
International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

DOI : 10.5121/ijcnc.2013.5315 201

An Optimal Software Framework for Parallel
Computation of CRC

Hamed Sheidaeian1 and Behrouz Zolfaghari2

1Department of Engineering, Islamic Azad University, Garmsar Branch, Iran
sheidaeian@ut.ac.ir

2Department of Engineering, Islamic Azad University, Garmsar Branch, Iran
zolfaghari@aut.ac.ir

ABSTRACT

CRC is a common error detection method used in different areas such as information storage and data
communication. CRC depends on modulo-2 division by a predetermined divisor called the generator. In
this method, the transmitter divides the message by the generator and concatenates the calculated residue
to the message. CRC is not able to detect every kind of errors. The properties of the generator determine
the range of errors which are detectable in the receiver side. The division operation is currently performed
sequentially, so developing methods for parallel computation of the residue makes CRC suitable for
network protocols and software applications. This paper presents a novel software framework for parallel
computation of CRC using ODP polynomials.

KEYWORDS

Parallel CRC computation, ODP polynomial, OZO generator

1. Introduction and Basic Concepts

CRC is a widely adopted method for detecting errors which is used in various systems.
Applications of CRC [4-8] as well as developing methods for improving its efficiency [9-11] have
been research focuses in recent years. Before discussing the CRC method and introducing the
proposed approach, some definitions and basic concepts are needed which they are shortly
presented in the following.

Polynomial: is a notation for a bit string in which the positions of 1s a shown by the exponents of a

variable such as x . In other words, a polynomial appears in the form of i
i xa∑ . Each ia can be 0

or 1 and is equal to the corresponding bit in the string. Each ix shows that the corresponding bit
has been located in the position i of the string. For example the bit string 1101 can be shown by

the polynomial 123 ++ xx . The degree of a polynomial is equal to the largest exponent of x in
the polynomial. A polynomial of degree m is equivalent to a string than consists of length 1+m
bits. Every polynomial of an even degree is referred to an even polynomial in this paper. Similarly
polynomials having odd degrees are called odd polynomials.

Modulo-2 bitwise addition and subtraction: are both equal to logic XOR. Modulo-2 addition and
subtraction generate no carry or borrow. Thus, the addition/subtraction of two strings is simply
accomplished by adding/subtracting corresponding bits of the strings.

mailto:sheidaeian@ut.ac
mailto:zolfaghari@aut.ac

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

202

Modulo-2 bitwise multiplication: is equal to logical AND. String multiplication is accomplished
by bitwise multiplications, shifts and string additions. Especially Multiplying a bit string like s by

n2 (or equally nx) means concatenating n zero bits to the right end of the string. Therefore, ns 2.
is called a shifted multiple of s for every value of n .

Modulo-2 division: is often explained in terms of a polynomial division method called long
division which imitates consecutive modulo-2 subtractions. In other words, modulo-2 division is
accomplished by subtracting the dividend by multiples of the divisor until the degree of the residue
is less than that of the divisor.

Generator: is a predetermined unique string (polynomial) used as the divisor by both the
transmitter and the receiver. The generator plays a key role in the error detection capability of the
CRC method. For example, a generator containing an even number of 1s can detect every error
whose vector contains an odd number of 1s.

Above concepts and definitions are essential for the reader to understand the rest of this paper, so
they were discussed briefly. Readers are referred to [12] for more details regarding these concepts.
In a system which uses CRC for error detection, the transmitter adds a redundancy code to the end
of the message which can be used by the receiver in order to determine whether the message has
been changed during the transmission. The length of the code varies from one system to another.
Especially the Ethernet protocol uses a 32-bit CRC 9.The process of using an n-bit CRC is as
follows:

 The transmitter concatenates n zero bits to the end of the message M (converting it to nM 2*
). Next, it divides the whole string (including the message as well as the added zero bits) by the
predetermined generator (G) which is n+ 1 bit long and calculates the residue (

GModM n)2*(). In the next step, the transmitter inserts the n-bit residue of the division (

R) in place of the zero bits and transmits the result string which will be equal to
GModMMMR nn)2*(2* ±= . Figure 1 demonstrates these steps.

