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ABSTRACT

A mobile sensor network is a wireless network of sensor nodes that move arbitrarily. In this paper, we
explore the use of a maximum stability spanning tree-based data gathering (Max.Stability-DG) algorithm
and a minimum-distance spanning tree-based data gathering (MST-DG) algorithm for mobile sensor
networks. We analyze the impact of these two algorithms on the node failure times and the resulting
coverage loss due to node failures. Both the Max.Stability-DG and MST-DG algorithms are based on a
greedy strategy of determining a data gathering tree when one is needed and using that tree as long as it
exists. The Max.Stability-DG algorithm assumes the availability of the complete knowledge of future
topology changes and determines a data gathering tree whose corresponding spanning tree would exist for
the longest time since the current time instant; whereas, the MST-DG algorithm determines a data
gathering tree whose corresponding spanning tree is the minimum distance tree at the current time instant.
We observe the Max.Stability-DG trees to incur a longer network lifetime (time of disconnection of the
network of live sensor nodes due to node failures), a larger coverage loss time for a particular fraction of
loss of coverage as well as a lower fraction of coverage loss at any time. The tradeoff is that the
Max.Stability-DG trees incur a lower node lifetime (the time of first node failure) due to repeated use of a
data gathering tree for a longer time.
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1. INTRODUCTION

A mobile sensor network is a dynamically changing wireless distributed system of arbitrarily
moving sensor nodes that operate under limited battery charge, memory and processing capacity.
In addition, the bandwidth of these networks is also limited as well as the transmission range of
the nodes is restricted to conserve the battery charge and to reduce collisions. With all of the
above operating constraints, it is not a practically feasible solution to expect each of these sensor
nodes to individually transmit their data (directly or through multi-hop route) to the control
center, commonly called sink, which is typically located far away from the network field being
monitored. In this context, several data gathering algorithms that focus on aggregating data from
the individual sensor nodes through the use of a communication topology (like chain [1], cluster
[2], tree [3], connected dominating set [4], and etc) have been proposed. However, almost all of
these algorithms have been proposed for static sensor networks in which the sensor nodes have
been assumed to remain fixed at a particular location for the entire lifetime.
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The common objective of many of the data gathering algorithms for the static sensor networks
has been to conserve energy and maximize the node lifetime and network lifetime. In this context,
in a recent research [5], we evaluated the performance of the data gathering algorithms based on
different communication topologies and observed the minimum distance-spanning tree based data
gathering (MST-DG) trees to be the most energy-efficient. However, with mobility, the network
topology changes dynamically with time and thus, there is a need to determine stable data
gathering trees that do not break frequently. To the best of our knowledge, we have not come
across any algorithm (centralized or distributed) for stable data gathering in mobile sensor
networks.

In the first half of the paper, we propose a benchmarking algorithm for maximum stability data
gathering (Max.Stability-DG) in mobile sensor networks such that the number of tree discoveries
is the global minimum. Given the complete knowledge of the future topology changes, the
Max.Stability-DG algorithm operates based on the following greedy principle: Whenever a data
gathering tree is required at time instant t, choose the longest-living data gathering tree from t.
The above strategy is repeated over the duration of the data gathering session. The sequence of
such longest-living data gathering trees incurs the minimum number of tree discoveries. The
worst-case run-time complexity of the Max.Stability-DG tree algorithm is O(n2Tlogn) and
O(n3Tlogn) when operated under sufficient-energy and energy-constrained scenarios respectively,
where n is the number of nodes in the network and T is the total number of rounds of data
gathering; O(n2logn) is the worst-case run-time complexity of the minimum-weight spanning tree
algorithm (we use Prim’s algorithm [6]) used to determine the underlying spanning trees from
which the data gathering trees are derived. A similar approach is adopted to determine the
sequence of MST-DG trees – with the only difference being that the underlying spanning tree is a
minimum distance spanning tree determined based on the local network topology and not at the
future topology changes.

In the second half of the paper, we conduct an exhaustive simulation study of the Max.Stability-
DG trees vs. the MST-DG trees and analyze their impact on the node lifetime, network lifetime
and coverage loss time. To the best of our knowledge, we could not find any such comprehensive
analysis of two data gathering strategies for mobile sensor networks and also with respect to the
node failure times beyond the first node failure as well as analysis on the coverage loss time and
fraction of coverage loss at any time due to node failures. The rest of the paper is organized as
follows: Section 2 presents the algorithms to determine the Max.Stability-DG trees and MST-DG
trees. Section 3 presents the simulation environment used and introduces the performance metrics.
Section 4 describes the simulation results observed for the node and network lifetime. Section 5
describes the simulation results obtained for the coverage loss time and fraction of loss of
coverage. Section 6 concludes the paper.

2. DATA GATHERING ALGORITHMS BASED ON MAXIMUM STABILITY AND

MINIMUM DISTANCE SPANNING TREES

The system model adopted in this research is as follows: Each sensor node is assumed to operate
with an identical and fixed transmission range. For the purpose of calculating the coverage loss,
we also use the sensing range of a sensor node, considered in this research, as half the
transmission range of the node. Basically, a sensor node can monitor and collect data at locations
within the radius of its sensing range and transmit them to nodes within the radius of its
transmission range. It has been proven in the literature [7] that the transmission range per node
has to be at least twice the sensing range of the nodes to ensure that coverage implies
connectivity. Data gathering proceeds in rounds. During a round of data gathering, data gets
aggregated starting from the leaf nodes of the tree and propagates all the way to the leader node.
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An intermediate node in the tree collects the aggregated data from its immediate child nodes and
further aggregates with its own data before forwarding to its immediate parent node in the tree.
We use the notions of static graphs and mobile graphs (adapted from [8]) to capture the sequence
of topological changes in the network and determine a stable data gathering tree that spans over
several time instants. A static graph is a snapshot of the network at any particular time instant and
is modeled as a unit disk graph [9] wherein there exists a link between any two nodes if and only
if the physical distance between the two end nodes of the link is less than or equal to the
transmission range. The weight of an edge on a static graph is the Euclidean distance between the
two end nodes of the edge. The Euclidean distance for a link i – j between two nodes i and j,

currently at (Xi, Yi) and (Xj, Yj) is given by: 22 )()( jiji YYXX −+− .

