d

s)

Number of input message

time to create message time to read message

International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.2, March 2015

132

not much different. The process time tocreate messageandto read messageis not much
different.

5.2 Recommendation

1. Instead of text, picture or sound can also be usedas the media in steganography, i.e. as to
ensure a higher security level.

2. Other compression algorithm can also be used as to get a proper compression ratio.

REFFERENCE

[1] Deorowicz, Sebastian.20013. Universal Lossless Data Compression Algorithms. Gliwice:Silesian
University of Technology

[2] D. Salomon. Data Compression: The Complete Reference. Springer, 1998.
[3] Howe, D. Free Online Dictionary of Computing, http://www.foldoc.org/
[4] Kanikar, Prashasti, Ratnesh N. Chaturvedi dan Vibhishek Kashyap. 2013. Image Steganography using

DCT, DST, Haar and Walsh Transform. International Journal of Computer Applications, Vol. 65, No.
17, Hal. 34-37.

[5] Khalid Sayood, Introduction to Data Compression, Academic Press, 2000.
[6] Linawati dan Henry P. Panggabean. 2004, Perbandingan Kinerja Algoritma Kompresi Huffman, Lzw,

dan Dmc pada Berbagai Tipe File. Integral, Vol. 9, No. 1, 2004, hal 14-15
[7] Nosrati, Masoud., RonakKarimidan Mehdi Hariri.2011. An Introduction to Steganography Methods.

World Applied Programming, Vol 1, No 3, 191-195, Agustus 2011
[8] Safaat, Nazruddin.2012. Pemrograman Aplikasi Mobile Smartphone dan Tablet PC Berbasis Android.

Bandung : Informatika
[9] Singh, Dr. Ajit dan Meenakshi Gahlawat. 2013. Secure Data Transmission using Watermarking and

Image Compression. International Journal of Advanced Research in Computer Engineering &
Technology, Vol. 2, No.5, Hal. 1709-1715.

[10] Saleh Saraireh. 2013. A Secure Data Communication System Using Cryptography and

Steganography. International Journal of Computer Networks & Communications (IJCNC) Vol. 5 No.
3, May 2013.

APPENDIX

Table 1Prior Initials of LZW Dictionary

Index Dictionary Index Dictionary Index Dictionary Index Dictionary

0 a 17 R 34 7 51 :

1 b 18 S 35 8 52 ;

2 c 19 T 36 9 53 ,

3 d 20 U 37 @ 54 .

4 e 21 V 38 # 55 =

5 f 22 W 39 % 56 _

6 g 23 X 40 & 57 <

7 h 24 y 41 * 58 >

8 i 25 z 42 / 59 {

9 j 26 (spasi) 43 - 60 }

10 k 27 0 44 + 61 [

11 l 28 1 45 (62]