 The receiver on the other hand, divides the received string (MR) by the generator and
calculates the residue again. If the transmitted string does not change while passing through the
channel, the residue here will be equal to 0))2*(2*(=± GModGModMM nn (The notation
± has been used to emphasize the fact that addition and subtraction are the same in modulo-2
arithmetic). Thus, if the residue is not equal to zero, the receiver considers an error. In fact, if
an error occurs during the transmission, the corresponding error vector (E) will be added to
MR . In this case, the receiver will obtain GModEGModEMR =+)(instead of zero.

One of the shortcomings of CRC is that it cannot detect all types of errors. To make this point
more clear, suppose that E is a multiple of G . In this case the residue calculated in the receiver side
will be equal to 0=GModE . This misleads the receiver to assume that there has been no error. In
fact, if the error vector is a multiple of the generator, the receiver cannot detect the error. To
mitigate this problem, electrical and mechanical properties of the channel should be analyzed
carefully as well as the environmental noises. This way, the dominant types of error can be
determined and calculated the corresponding error vectors. Now a generator should be selected
which does not have any multiples equal to the dominant error vectors.

In this paper a software framework is proposed for accelerated computation of CRC using OZO-
based generators. The rest of this paper is organized as follows. Section 2 presents Preliminary
discussions about OZO generators and parallel computation of CRC using them, section 3 explains
a traditional software framework for sequential computation of CRC. The proposed accelerated

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

203

framework is discussed in section 4. Section 5 is dedicated to finding OZO generators in the
framework .Section 6 shows experimental results and finally section 7 presents conclusions and
suggests further works.

2. Preliminary discussions about parallel CRC computation

2.1. OZO Generators

CRC is traditionally computed by serial circuits called LFSRs (Linear Feedback Shift Registers).
An LFSR is a special kind of shift register in which the output of the last flip flop is fed to the
input of the first flip flop through a number of XOR gates. This paper utilizes a novel method for
parallel computation of CRC using mathematical properties of a special category of generator
polynomials called ODPs (OZO Dividing Polynomials). ODPs are polynomials having multiples
of form 100…001. The latter form of polynomials is called OZO (One-Zero-One).It is
demonstrated that if the generator is selected from this category, the CRC can be calculated by
parallel circuits with minor hardware requirements. B.Zolfaghari and H.Sheidaeian [1, 2 & 3]
introduced OZOs and ODPs. They developed a systematic method for constructing ODP
polynomials. This method has been used in proposed software framework for computing OZO-
based polynomials.

A burst Error is defined in their works as an error which flips a large number of consecutive bits.
The vector of such an error will have such a form: 00…011…100…0. Such strings are called ZOZ
(Zero-One-Zero) strings in this paper. A ZOZ string consists of three substrings; an all-zero
substring in the left side, an all-1 substring in the middle and another all-zero substring in the right
side. The all-1 substring of a ZOZ string is referred as an ALO (All One) string. Every polynomial
that has an ALO multiple also is referred as an ADP (ALO Dividing Polynomial). Especially,
every ADP of degree 32 is called an ADP32. Every ALO polynomial of an even degree is called
an even ALO polynomial and every ALO polynomial of an odd degree is called an odd ALO
polynomial.

ZOZ strings can be equivalently shown by ZOZ polynomials which contain a set of consecutive

exponents of x like)1(
1

+= ∑∑
−

==

mn

j

j
n

mi

mi xxx where n is the degree of the polynomial and m is

the number of 0s in the right side of the string. The sum 1
1

+∑
−

=

mn

j

jx (or equally∑
−

=

mn

j

jx
0

) shows the

polynomial form of the ALO substring.

An OZO (One-Zero-One) string is one which contains a single 1 in the left side, a number of
consecutive 0s in the middle and another single 1 in the right side (like this: 100…001). The

equivalent polynomial form of an OZO string is like 1+nx .

2.2. Analytical Discussions

In order to calculate CRC using the proposed parallel algorithm, a software program should be
developed which generates all possible 32-bit strings S and concatenate 32 zero bits to each S to
make . 2 .In the next step, . 2 should be divided into G to calculate the remainder R and then
each S should be stored in a file along with the corresponding R.

The next required program should take an input string M and repeat the following steps until there
remains 32 bits from M as the final remainder.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

204

• Take 32 bits from the left of M.
• Lookup the taken 32-bit string among S strings and find the corresponding R.
• XOR R with next 32 bits and truncate the first 32 bits from M.