A mobile graph G(i, j), where 1 ≤ i ≤ j ≤ T, where T is the total number of rounds of the data
gathering session corresponding to the network lifetime, is defined as Gi ∩ Gi+1 ∩ … Gj. Thus, a
mobile graph is a logical graph that captures the presence or absence of edges in the individual
static graphs. In this research work, we sample the network topology periodically for every round
of data gathering to obtain the sequence of static graphs. The weight of an edge in the mobile
graph G(i, j) is the geometric mean of the weights of the edge in the individual static graphs
spanning Gi, …, Gj. Since there exist an edge in a mobile graph if and only if the edge exists in
the corresponding individual static graphs, the geometric mean of these Euclidean distances
would also be within the transmission range of the two end nodes for the entire duration spanned
by the mobile graph. Note that at any time, a mobile graph includes only live sensor nodes, nodes
that have positive available energy.

2.1.Maximum Stability Spanning Tree-based Data Gathering (Max.Stability-DG)
Algorithm

The Max.Stability-DG algorithm is based on a greedy look-ahead principle and the intersection
strategy of static graphs. When a mobile data gathering tree is required at a sampling time instant
ti, the strategy is to find a mobile graph G(i, j) = Gi ∩ Gi+1 ∩ … Gj such that there exists a
spanning tree in G(i, j) and no spanning tree exists in G(i, j+1) = Gi ∩ Gi+1 ∩ … Gj ∩ Gj+1. We
find such an epoch ti, …, tj as follows: Once a mobile graph G(i, j) is constructed with the edges
assigned the weights corresponding to the geometric mean of the weights in the constituent static
graphs Gi, Gi+1, …, Gj, we run the Prim’s minimum-weight spanning tree algorithm on the mobile
graph G(i, j). If G(i, j) is connected, we will be able to find a spanning tree in it. We repeat the
above procedure until we reach a mobile graph G(i, j+1) in which no spanning tree exists and
there existed a spanning tree in G(i, j). It implies that a spanning tree basically existed in each of
the static graphs Gi, Gi+1, ..., Gj and we refer to it as the mobile spanning tree for the time instants
ti, …, tj. To obtain the corresponding mobile data gathering tree, we choose an arbitrary root node
for this mobile spanning tree and run the Breadth First Search (BFS) algorithm on it starting from
the root node. The direction of the edges in the spanning tree and the parent-child relationships
are set as we traverse its vertices using BFS. The resulting mobile data gathering tree with the
chosen root node (as the leader node) is used for every round of data gathering spanning time
instants ti, …, tj. We then set i = j+1 and repeat the above procedure to find a mobile spanning
tree and its corresponding mobile data gathering tree that exists for the maximum amount of time
since tj+1. A sequence of such maximum lifetime (i.e., longest-living) mobile data gathering trees
over the timescale T corresponding to the number of rounds of a data gathering session is referred
to as the Stable Mobile Data Gathering Tree. Figure 1 presents the pseudo code of the
Max.Stability-DG algorithm that takes as input the sequence of static graphs spanning the entire
duration of the data gathering session.
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--------------------------------------------------------------------------------------------------------------------
Input: Sequence of static graphs G1, G2, … GT; Total number of rounds of the data gathering
session – T
Output: Stable-Mobile-DG-Tree
Auxiliary Variables: i, j
Initialization: i =1; j=1; Stable-Mobile-DG-Tree = Φ

Begin Max.Stability-DG Algorithm

1 while (i ≤ T) do

2 Find a mobile graph G(i, j) = Gi ∩ Gi+1 ∩ … ∩ Gj such that there exists at least one
spanning tree in G(i, j) and {no spanning tree exists in G(i, j+1) or j = T}

3 Mobile-Spanning-Tree(i, j) = Prim’s Algorithm ( G(i, j) )

4 Root(i, j) = Choose a node randomly in G(i, j)

5 Mobile-DG-Tree(i, j) = Breadth First Search ( Mobile-Spanning-Tree(i, j), Root(i, j) )

6 Stable-Mobile-DG-Tree = Stable-Mobile-DG-Tree U { Mobile-DG-Tree(i, j) }

7 for each time instant tk ∈{ti, ti+1, …, tj} do
Use the Mobile-DG-Tree(i, j) in tk

8 if node failure occurs at tk then
j = k – 1
break

end if
end for

9 i = j + 1

10 end while

11 return Stable-Mobile-DG-Tree

End Max.Stability-DG Algorithm
--------------------------------------------------------------------------------------------------------------------

Figure 1: Pseudo Code for the Maximum Stability-based Data Gathering Tree Algorithm

While operating the algorithm under energy-constrained scenarios, one or more sensor nodes may
die due to exhaustion of battery charge even though the underlying spanning tree may
topologically exist. For example, if we have determined a data gathering tree spanning across
time instants ti to tj using the above approach, and we come across a time instant tk (i ≤ k ≤ j) at
which a node in the tree fails, we simply restart the Max.Stability-DG algorithm starting from
time instant tk considering only the live sensor nodes (i.e., the sensor nodes that have positive
available energy) and determine the longest-living data gathering tree that spans all the live sensor
nodes since tk. The pseudo code of the Max.Stability-DG algorithm in Figure 1 handles node
failures, when run under energy-constrained scenarios, through the if block segment in statement
8. If all nodes have sufficient-energy and there are no node failures, the algorithm does not
execute statement 8.