12 m 29 2 46) 63 |

13 n 30 3 47 ? 64 ^

14 o 31 4 48 ! 65 $

15 p 32 5 49 “

16 q 33 6 50 ‘

International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.2, March 2015

133

Table 2 Huffman Tree

Index of
LZW

Dictionary

Probability Huffman Bit Index of LZW
Dictionary

Probability Huffman Bit

0 0.0234375 1111000 64 0.0078125 11101111

1 0.0234375 1111001 65 0.0078125 0100110

2 0.0234375 000100 66 0.015625 1000011

3 0.0234375 001100 67 0.015625 1000100

4 0.0234375 001101 68 0.015625 1000101

5 0.0234375 001110 69 0.015625 1000110

6 0.0234375 001111 70 0.015625 1000111

7 0.0234375 010000 71 0.015625 1001000

8 0.0234375 010001 72 0.015625 1001001

9 0.0234375 010010 73 0.015625 1001010

10 0.0234375 1111010 74 0.015625 1001011

11 0.0234375 1111011 75 0.015625 1001100

12 0.0234375 1111100 76 0.015625 1001101

13 0.0234375 1111101 77 0.015625 1001110

14 0.0234375 1111110 78 0.015625 1001111

15 0.0234375 1111111 79 0.015625 1010000

16 0.0234375 000000 80 0.015625 1010001

17 0.0234375 000001 81 0.015625 1010010

18 0.0234375 000010 82 0.015625 1010011

19 0.0234375 000011 83 0.015625 1010100

20 0.0234375 000101 84 0.015625 1010101

21 0.0234375 000110 85 0.015625 1010110

22 0.0234375 000111 86 0.015625 1010111

23 0.0234375 001000 87 0.015625 1011000

24 0.0234375 001001 88 0.015625 1011001

25 0.0234375 001010 89 0.015625 1011010

26 0.0234375 001011 90 0.015625 1011011

27 0.0078125 11001010 91 0.015625 1011100

28 0.0078125 11001011 92 0.015625 1011101

29 0.0078125 11001100 93 0.015625 1011110

30 0.0078125 11001101 94 0.015625 1011111

31 0.0078125 11001110 95 0.015625 1100000

32 0.0078125 11001111 96 0.015625 1100001

33 0.0078125 11010000 97 0.015625 1100010

34 0.0078125 11010001 98 0.015625 1100011

35 0.0078125 11010010 99 0.015625 1100100

36 0.0078125 11010011 100 0.015625 0100111

37 0.0078125 11010100 101 0.015625 0101000

38 0.0078125 11010101 102 0.015625 0101001

39 0.0078125 11010110 103 0.015625 0101010

40 0.0078125 11010111 104 0.015625 0101011

41 0.0078125 11011000 105 0.015625 0101100

42 0.0078125 11011001 106 0.015625 0101101

43 0.0078125 11011010 107 0.015625 0101110

44 0.0078125 11011011 108 0.015625 0101111

45 0.0078125 11011100 109 0.015625 0110000

46 0.0078125 11011101 110 0.015625 0110001

47 0.0078125 11011110 111 0.015625 0110010

48 0.0078125 11011111 112 0.015625 0110011

49 0.0078125 11100000 113 0.015625 0110100

International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.2, March 2015

134

50 0.0078125 11100001 114 0.015625 0110101

51 0.0078125 11100010 115 0.015625 0110110

52 0.0078125 11100011 116 0.015625 0110111

53 0.0078125 11100100 117 0.015625 0111000

54 0.0078125 11100101 118 0.015625 0111001

55 0.0078125 11100110 119 0.015625 0111010

56 0.0078125 11100111 120 0.015625 0111011

57 0.0078125 11101000 121 0.015625 0111100

58 0.0078125 11101001 122 0.015625 0111101

59 0.0078125 11101010 123 0.015625 0111110

60 0.0078125 11101011 124 0.015625 0111111

61 0.0078125 11101100 125 0.015625 1000000

62 0.0078125 11101101 126 0.015625 1000001

63 0.0078125 11101110 127 0.015625 1000010

Table 3 Samples of input message

No Input message

1 Detik

2 Abcdefghij

3 detik0123456789

4 !@#$%^&*()_-+=:;,.<>

5 abcdefghijklmnopqrst!@#$%

6 aabbbbcdefghijklmnopqrstuvwxy

7 aaaabcbcbcddddefghijklmnopqrst

8 aaaabcccdefffefgefghijklmnoooo

9 aaabbabccbcbbbcddeefghijjjjjjj

10 abababababcdceabcdedeaaaaaaabc

11 ular lari lurus

12 saya suka susu sapi

13 eleven benevolent elephants

14 freezy breeze made these three trees freeze

15 can you can a can as a canner can can a can?

Table 4 LZW compression process

Step Position Character New Dictionary Output

1 1 M [66]ma [12]

2 2 A [67]ak [0]

3 3 K [68]ka [10]

4 4 A [69]an [0]

5 5 n [70]n(spasil) [13]

6 6 (spasi) [71](spasi)m [26]

7 7 ma [72]mak [66]

8 9 Ka [73]kan [68]

9 11 N - [13]

International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.2, March 2015

135

Table 5 Compression Ratio of input message with different in the sum of character and symbol 0

Input Message Sum of
Characters

Sum of
Symbols

Differenc
e

LZW
Compressio
n Ratio(%)

Huffman
Compression

Ratio (%)

LZW +
Huffman

Compression
Ratio (%)

detik 5 5 0 0 22,5 22,5

abcdefghij 10 10 0 0 22,5 22,5

detik0123456789 15 15 0 0 7,4 7,4

!@#$%^&*()_-
+=:;,.<>

20 20 0 0 1 1

abcdefghijklmnopqrst
!@#$%

25 25 0 0 16,67 16,67

Table6 Compression Ratio of input message with the sum of characters of three and different sum of
symbols

Input Message Sum of
Characters

Sum of
Symbols

Differenc
e

LZW
Compressio
n Ratio(%)

Huffman
Compression

Ratio (%)

LZW +
Huffman

Compression
Ratio (%)

aabbbbcdefghijklmno
pqrstuvwxy

30 25 5 2.9 20 23.07

aaaabcbcbcddddefghi
jklmnopqrst

30 20 10 13 19.4 29.6

aaaabcccdefffefgefghi
jklmnoooo

30 15 15 23 19.4 36.31

aaabbabccbcbbbcdde
efghijjjjjjj

30 10 20 23 20.6 37.89

abababababcdceabcde
deaaaaaaabc

30 5 25 36.7 16.67 47

Tabel 7 Input Message

Message that has many repeating character pairs

Input Message Sum of
Characters

LZW
Compression
Ratio(%)

Huffman
Compression
Ratio (%)

LZW +
Huffman
Compression
Ratio (%)

ular lari lurus 15 13.02 20.63 31.51

saya suka susu sapi 19 21.26 21.26 35.06

eleven benevolent elephants 27 18.69 20 33.33

freezy breeze made these
three trees freeze

43 30.07 24.24 43.82

can you can a can as a canner
can can a can?

44 38.65 18.69 48.45

International Journal of Computer Networks & Communications (IJCNC) Vol.7, No.2, March 2015

136

Table8 Processing Time

Input message with difference in the sum of characters and symbol 0

No Input Message Input Time to create

message(second)
Time to read

message (second)

1 detik 0.04 0.042

2 abcdefghij 0.052 0.055

3 detik0123456789 0.06 0.058

4 !@#$%^&*()_-+=:;,.<> 0.063 0.062

5 abcdefghijklmnopqrst!@#$% 0.064 0.064

Input message with different in the sum of characters and different symbols

No Input Message Input Time to create

message(second)
Time to read

message (second)

6 aabbbbcdefghijklmnopqrstuvwxy 0.049 0.05

7 aaaabcbcbcddddefghijklmnopqrst 0.05 0.048

8 aaaabcccdefffefgefghijklmnoooo 0.045 0.042

9 aaabbabccbcbbbcddeefghijjjjjjj 0.048 0.05

10 abababababcdceabcdedeaaaaaaabc 0.056 0.059

Input message with repeating character pairs

No Input Message Input Time to create

message(second)
Time to read

message (second)

1 ular lari lurus 0.038 0.04

2 saya suka susu sapi 0.038 0.037

3 eleven benevolent elephants 0.055 0.05

4 freezy breeze made these three trees
freeze

0.061 0.066

5 can you can a can as a canner can can a
can?

0.065 0.064