The above programs aim at totally parallel calculation of CRC using a table-driven approach.
Suppose a dividend M is to be divided against a divisor G. The goal of such a division is to
permanently subtract multiples of G from M and turn left side bits of G to 0 reduce the length of
M. The division is finished when the length of M is smaller than that of G. at the end of this
process, M itself will be the remainder. If G is n+1 bits long, the length of the final remainder will
be equal to n. In this approach, a special multiple of G is found in each step which is 2n bits long
and has n bits equal to M in the left. Thus in each step, n bits of M turn to zero instead of just one
bit. This multiple of G named G’’. In fact G’’ has an n-bit left prefix exactly equal to M and
since the modulo-2 operation is the same as XOR operation, each step of the division works like
shown in the figure 1.

Figure 1. Schematic of a single step of the algorithm

As seen in the above image, this algorithm depends on parallel conversion of n bits of M to zero
in each step instead of converting a single bit. In each step n bits from the left of are truncated and
the next n bits () are XORed with n least significant bits of G’’ ("). Note that , , "
and " are each n bits long.

In order to calculate G’’ from G, n zero bits should be concatenated to and get . 2 . Then. 2 should be divided against G and remainder R should be gathered. if R is subtracted from. 2 , a string will be reached which is obviously divisible to G. This multiple of G is in fact
which is named G’’.

Now the division can be performed with G’’ as a multiple of G instead of G itself. To do this, all
possible n-bit strings M should be created and stored in a table along with the corresponding. 2 . In each step, an n-bit prefix M is truncated from M and next n-bit is XORed with. 2 . The string . 2 should be looked up in the table.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

205

If this approach is to be applied to 32-bit CRC, 2 strings should be calculated each 32 bits
length and each of them should be stored in a table with the corresponding 32-bit remainder. Thus2 division operations will be needed and the size of the table will be equal to 2 ∗(32 + 32) = 2 , but in order to reduce the number of division operations and the size of the
table, 32-bit strings like M can be generated and stored along with the 32-bit string. 2 in the table. The figure 2 shows the way this is done.

a. b.

Figure 2. Computing mid-sums

In this approach another table containing 16-bit M strings will be needed along with the
corresponding 32-bit remainders . 2 . The total size of the two tables will be equal to2 ∗ 2 ∗ (2 + 2) = 2 ∗ (2 + 2) = 2 + 2 which shows an obvious reduction. Also
the number of required division operations will be equal to 2 ∗ 2 = 2 which exhibits an
obvious reduction again. But each step of this approach includes to cycles and two XOR
operations. The choice between the two approaches depends on the most important parameters. In
fact there is a trade-off between the size of the table and the static calculations in one hand and
the dynamic run-time calculations in other hand. This trade-off should be resolved by the
designer.

3. A Software Framework for Regular CRC Computation

The main function which used for CRC computation is GenerateCRCResidue:

void GenerateCRCResidue(string data, string CRCGen) {
string zero = InitBinary(32);
string pattern = data + zero;
string res[] = DivideModulo2(pattern,CRCGen);
string R = res[1];
return R;

}

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

206

In this function CRC generator is stored in CRCPoly variable. The function calculates CRC using
returned residue value of a Modulo-2 division function. Some extra subroutines are used in above
function as follows.

InitBinary function initializes an n-bit string-based binary number with zero value. Increament
function takes one string based binary parameter and returns that value plus one.
ConvertToBinary function is used for converting an integer number to equivalent N-bit binary
string with alignment of N.