2.2.Minimum Distance Spanning Tree based Data Gathering Algorithm

In our simulation studies (sections 3 through 5), we compare the performance of the
Max.Stability-DG trees with that of the minimum-distance spanning tree based data gathering
(MST-DG) trees. The sequence of MST-DG trees for the duration of the data gathering session is
generated as follows: If a MST-DG tree is not known for a particular round, we run the Prim’s
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minimum-weight spanning tree algorithm on the static graph representing the snapshot of the
network topology generated at the time instant corresponding to the round. Since the weights of
the edges in a static graph represent the physical Euclidean distance between the constituent end
nodes of the edges, the Prim’s algorithm will return the minimum-distance spanning tree on the
static graph. We then choose an arbitrary root node and run the Breadth First Search (BFS)
algorithm starting from this node. The MST-DG tree is the rooted form of the minimum-distance
spanning tree with the chosen root node as the leader node. We continue to use the MST-DG tree
as long as it exists. The leader node of the MST-DG tree remains the same until the tree breaks
due to node mobility or node failures. When the MST-DG tree ceases to exist for a round, we
repeat the above procedure. This way, we generate a sequence of MST-DG trees, referred to as
the MST Mobile Data Gathering Tree. The MST-DG algorithm emulates the general strategy
(referred to as Least Overhead Routing Approach, LORA [10]) of routing protocols and data
gathering algorithms for ad hoc networks and sensor networks. That is, the algorithm chooses a
data gathering tree that appears to be the best at the current time instant and continues to use it as
long as it exists. In a recent work [5], we have observed the minimum-distance spanning tree-
based data gathering trees to be the most energy-efficient communication topology for data
gathering in static sensor networks. To be fair to the Max.Stability-DG algorithm that is proposed
and evaluated in this research, the MST-DG algorithm is also run in a centralized fashion with the
assumption that the entire static graph information is available at the beginning of each round.

3. SIMULATION ENVIRONMENT AND PERFORMANCE METRICS

We conduct an exhaustive simulation study on the performance of the Max.Stability-DG trees and
compare them with that of the MST-DG trees under diverse conditions of network density and
mobility. The simulations are conducted in a discrete-event simulator developed (in Java) by us
exclusively for data gathering in mobile sensor networks. The MAC (medium access control)
layer is assumed to be collision-free and considered an ideal channel without any interference.
Sensor nodes are assumed to be both TDMA (Time Division Multiple Access) and CDMA (Code
Division Multiple Access)-enabled [11]. Every upstream node broadcasts a time schedule (for
data gathering) to its immediate downstream nodes; a downstream node transmits its data to the
upstream node according to this schedule. Such a TDMA-based communication between every
upstream node and its immediate downstream child nodes can occur in parallel, with each
upstream node using a unique CDMA code.

The network dimension is 100m x 100m. The number of nodes in the network is 100 and initially,
the nodes are uniform-randomly distributed throughout the network. The sink is located at (50,
300), outside the network field. For a given simulation run, the transmission range per sensor
node is fixed and is the same across all nodes. The network density is varied by varying the
transmission range per sensor node of 25m (representative of moderate density, with connectivity
of 97% and above) and 40m (representative of high density, with 100% connectivity).

Each node is supplied with limited initial energy (2 J per node) and the simulations are conducted
until the network of live sensor nodes gets disconnected due to the failures of one or more nodes.
The energy consumption model used is a first order radio model [12] that has been also used in
several of the well-known previous work (e.g., [1][2]) in the literature. According to this model,
the energy expended by a radio to run the transmitter or receiver circuitry is Eelec = 50 nJ/bit and

∈amp = 100 pJ/bit/m2 for the transmitter amplifier. The radios are turned off when a node wants

to avoid receiving unintended transmissions. The energy lost in transmitting a k-bit message over
a distance d is given by: ETX (k, d) = Eelec* k +∈amp *k* d2. The energy lost to receive a k-bit

message is: ERX (k) = Eelec* k.
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We conduct constant-bit rate data gathering at the rate of 4 rounds per second (one round for
every 0.25 seconds). The size of the data packet is 2000 bits; the size of the control messages used
for tree discoveries is assumed to be 400 bits. We assume that a tree discovery requires network-
wide flooding of the 400-bit control messages such that each sensor node will broadcast the
message exactly once in its neighborhood. As a result, each sensor node will lose energy to
transmit the 400-bit message over its entire transmission range and receive the message from each
of its neighbor nodes. In high density networks, the energy lost due to receipt of the redundant
copies of the tree discovery control messages dominates the energy lost at a node for tree
discovery. All of these mimic the energy loss observed for flooding-based tree discovery in ad
hoc and sensor networks.