DivideModulo2 function calculates modulo-2 binary division.

string[] DivideModulo2(string a, string b) {
string[] res = new string[2];
if (a.Length < b.Length) {

res[0] = "0";
res[1] = a;

}
else {

ArrayList mid_quotients = new ArrayList();
string tempa = a;
while (tempa.Length>=b.Length) {

string tempb = b;
string tempquot = "1";
int len_dif = tempa.Length-b.Length;
for (int i=0;i<len_dif;i++) {

tempquot += "0";
tempb += "0";

}
mid_quotients.Add(tempquot);
tempa = SumModulo2(tempa,tempb);
if (tempa.Length>=b.Length)

tempa = RemoveZeroFromLeft(tempa);
if (tempa.Length<b.Length) {

string t = tempa;
for (int i=0;i<b.Length-t.Length-1;i++)

tempa = "0"+tempa;
}

}
string quotient = "0";
for (int i=0;i<mid_quotients.Count;i++)

SumModulo2(mid_quotients[i].ToString(),quotient);
res[0] = quotient;
res[1] = tempa;

}
return res;

}

SumModulo2 function computes modulo-2 addition. Abs method returns the absolute value of a
number and Convert.ToByte method converts the specified string representation of a number to an
equivalent 8-bit unsigned byte. RemoveZeroFormLeft function eliminates extra zeroes from left
side of a string-based binary number.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

207

string[] SumModulo2(string a, string b) {
string tempa = a;
string tempb = b;
int len_dif = Abs(a.Length-b.Length);
if (a.Length>b.Length) {

for (int i=0;i<len_dif;i++)
tempb = "0"+tempb;

}
else if (a.Length<b.Length) {

for (int i=0;i<len_dif;i++)
tempa = "0"+tempa;

}
string result = "";
for (int i=tempa.Length-1;i>=0;i--) {

byte bita = Convert.ToByte(tempa.Substring(i,1));
byte bitb = Convert.ToByte(tempb.Substring(i,1));
byte bit_xor = (byte)(bita ^ bitb);
result = bit_xor.ToString() + result;

}
return result;
}

string RemoveZeroFromLeft(string x) {
string res = "";
int i = 0;
for (i=0;i<x.Length;i++) {

byte bit = Convert.ToByte(x.Substring(i,1));
if (bit==1) break;

}
Res = x.Substring(1);

return res;
}

4. Proposed Framework for Accelerated Computation of CRC

Sequential schema of proposed CalculateCRC subroutine is shown in next page. In this pseudo-
code input data is fragmented to 32-bit segments and DivideModulo2 is performed on each
segment to retrieve residue value as partial CRC. Finally XOR logic operation is used between
these partial CRCs for computing final CRC value.

The input data can be divided to 32-bit segments and multithread programming features of .Net
can be used for parallel and fast computation of partial CRCs instead of this sequential schema.
XOR helper function performs modulo-2 addition between its first argument and 32 least
significant bits of its second argument, then concatenates this intermediate value to 32 most
significant bits of the second arguments and finally returns this result.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

208

string CalculateCRC(string data, string CRCPoly) {
string temp = data;
string zero = InitBinary(32);
for (int i=0;i<(int)(data.Length/32)-1;i++) {

string split = temp.Substring(0,32);
string data = split+zero;
string[] res = DivideModulo2(data, CRCPoly);
string R = res[1];
temp = temp.Substring(32);
temp = XOR(R,temp);

}
return temp;
}

string XOR(string s, string main) {
string subMain = main.Substring(0,32);
string res = SumModulo2(subMain,s)+main.Substring(32);
return res;

}

5. Finding OZO-based Generators

There are five steps for generating all 32 bits OZO-based polynomials can used for parallel
computation of CRC. Figure 3 shows these steps.

Figure 2. Block diagram of finding OZO-based generators subsystem

5.1 Generating Prime Numbers

First of all a global ArrayList variable is needed for preserving all 32-bits prime numbers. So in
first step 32 bits prime numbers should be computed using sieve of Eratosthenes algorithm.
Result prime numbers are stored in a text file using a special StreamWriter object that implements
a text writer for writing strings to an I/O stream in a particular encoding.

Prime
Factorization

Generate OZO
Polynomials

Generate Prime
Numbers

primes.txt

ozos.txt

Generators
Detection

Generators
Partitioning

primefactors.txt

generators.txt final_generators.txt

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

209

void CreatePrimNumbers(string main, string s) {
//sw : prime numbers
PrimNumbers.Add("11");
sw.WriteLine("11");
for (int i=4;i<=Int32.MaxValue;i++) {

string binary_val = ConvertToBinary(i);
int count = CountOfCharInString(binary_val,'1');
// i must not be even and the count of 1s in binary

val must be odd
if ((i&1)==1 && (count&1)==1) {

bool isPrime = true;
for (int j=0;j<PrimNumbers.Count;j++) {

if((Floor((decimal)(binary_val.Length/2
+1)<PrimNumbers[j].ToString().Length)

break;
string[] div = DivideModulo2(binary_val,

PrimNumbers[j].ToString());
if (IsZero(div[1]) {

isPrime = false;
break;

}
}
if (isPrime==true) {

PrimNumbers.Add(binary_val);
sw.WriteLine(binary_val);

}
}

}
sw.Close();

}

Floor method returns the largest integer less than or equal to the specified number. Some other
helper functions are used in above code. CountOfCharInString function counts repetition number
of a character in a string and IsZero function determines if a string variable is a binary zero or not.

5.2 Generating OZO Polynomials

In this step all OZO polynomials is generated easily and stored in a text file.

void CreateOZO() {
//sw : ozos
sw.WriteLine("11");
for (int i=0;i<=128;i++) {

string tmp = "1";
for (int j=0;j<=I;j++) tmp += "0";
tmp += "1";
sw.WriteLine(tmp);}

sw.Close();
}

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

210

5.3 Prime Factorization

In prime factorization step all previous generated data (32 bits prime numbers and OZO
polynomials) are read by two special StreamReaders object. This object implements a text reader
that reads strings from an I/O stream in a particular encoding. In the next step a loop structure is
used for modulo-2 dividing each OZO polynomial by all prime numbers. If an OZO polynomial is
divisible by a prime number (all bits of string-based residue should be zero), prime number will
be stored in a text file and replace current OZO value by quotient of division for examination
using next prime number.

void PrimeFactorization() {
//sw : primefactors
string tmp = sr_prime.ReadLine();
ArrayList primes = new ArrayList();
ArrayList ozos = new ArrayList();

while (tmp!=null) {
primes.Add(tmp);
tmp = sr_primes.ReadLine();

}

sr_primes.Close();
tmp = sr_ozos.ReadLine();

while (tmp!=null) {
ozos.Add(tmp);
tmp = sr_ozos.ReadLine();

}
sr_ozos.Close();

for (int i=0;i<ozos.Count;i++) {
string result = "";
string ozo = ozos[i].ToString();
for (int j=0;j<primes.Count;j++) {

if (ozo.Length>=primes[j].ToString().Length) {
String pr = primes[j].ToString();
string[] res = DivideModulo2(ozo,pr);
if (!res[1].Contains("1")) {

ozo = res[0];
result += pr+" ";
j--; countinue;

}
}
else break;

}
sw.WriteLine(result);}

sw.Close();
}

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

211

5.4 Generators Detection

The prime factors generated in previous step (the set of prime divisor for each OZO string) are
used for generating power set for them. Then for each subset exist in this power set, all divisors
are multiplied together. If the length of this result is 33 bits, it should be added to generators file.
Split method in related pseudo code returns a string array that contains the substrings in this string
that are delimited by a specified character.

An example in integer domain can explain the operation:
Assume that we want to find all numbers with a multiple equal to ‘30’. So we should find all
prime divisors of 30 first (prime decomposition of 30): 30 = 2 * 3 * 5(30) = {2,3,5}
After that, the power set of PF(30) is:(30) = {{ }, {2}, {3}, {5}, {2,3}, {2,5}, {3,5}, {2,3,5}}
Now if we multiply all members in each subset together, we can produce a set of numbers which
‘30’ is a multiple of them.(30) = {2,3,5,6,10,15,30}
5.5 Generators Partitioning

If an k-bit OZO polynomial is presented by OZO(k), it can be easily shown that OZO(2k-1) is a
multiple of OZO(k). The intersection of OZO(k) and OZO(2k-1) divisor sets (which are produced
in previous stage) definitely is not empty. In the set theory, the intersection of two sets A and B is
the set that contains all elements of A that also belong to B, but no other elements. So the union of
divisor sets (retrieved from OZO polynomials in previous step) is computed and duplicate
members are removed. The union of two sets is the set of all distinct elements in them.

void DistinctGenerators() {
// sw :final_generators
// sr :generators
ArrayList gen = new ArrayList():
String tmp = sr.ReadLine();
while (tmp!=null) {

string[] factors = tmp.Split(' ');
for (int i=0;i<factors.Length;i++) {

if (!gen.Contains(factor[i])) {
gen.Add(factors[i]);
sw.WriteLine(factors[i]);