The node mobility model used is the well-known Random Waypoint mobility model [13] with the
maximum node velocity being 3 m/s, 10 m/s and 20 m/s representing scenarios of low, moderate
and high mobility respectively. According to this model, each node chooses a random target
location to move with a velocity uniform-randomly chosen from [0,…, vmax], and after moving to
the chosen destination location, the node continues to move by randomly choosing another new
location and a new velocity. Each node continues to move like this, independent of the other
nodes and also independent of its mobility history, until the end of the simulation. For a given vmax

value, we also vary the dynamicity of the network by conducting the simulations with a variable
number of static nodes (out of the 100 nodes) in the network. The values for the number of static
nodes used are: 0 (all nodes are mobile), 20, 50 and 80.
We generated 200 mobility profiles of the network for a total duration of 6000 seconds, for every
combination of the maximum node velocity and the number of static nodes. Every data point in
the results presented in Figures 2 through 11 is averaged over these 200 mobility profiles. The
performance metrics measured in the simulations are:

(i) Node Lifetime – measured as the time of first node failure due to exhaustion of battery
charge.

(ii) Network Lifetime – measured as the time of disconnection of the network of live sensor
nodes (i.e., the sensor nodes that have positive available battery charge), while the network
would have stayed connected if all the nodes were alive at that time instant. So, before
confirming whether an observed time instant is the network lifetime (at which the network of
live sensor nodes is noticed to be disconnected), we test for connectivity of the underlying
network if all the sensor nodes were alive.
We obtain the distribution of node failures as follows: The probability for ‘x’ number of node
failures (x from ranging from 1 to 100 as we have a total of 100 nodes in our network for all
the simulations) for a given combination of the operating conditions (transmission range per
node, maximum node velocity and number of static nodes) is measured as the number of
mobility profile files that reported x number of node failures divided by 200, which is the
total number of mobility profiles used for every combination of maximum node velocity and
number of static nodes. Similarly, we keep track of the time at which ‘x’ (x ranging from 1 to
100) number of node failures occurred in each of the 200 mobility profiles for a given
combination of operating conditions and the values for the time of node failures reported in
Figures 4, 5 and 6 are an average of these data collected over all the mobility profile files. We
discuss the results for the distribution of the time and probability of node failures along with
the discussion on node lifetime and network lifetime in Section 4.

(iii) Fraction of Coverage Loss and Coverage Loss Time: If f is denoted as ‘Fraction of Coverage
Loss’ (ranging from 0.01 to 1.0, measured in increments of 0.01), the coverage loss time is
the time at which any f randomly chosen locations (X, Y co-ordinates) among 100 locations
in the network is not within the sensing range of any node (explained in more detail below).
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Since the number of node failures increases monotonically with time and network coverage
depends on the number of live nodes, our assumption in the calculations for network coverage
loss is that the fraction of coverage loss increases monotonically with time. We keep track of
the largest fraction of coverage loss the network has incurred so far, and at the beginning of
each round we check whether the network has incurred the next largest fraction of coverage
loss, referred to as the target fraction of coverage loss. The first time instant during which we
observe the network to have incurred the target coverage loss is recorded as the coverage loss
time for the particular fraction of coverage loss, and from then on, we increment the target
coverage loss by 0.01 and keep testing for the first occurrence of the new target fraction of
coverage loss in the subsequent rounds. We repeat the above procedure until the network
lifetime is encountered for the simulation with the individual data gathering algorithm.

At the beginning of each round, we check for network coverage as follows: We choose 100
random locations in the network and find out whether each of these locations is within the
sensing range of at least one sensor node. We count the number of locations that are not
within the sensing range of any node. If the fraction of the number of locations (actual
number of locations that are not covered / total number of locations considered, which is 100)
not within the sensing range of any node equals the target fraction of coverage loss, we record
the time instant for that particular round of data gathering as the coverage loss time
corresponding to the target fraction of coverage loss. We then increment the target fraction of
coverage loss by 0.01 and repeat the above procedure to determine the coverage loss time
corresponding to the new incremented value of the target fraction of coverage loss.
Each coverage loss time data point reported for particular fractions of coverage loss in
Figures 9, 10 and 11 are the average values of the coverage loss times observed when the
individual data gathering tree algorithms are run with the mobility profile files corresponding
to a particular condition of network dynamicity (max. node velocity and number of static
nodes) and transmission range per node. The probability for a particular fraction of coverage
loss is computed as the ratio of the number of mobility profile files in which the
corresponding fraction of coverage loss was observed divided by the total number of mobility
profile files (200 mobility profile files for each operating condition).