}
}
tmp = sr.ReadLine();

}
sw.Close();
sr.Close();

}

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

212

void DetectGenerators() {
// sw : generators
// sr : primefactors
String tmp = sr.ReadLine();
int k = 0;
while (tmp != null) {
k++;
string[] factors = tmp.Split(' ');
ArrayList generator = new ArrayList();
for (int i=0;i<factors.Length;i++) {
if (!generator.Contains(factors[i]) &&
factors[i].Length=33)
generator.Add(factors[i]);
}
string pattern = InitBinary(factors.Length);
while (pattern.Contains("0")) {
pattern = Increament(pattern);
string multiply = "1";
int len_sum = 0;int count = 0;
for (int j=0;j<factors.Length;j++) {
if (pattern.Substring(j,1)== "1") {
len_sum += factors[j].Length;
count++;
}
}
len_sum -= count-1;
if (len_sum==33) {
for (int j=0;j<factors.Length;j++) {
if (pattern.Substring(j,1)== "1")
multiply = MultiplyModulo2(
multiply,factors[j]);
}
if (!generator.Contains(multiply))
generator.Add(multiply);
}
}
tmp = sr.ReadLine(); string gen = "";
for (int i=0;i<generator.Count;i++)
gen += generator[i].ToString()+" ";
sw.WriteLine(gen);
}
sr.Close(); sw.Close();
}

6. EXPERIMENTAL RESULTS

Sequential GenerateCRCResidue method and proposed CalculateCRC are implemented in C# 3.0
using Visual Studio 2008. Multithreading is used for parallel implementation of CalculateCRC.
Parallel code is executed on Intel Core i5 CPU. Table 1 shows the average execution time (in
millisecond) needed for computing CRC for all possible 32-bit input strings (all possible2 values) using both sequential and parallel schemas. Elapsed computation time is calculated

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

213

using StopWatch class in C#. This table and related figure 4 show that the multithreaded parallel
computation of CRC code works faster than its corresponding sequential code.

Table 1. Execution time for sequential and parallel CRC computation of all 32-bit input values

Execution time
(MT)

Execution time
(Sequential)

of
threads

Input String
Length (bit)

24
47

2
320

12.84
934

1774
2

1600
4924

36204
65892

2
6400

189344

Figure 4. Execution time of sequential and parallel CRC computation

7. CONCLUSION

The CRC computation is traditionally implemented using sequential schemas. These codes divide
an n bit dividend by an m bit divisor in n iterations regardless of the size of the divisor. In this
paper a systematic method is proposed and explained to implement a software framework for
parallel commutation of CRC based on modulo-2 mathematics. This paper also shows that if the
divisor polynomial is selected from a special family of 32-bits strings called OZO, the division
can be implemented using a parallel schema like multithreading and this code works faster than
its corresponding sequential code. This work can be continued with designing parallel codes for
other families of divisors.

REFERENCES

[1] Hamed Sheidaeian, Behrouz Zolfaghari, Parallel Computation of CRC Using Special Generator
Polynomials, International Journal of Computer Networks & Communications (IJCNC), Vol. 4, No.
1, January 2012

[2] Behrouz Zolfaghari, Hamed Sheidaeian, Saadat Pour Mozafari, Systematic Selection of CRC
Generator Polynomials to Detect Double Bit Errors in Ethernet Networks, In Proceedings of The
Third International Conference on Computer Networks & Communications (CoNeCo 2011), Ankara,
Turkey, June 26 ~ 28, 2011.

[3] Behrouz Zolfaghari, Saadat Pour Mozaffari, Haleh Karkhane, A Systematic Approach to the Selection
of CRC Generators to Detect Burst Errors in Ethernet Networks, In proceedings of the IEEE
International Conference on Intelligent Network and Computing (ICINC 2010), Kuala Lumpur,
Malaysia, November 2010.

1

10

100

1000

10000

100000

1 2 4

ex
ec

ut
io

n
tim

e
(lo

ga
rit

hm
ic

 sc
al

e)

number of threads

320 bits

1600 bits

6400 bits

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

214

[4] Hamed Sheidaeian, Behrouz Zolfaghari, An Efficient and Secure Approach to Multi-User Image
Steganography Using CRC-Based CDMA, In Proceedings of IEEE 3rd International Conference on
Signal Acquisition and Processing, 2011, Singapure, Singapure.