4. NODE LIFETIME AND NETWORK LIFETIME

We observe a tradeoff between node lifetime and network lifetime for maximum stability vs.
minimum-distance spanning tree based data gathering in mobile sensor networks. The MST-DG
trees incur larger node lifetimes (the time of first node failure) for all the 48 operating
combinations of maximum node velocity, number of static nodes and transmission range per
node. The Max.Stability-DG trees incur larger network lifetime for most of the operating
conditions. The lower node lifetime incurred with the Max.Stability-DG trees is attributed to the
continued use of stable data gathering trees for a longer time and that too without changing the
leader node. It would involve too much of message complexity and energy consumption to have
the sensor nodes coordinate among themselves to choose a leader node for every round. Hence,
we choose the leader node for a data gathering tree at the time of discovering it and let the leader
node remain the same for the duration of the tree (i.e., until the tree fails). The same argument
applies for the continued use of the intermediate nodes that receive aggregate data from one or
more child nodes and transmit them to an upstream node in the tree. Due to the unfairness in node
usage resulting from the overuse of certain nodes as intermediate nodes and leader node, the
Max.Stability-DG trees have been observed to yield a lower node lifetime, especially under
operating conditions (like low and moderate node mobility with moderate and larger transmission
range per node) that facilitate greater stability.
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The node lifetime incurred with the Max.Stability-DG trees increases significantly with increase
in the maximum node velocity, especially when operated in moderate transmission ranges per
node. We observe an increase in node lifetime by as large as 200-400% as we increase vmax from 3
m/s to 10 m/s and operate the nodes at a moderate transmission range of 25m or 30m. A further
increase in vmax (i.e., from 10 m/s) to 20 m/s increases the node lifetime further by 50-100%. We
did not observe an increase in node lifetime when we increase vmax from 3 m/s to 10 m/s at higher
transmission ranges per node of 40m. However, a further increase in the maximum node velocity
to 20 m/s triggers regular tree failures that contribute to the fairness of node usage, resulting in an
increase in node lifetime by 100-150%. A similar impact of node mobility on the node lifetime
incurred with the MST-DG trees can also be observed, albeit at a lower percentage increase. We
observe that the node lifetime for the MST-DG trees to increase by about 50-100% as we increase
the maximum node velocity from 3 m/s to 10 m/s. However, a further increase in the maximum
node velocity from 10 m/s to 20 m/s does not create a similar positive impact on the node
lifetime; we observe the node lifetime to further increase by only about 10-20%, and in case of
lower transmission ranges per node, we even observe a 5% decrease in node lifetime.

vmax = 3 m/s vmax = 10 m/s vmax = 20 m/s

Figure 2: Average Node and Network Lifetime (Transmission Range per Node = 25 m)

vmax = 3 m/s vmax = 10 m/s vmax = 20 m/s

Figure 3: Average Node and Network Lifetime (Transmission Range per Node = 40 m)

The node lifetime incurred for the MST-DG trees can be larger than that of the Max.Stability-DG
trees by as large as 400% at low and moderate levels of node mobility and by as large as 135% at
higher levels of node mobility. For a given level of node mobility, the difference in the node
lifetimes incurred for the MST-DG trees and Max.Stability-DG trees increases with increase in
the transmission range per node (for a fixed number of static nodes) and either remain the same or
slightly increase with increase in the number of static nodes (for a fixed transmission range per
node). For a given level of node mobility, the node lifetime incurred with the Max.Stability-DG
trees decreases by about 30-40% as we increase the transmission range per node from 25m to
30m, and decreases further by another 50-60% as we increase the transmission range per node
from 30m to 40m. The MST-DG trees too suffer a decrease in node lifetime with increase in
transmission range per node; but, at a lower scale – due to the relative instability of the trees. At
larger transmission ranges per node, the data gathering trees are bound to be more stable, and the
negative impact of this on node lifetime is significantly felt in the case of the Max.Stability-DG
trees. For a given transmission range per node, the negative impact associated with the use of
static nodes on node lifetime is increasingly observed at vmax values of 3 m/s and 10 m/s. At vmax =
20 m/s, since the network topology changes dynamically, even the use of 80 static nodes is not
likely to overuse certain nodes and result in their premature failures. The node lifetime incurred
with MST-DG trees is more impacted with the use of static nodes at low node mobility scenarios



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.4, July 2013

23

(Figure 4) and the node lifetime incurred with the Max.Stability-DG trees is more impacted with
the use of static nodes at moderate and higher node mobility scenarios (Figures 5 and 6).

Transmission Range: 25 m, 0 static nodes Transmission Range: 25 m, 80 static nodes

Transmission Range: 40 m, 0 static nodes             Transmission Range: 40 m, 80 static nodes

Figure 4: Distribution of Node Failure Times and Probability of Node Failures [vmax = 3 m/s]

Transmission Range: 25 m, 0 static nodes            Transmission Range: 25 m, 80 static nodes

Transmission Range: 40 m, 0 static nodes Transmission Range: 40 m, 80 static nodes

Figure 5: Distribution of Node Failure Times and Probability of Node Failures [vmax = 10 m/s]

The Max.Stability-DG trees compensate for the premature failures of certain nodes by incurring a
lower energy loss per round and energy loss per node due to lower tree discoveries and shorter
tree height with more even distribution of the number of child nodes per intermediate node. As
the dynamicity of the network increases, the data gathering trees become less stable, and this
helps to rotate the roles of the intermediate nodes and leader node among the nodes to increase
the fairness of node usage. All of these save significantly more energy at the remaining nodes that
withstand the initial set of failures. As a result, we observe the Max.Stability-DG trees to observe
a significantly longer network lifetime compared to that of the MST-DG trees. There are only
four combinations of operating conditions under which the MST-DG trees incur larger network
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lifetime – these correspond to transmission range per node of 25m and vmax = 3 m/s (0, 20 and 50
static nodes), 20 m/s (0 static nodes).