[5] Xiaodong Deng, Mengtian Rong, Tao Liu, Yong Yuan, Dan Yu, Segmented Cyclic Redundancy
Check: A Data Protection Scheme for Fast Reading RFID Tag's Memory. In Proceedings of IEEE
Wireless Communications & Networking Conference (WCNC 2008), pp. 1576-1581, March 31 2008
- April 3 2008, Las Vegas, Nevada, USA.

[6] Ahmad, A. and Hayat, L., Algorithmic Polynomial Selection Procedure for Cyclic Redundancy Check
for the use of High Speed Embedded Networking Devices, In Proceedings of International Conference
on Computer and Communication Engineering 2008 (ICCCE’08), Kuala Lumpur, Malaysia - on 13-
15 May, 2008.

[7] Yun Pana, Ning Ge, Zaiwang Dong, CRC Look-up Table Optimization for Single-Bit Error
Correction, Tsinghua University Journal of Science & Technology, Tsinghua Science & Technology,
Vol. 12, Issue 5, pp. 620-623, October 2007.

[8] Liu Zhanli, Liang Xiao, Zhao Chunming, Wang Jing, CRC-Aided Turbo Equalization For MIMO
Frequency Selective Fading Channels, Journal of Electronics(China), Vol. 24, Issue 1, pp. 69-74,
2007.

[9] Walma Mathys, Pipelined Cyclic Redundancy Check (CRC) Calculation, In Proceedings of
International Conference on Computer Communications and Networks, 2007 ICCCN 2007, In
Proceedings of 16th International Conference on, pp 365-370, 13-16 August 2007.

[10] Raman Assaf, Tyszberowicz Shmuel, The EasyCRC Tool, In Proceedings of 2007 International
Conference on Software Engineering Advances (ICSEA 2007), pp. 25-31, August 2007.

[11] Yalamarthy, Ragha Sudha; Wilson, G. Stephen, Near-ML Decoding of CRC Codes, In Proceedinggs
of 41st Annual Conference on Information Sciences and Systems, pp. 92-94, 14-16 March 2007.

[12] Andrew. S. Tanenbaum, Computer Networks, 5th Edition, 2010, Prentice Hall

Authors

Hamed Sheidaeian is a Ph.D. student in computer engineering at University of Tehran, Iran.
His r esearch areas include computer architecture, embedded system design, data
communication and multimedia systems.

Behrouz Zolfaghari is a Ph.D. student in computer engineering at Amirkabir University of
Technology (AUT), Tehran, Iran. His research areas include image processing, computer
architecture and computer networks.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

214

[4] Hamed Sheidaeian, Behrouz Zolfaghari, An Efficient and Secure Approach to Multi-User Image
Steganography Using CRC-Based CDMA, In Proceedings of IEEE 3rd International Conference on
Signal Acquisition and Processing, 2011, Singapure, Singapure.

[5] Xiaodong Deng, Mengtian Rong, Tao Liu, Yong Yuan, Dan Yu, Segmented Cyclic Redundancy
Check: A Data Protection Scheme for Fast Reading RFID Tag's Memory. In Proceedings of IEEE
Wireless Communications & Networking Conference (WCNC 2008), pp. 1576-1581, March 31 2008
- April 3 2008, Las Vegas, Nevada, USA.

[6] Ahmad, A. and Hayat, L., Algorithmic Polynomial Selection Procedure for Cyclic Redundancy Check
for the use of High Speed Embedded Networking Devices, In Proceedings of International Conference
on Computer and Communication Engineering 2008 (ICCCE’08), Kuala Lumpur, Malaysia - on 13-
15 May, 2008.

[7] Yun Pana, Ning Ge, Zaiwang Dong, CRC Look-up Table Optimization for Single-Bit Error
Correction, Tsinghua University Journal of Science & Technology, Tsinghua Science & Technology,
Vol. 12, Issue 5, pp. 620-623, October 2007.