The difference in the network lifetime incurred for the Max.Stability-DG trees and that of the
MST-DG trees increases with increase in the maximum node velocity and transmission range per
node. At low, moderate and high levels of node mobility, the network lifetime incurred with the
Max.Stability-DG trees can be larger than that of the MST-DG trees by about 5-20%, 15-40% and
20-60% respectively, with the difference increasing with increase in the transmission range per
node. Similar range of differences in the network lifetime can be observed for the two data
gathering trees at transmission ranges per node of 25m, 30m and 40m, with the difference
increasing as the maximum node velocity increases. For a given vmax and transmission range per
node, the number of static nodes does not make a significant impact on the difference in the
network lifetime incurred with the two data gathering trees at moderate transmission ranges per
node of 25 and 30m. However, at larger transmission ranges per node of 40m, the difference in
the network lifetime decreases by about 15-35%. This could be attributed to the relatively high
stability of the Max.Stability-DG trees when operated at larger transmission ranges per node in
the presence of more static nodes.
With respect the impact of the operating parameters on the absolute magnitude of the network
lifetime, we observe the network lifetime incurred with the two data gathering trees increases
with increase in the number of static nodes for a given value of vmax and transmission range per
node. For a given level of node mobility, the network lifetime increases with increase in
transmission range per node; however, for the MST-DG trees, the rate of increase decreases with
increase in the maximum node velocity. This could be attributed to the relative instability of the
MST-DG trees at high node mobility levels, requiring frequent tree reconfigurations. During a
network-wide flooding, all nodes in the network tend to lose energy, almost equally. The
Max.Stability-DG trees maintain a steady increase in the network lifetime with increase in
transmission range per node for all levels of node mobility. For a given transmission range per
node and number of static nodes, the network lifetime incurred for the two data gathering trees
decreases with increase in the maximum node velocity, especially for the MST-DG trees due to
their instability. This could be attributed to the energy loss incurred due to frequent tree
discoveries. The network lifetime incurred with the Max.Stability-DG trees and MST-DG trees
decreases by about 30-50% and 50-100% respectively as we increase the maximum node velocity
from 3 m/s to 20 m/s for a fixed transmission range per node and number of static nodes.

Transmission Range: 25 m, 0 static nodes            Transmission Range: 25 m, 80 static nodes

Transmission Range: 40 m, 0 static nodes             Transmission Range: 40 m, 80 static nodes

Figure 6: Distribution of Node Failure Times and Probability of Node Failures [vmax = 20 m/s]
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For a given transmission range per node, with the absolute values of the node lifetime increasing
with increase in the maximum node velocity and the network lifetime decreasing with increase in
the maximum node velocity, we observe the maximum increase in the absolute time of node
failures to occur at low node mobility. This vindicates the impact of network-wide flooding based
tree discoveries on energy consumption at the nodes. Since all nodes are likely to lose the same
amount of energy with flooding, the more we conduct flooding, the larger is the network-wide
energy consumption. As a result, node failures tend to occur more frequently when we conduct
frequent flooding. Thus, even though operating the network at moderate and high levels of node
mobility helps us to extend the time of first node failure, the subsequent node failures occur too
soon after the first node failure. This could be justified with the observation of flat curves for the
MST-DG trees with respect to the distribution of node failure times (in Figures 4, 5 and 6). The
distribution of node failure times is relatively steeper for the Max.Stability-DG trees. The unfair
usage of nodes in the initial stages does help the Max.Stability-DG trees to prolong the network
lifetime. Aided with node mobility, it is possible for certain energy-rich nodes (that might have
been leaf nodes in an earlier data gathering tree) to keep the network connected for a longer time
by serving as intermediate nodes, and the energy-deficient nodes serve as leaf nodes during the
later rounds of data gathering.
The impact of mobility in prolonging node failure lifetimes could also be explained by the lower
probability of node failure observed for the Max.Stability-DG trees in comparison to the MST-
DG trees when there are 0 static nodes (the plots to the left in Figures 4, 5 and 6). At 80 static
nodes, the probability of node failures for the two data gathering trees is about the same and is
higher than that observed when all nodes are mobile. This could be attributed to the repeated
overuse of certain nodes as intermediate nodes and leader node on relatively more stable data
gathering trees. Thus, with the use of static nodes, even though the absolute magnitude of the
network lifetime can be marginally increased (by about 10-70%; the increase is larger at moderate
transmission range per node and larger values of vmax), the probability of node failures to occur
also increases.
In terms of the percentage difference in the values for the network lifetime and node lifetime
incurred with the two data gathering trees, we observe the Max.Stability-DG trees to incur a
significantly prolonged network lifetime, beyond the time of first node failure. For a given
transmission range per node and maximum node velocity, we observe the difference between the
node lifetime and network lifetime for the Max.Stability-DG trees to increase significantly with
increase in the number of static nodes. This could be attributed to the reduction in the number of
flooding-based tree discoveries. For a given level of node mobility, we observe the difference in
the node lifetime and network lifetime for the Max.Stability-DG trees to increase with increase in
the transmission range per node. This could be again attributed to the decrease in the number of
network-wide flooding based tree discoveries when operated at larger transmission ranges per
node. Relatively, the MST-DG trees incur a very minimal increase in the network lifetime
compared to the node lifetime, especially when operated at higher levels of node mobility. The
network lifetime incurred with the Max.Stability-DG trees could be larger than the node lifetime
as low as by a factor of 1.7 and as large as by a factor of 23. On the other hand, the network
lifetime incurred with the MST-DG trees could be larger than the node lifetime as low as by a
factor of 1.4 and as large as by a factor of 5.7.
One can also observe from Figures 4, 5 and 6 that the number of node failures that require for the
node failure time incurred with the Max.Stability-DG trees to exceed that of the node failure time
incurred with the MST-DG trees decreases with increase in maximum node mobility. This could
be attributed to the premature very early node failure occurring for the Max.Stability-DG trees
when operated under low node mobility scenarios, with the time of first node failure for the MST-
DG tree being as large as 400% more than the time of first node failure for the Max.Stability-DG
tree. On the other hand, at high levels of node mobility, the time of first node failure incurred with
the MST-DG trees is at most 100% larger than that of the Max.Stability-DG trees. Hence, the
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node failure times incurred with the Max.Stability-DG trees could quickly exceed that of the
MST-DG trees at higher levels of node mobility. At the same time, the probability for node
failures to occur (that was relatively low at moderate transmission ranges per node, low and
moderate levels of node mobility) with the Max.Stability-DG trees converges to that of the MST-
DG trees when operated at higher levels of node mobility as well as with larger transmission
ranges per node. For a given vmax value and transmission range per node, we also observe that the
number of node failures required for the failure times incurred with the Max.Stability-DG trees to
exceed that of the MST-DG trees increases with increase in the number of static nodes.