[8] Liu Zhanli, Liang Xiao, Zhao Chunming, Wang Jing, CRC-Aided Turbo Equalization For MIMO
Frequency Selective Fading Channels, Journal of Electronics(China), Vol. 24, Issue 1, pp. 69-74,
2007.

[9] Walma Mathys, Pipelined Cyclic Redundancy Check (CRC) Calculation, In Proceedings of
International Conference on Computer Communications and Networks, 2007 ICCCN 2007, In
Proceedings of 16th International Conference on, pp 365-370, 13-16 August 2007.

[10] Raman Assaf, Tyszberowicz Shmuel, The EasyCRC Tool, In Proceedings of 2007 International
Conference on Software Engineering Advances (ICSEA 2007), pp. 25-31, August 2007.

[11] Yalamarthy, Ragha Sudha; Wilson, G. Stephen, Near-ML Decoding of CRC Codes, In Proceedinggs
of 41st Annual Conference on Information Sciences and Systems, pp. 92-94, 14-16 March 2007.

[12] Andrew. S. Tanenbaum, Computer Networks, 5th Edition, 2010, Prentice Hall

Authors

Hamed Sheidaeian is a Ph.D. student in computer engineering at University of Tehran, Iran.
His r esearch areas include computer architecture, embedded system design, data
communication and multimedia systems.

Behrouz Zolfaghari is a Ph.D. student in computer engineering at Amirkabir University of
Technology (AUT), Tehran, Iran. His research areas include image processing, computer
architecture and computer networks.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

214

[4] Hamed Sheidaeian, Behrouz Zolfaghari, An Efficient and Secure Approach to Multi-User Image
Steganography Using CRC-Based CDMA, In Proceedings of IEEE 3rd International Conference on
Signal Acquisition and Processing, 2011, Singapure, Singapure.

[5] Xiaodong Deng, Mengtian Rong, Tao Liu, Yong Yuan, Dan Yu, Segmented Cyclic Redundancy
Check: A Data Protection Scheme for Fast Reading RFID Tag's Memory. In Proceedings of IEEE
Wireless Communications & Networking Conference (WCNC 2008), pp. 1576-1581, March 31 2008
- April 3 2008, Las Vegas, Nevada, USA.

[6] Ahmad, A. and Hayat, L., Algorithmic Polynomial Selection Procedure for Cyclic Redundancy Check
for the use of High Speed Embedded Networking Devices, In Proceedings of International Conference
on Computer and Communication Engineering 2008 (ICCCE’08), Kuala Lumpur, Malaysia - on 13-
15 May, 2008.

[7] Yun Pana, Ning Ge, Zaiwang Dong, CRC Look-up Table Optimization for Single-Bit Error
Correction, Tsinghua University Journal of Science & Technology, Tsinghua Science & Technology,
Vol. 12, Issue 5, pp. 620-623, October 2007.

[8] Liu Zhanli, Liang Xiao, Zhao Chunming, Wang Jing, CRC-Aided Turbo Equalization For MIMO
Frequency Selective Fading Channels, Journal of Electronics(China), Vol. 24, Issue 1, pp. 69-74,
2007.

[9] Walma Mathys, Pipelined Cyclic Redundancy Check (CRC) Calculation, In Proceedings of
International Conference on Computer Communications and Networks, 2007 ICCCN 2007, In
Proceedings of 16th International Conference on, pp 365-370, 13-16 August 2007.

[10] Raman Assaf, Tyszberowicz Shmuel, The EasyCRC Tool, In Proceedings of 2007 International
Conference on Software Engineering Advances (ICSEA 2007), pp. 25-31, August 2007.

[11] Yalamarthy, Ragha Sudha; Wilson, G. Stephen, Near-ML Decoding of CRC Codes, In Proceedinggs
of 41st Annual Conference on Information Sciences and Systems, pp. 92-94, 14-16 March 2007.

[12] Andrew. S. Tanenbaum, Computer Networks, 5th Edition, 2010, Prentice Hall

Authors

Hamed Sheidaeian is a Ph.D. student in computer engineering at University of Tehran, Iran.
His r esearch areas include computer architecture, embedded system design, data
communication and multimedia systems.

Behrouz Zolfaghari is a Ph.D. student in computer engineering at Amirkabir University of
Technology (AUT), Tehran, Iran. His research areas include image processing, computer
architecture and computer networks.