5. COVERAGE LOSS ANALYSIS
5.1 Coverage Loss at a Common Timeline

In this section, we compare the loss of coverage incurred with both the Max.Stability-DG and
MST-DG trees with respect to a common timeline, chosen to be the minimum of the network
lifetime obtained for the two data gathering trees under every operating condition of
transmission range per node, maximum node velocity and the number of static nodes. Given the
nature of the results obtained for the network lifetime under different operating conditions, the
minimum of the network lifetime for the two data gathering trees ended up mostly being the
network lifetime observed for the MST-DG trees. For this value of network lifetime, we measured
the fraction of coverage loss in the network incurred for each of the two data gathering trees, as
well as measured the probability with which the corresponding fraction of coverage loss is
observed.

Under the above measurement model, we observe the Max.Stability-DG trees incur lower values
of the fractions of coverage loss at the minimum of the network lifetime incurred for the two data
gathering trees for most of all the 48 combinations of the operating conditions of maximum node
velocity, number of static nodes and transmission range per node (see Figures 7 and 8). However,
the fraction of coverage loss observed for the Max.Stability-DG trees is bound to occur with a
higher probability than that of the coverage loss to be incurred by using the MST-DG trees. The
difference in the fraction of coverage loss incurred for the Max.Stability-DG trees vis-à-vis could
be as large as 0.18-0.21, observed at transmission range per node of 40m and 80 static nodes,
under all levels of node mobility. The only three combinations of operating conditions for which
the Max.Stability-DG trees sustain a larger value for the fraction of coverage loss (that too, only
by 0.02) are at a transmission range per node of 25m - vmax = 3 m/s, 0 and 20 static nodes; and vmax

= 10 m/s, 0 static nodes.

vmax = 3 m/s vmax = 10 m/s vmax = 20 m/s
Figure 7: Fraction of Coverage Loss and Associated Probability (Trans. Range/Node = 25 m)

vmax = 3 m/s vmax = 10 m/s vmax = 20 m/s
Figure 8: Fraction of Coverage Loss and Associated Probability (Trans. Range/Node = 40 m)
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In the case of the Max.Stability-DG trees, for a fixed vmax value, we observe the fraction of loss of
coverage to decrease with increase in transmission range per node from 25m to 40m, of course
with a higher probability. The significant decrease in the loss of coverage (as low as 0.05) at
higher transmission range per node of 40m could also be attributed to the increase in the network
lifetime, and also due to the reason that we measure the loss of coverage at a time value
(corresponding to the network lifetime of the MST-DG trees), which is lower than the network
lifetime of the Max.Stability-DG trees. For fixed vmax and transmission range, as we increase the
number of static nodes, the fraction of coverage loss decreases significantly for Max.Stability-DG
trees by about 0.05 to 0.1; whereas, the fraction of coverage loss for the MST-DG trees suffers a
very minimal decrease or remains the same. For a fixed # static nodes and transmission range per
node, the maximum node velocity has minimal impact on the fraction of coverage loss for the
MST-DG trees. However, for the Max.Stability-DG trees, as we increase the maximum node
velocity from 3 m/s to 20 m/s, at transmission ranges per node of 30m and 40m, the fraction of
coverage loss that was already low (in the range 0.10 – 0.15 range) decreases further by about
0.05 – 0.07.

5.2 Distribution of Coverage Loss

In Figures 9, 10 and 11, we illustrate the distribution of the time (referred to as the coverage loss
time) at which particular fractions of coverage loss occurs in the network when run with the
Max.Stability-DG and MST-DG trees (until the network lifetime of the individual data gathering
tree). The Max.Stability-DG trees incur larger values of coverage loss time for moderate and
higher values of the fractions of coverage loss (generally above 0.15 or 0.2), under most of the
combinations of the operating conditions of maximum node velocity, 0 and 80 static nodes and
transmission range per node. The only combination of operating conditions for which the
Max.Stability-DG trees sustain a lower coverage loss time for fractions of coverage loss greater
than 0.15-0.2 is at vmax = 3 m/s – transmission ranges per node of 25m. For quantitative
comparison purposes, we base our discussion in this section on the coverage loss time observed
when the fraction of coverage loss is 0.3. For most of the combinations of operating conditions,
we observe the coverage loss times incurred with the Max.Stability-DG and MST-DG trees to
flatten out (i.e., not appreciably increase) starting from this fraction of coverage loss.
In terms of the percentage difference in the coverage loss time incurred at a fraction of coverage
loss of 0.3, we observe the coverage loss time incurred with the Max.Stability-DG trees to be
about 15-40%, 15-45% and 30-70% greater than the coverage loss time incurred with the MST-
DG trees at low, moderate and high levels of node mobility respectively. For a fixed transmission
range per node and number of static nodes, the absolute magnitude for the coverage loss time
incurred for both the data gathering trees decreases with increase in the vmax value. The MST-DG
trees suffer the most with their coverage loss time decreasing by about 20-40% as we increase
vmax from 3 m/s to 10 m/s, and a further decrease by another 20-40% as we increase vmax from 10
m/s to 20 m/s. The Max.Stability-DG trees suffer a relatively slower decrease in coverage loss
time by about 10-25% as we increase vmax from 3 m/s to 10 m/s, and a further decrease by another
5-15% as we increase vmax from 10 m/s to 20 m/s. The consolation is that the decrease in the
coverage loss time occurs at a lower probability for the fraction of coverage loss to be at 0.3.
To illustrate the immense negative impact of increase in the maximum node velocity on the
coverage loss time for MST-DG trees, we cite the following observation from Figures 9, 10 and
11: the coverage loss time incurred with vmax = 3 m/s, transmission range of 25m and 0 static
nodes is even greater than the coverage loss time incurred with vmax = 20 m/s, transmission range
of 40m and 80 static nodes (by about 5%). Thus, neither the increase in the number of static nodes
and nor the increase in the transmission range per node can adequately compensate for the
decrease in the coverage loss time when we increase the maximum velocity of a node from 3 m/s
to 20 m/s. On the contrary, for the same conditions, we observe the coverage loss time incurred



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.4, July 2013

28

with the Max.Stability-DG trees at vmax = 20 m/s, transmission range per node of 40m and 80
static nodes to be about 70% greater than the coverage loss time incurred at vmax = 3m/s,
transmission range of 25m and 0 static nodes. This emphasizes the importance of discovering
stable data gathering trees that can reduce the energy lost due to frequent network-wide flooding
at high levels of node mobility and prolong the coverage loss time incurred with the data
gathering trees.

Transmission Range: 25 m, 0 static nodes            Transmission Range: 25 m, 80 static nodes

Transmission Range: 40 m, 0 static nodes Transmission Range: 40 m, 80 static nodes

Figure 9: Coverage Loss Time and Probability of Coverage Loss [Low Mobility: vmax = 3 m/s]

Transmission Range: 25 m, 0 static nodes Transmission Range: 25 m, 80 static nodes

Transmission Range: 40 m, 0 static nodes            Transmission Range: 40 m, 80 static nodes

Figure 10: Coverage Loss Time & Probability of Coverage Loss [Mod. Mobility: vmax = 10 m/s]

For a given level of node mobility, the coverage loss time incurred with the Max.Stability-DG
trees almost doubles, if not more, as we increase the transmission range per node from 25m to
40m and the number of static nodes from 0 to 80. This could be attributed to the significant
energy savings obtained as a result of the need for very few network-wide flooding tree
discoveries with the use of the Max.Stability-DG algorithm when operated at larger transmission
ranges per node and/or more static nodes. We observe significant gains in the coverage loss time
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when the number of static nodes is also simultaneously increased with increase in the
transmission range per node. In fact, at moderate and high levels of node mobility, the coverage
loss time incurred when we run the network at transmission range per node of 25m and increase
the number of static nodes from 0 to 80 is greater than (by about 10%) or equal to the coverage
loss time incurred when we run the network with 0 static nodes and increase the transmission
range per node from 25m to 40m. In the case of MST-DG trees, the percentage increase in the
coverage loss time with increase in the number of static nodes vis-à-vis increase in the
transmission range per node is more obvious. The coverage loss time observed while using the
MST-DG tree at a transmission range per node of 25m and increasing the number of static nodes
from 0 to 80 is about 25-45% greater than the coverage loss time incurred when we run the
network with 0 static nodes and increase the transmission range per node from 25m to 40m.
For both the data gathering trees, especially in the case of MST-DG trees, the potential energy
savings obtained with respect to reduction in the number of network-wide flooding discoveries is
much more when we operate at a moderate transmission range per node and increase the number
of static nodes from 0 to 80 rather than operating at a larger transmission range per node with 0
static nodes. It is to be noted that larger the transmission range, the larger is the energy lost in
transmission, and also larger is the energy lost due to receipt of the control messages from a larger
number of neighbor nodes. For both the data gathering trees, we observe the increase in coverage
loss time with the use of more static nodes vis-à-vis a larger transmission range per node to occur
with a relatively lower probability of coverage loss.

Transmission Range: 25 m, 0 static nodes             Transmission Range: 25 m, 80 static nodes

Transmission Range: 40 m, 0 static nodes            Transmission Range: 40 m, 80 static nodes

Figure 11: Coverage Loss Time & Probability of Coverage Loss [High Mobility: vmax = 20 m/s]

6. CONCLUSIONS

We have conducted an extensively evaluated the performance of the Max.Stability-DG trees and
MST-DG trees under diverse conditions of network dynamicity (varied by changing the
maximum node velocity and number of static nodes) and network density (varied by changing the
transmission range per node). Due to its nature to use a long-living data gathering tree as long as
it exists, we observe the Max.Stability-DG algorithm to incur a lower time for the first node
failure. However, the tradeoff between stability and fairness of node usage ceases to exist beyond
the first few node failures; the reduced number of network-wide flooding discoveries coupled
with the shallow structure and even distribution of nodes across the intermediate nodes (which
also contribute to a lower delay per round) contribute to a longer lifetime for the remaining nodes
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in the network and significantly prolong the network lifetime as well as the coverage loss time.
On the contrary, the MST-DG trees that incur a larger time for the first node failure are observed
to incur a significantly lower network lifetime and lower coverage loss time for a given fraction
of loss of coverage (and correspondingly incur a larger fraction of coverage loss at any time),
owing to frequent network-wide flooding-based tree discoveries that expedite the node failures
after the first node failure. We did not come across such a comprehensive analysis for node
failure times, network lifetime, coverage loss times and fraction of coverage loss in any prior
work in the literature.
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