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ABSTRACT 
 
The stability and the predictability of a computer network algorithm's performance are as important as the 
main functional purpose of networking software. However, asserting or deriving such properties from the 
finite state machine implementations of protocols is hard and, except for singular cases like TCP, is not 
done today. In this paper, we propose to design and study run-time environments for networking protocols 
which inherently enforce desirable, predictable global dynamics. To this end we merge two complementary 
design approaches: (i) A design-time and bottom up approach that enables us to engineer algorithms based 
on an analyzable (reaction) flow model. (ii) A run-time and top-down approach based on an autonomous 
stack composition framework, which switches among implementation alternatives to find optimal operation 
configurations. We demonstrate the feasibility of our self-optimizing system in both simulations and real-
world Internet setups. 
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1. INTRODUCTION 
 
Dynamics of networking protocols is difficult to handle in both engineering practice and theory. 
Ideally, all continuously-running protocols in the Internet should steer towards a dynamic 
equilibrium state that is able to track changes in the running system (the single well known and 
outstanding example here is TCP). The question is how other functionalities in networking could 
regulate themselves in a similar way, and what other regulation principle (than TCP’s congestion 
control, for example) can be isolated and transposed to dynamics control settings. 
 
We propose a two-sided strategy. One approach is more system-oriented: we look at the long-
term evolution of protocol stacks where (sub-) protocols are dynamically recomposed based on 
online experiment. This means that overall, the stack configuration should remain stable (achieve 
equilibrium with respect to some fitness function), but also periodically undergo experimentation 
phases that probe for new optimization opportunities. The complementary approach is more 
theory-based: we have developed a systematic way of designing, analyzing, and deploying 
networking mechanisms (e.g. flow control), which borrows a paradigm and a structural 
representation from chemical engineering. The ease whereby a mathematical model can be 
thereafter generated allows (a) the direct derivation of a flow model and (b) the application of 
well-known theories to study and formally verify algorithms’ dynamic behavior (e.g., control and 
signal theory), prior to deployment. Additionally, as we are going to show in this paper, 
expressing a traffic-shaping algorithm in terms of molecules (=packets), reactions (=interactions 
between packets and queues), and chemical rules (=rules defining the emergent dynamics 
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exhibited by packet flows) leads to have systems exhibiting smooth transitions and leverages 
stable attractors [1]. That is, an intrinsic feature of chemical algorithms in general is the 
propensity to achieve equilibrium states. 
 
In this paper, we introduce a complete networking framework where the final composition of the 
system modules as well as their optimal settings undergo periodic experimentation and quickly 
stabilize at an optimal steady state. We present our approach by focusing on the concrete context 
of rate controlling flows accessing the Internet. Specifically, we let a chemistry-inspired rate 
controller (Chemical Rate Controller - CRC) regulate dynamically the access rate to the physical 
layer (Ethernet media). At the same time, the parameterization and configuration of the whole 
communication stack (thus including the configuration and the position in the stack of the CRC) 
are continuously adjusted by a machine-learning based system (Stack Composition System - 
SCS). By following the two approaches, we are able to produce a self-adapting system that 
accesses the physical layer with always-under-control rate that does not exhibit bursts. 
 
1.1. Related works 
 
We report in this section on related works that have commonalities with both our top-down and 
bottom-up approaches. 
 
1.1.1. Stack composition and online experimentation 
 
The mechanics of protocol stack composition have been intensively researched. Hutchinson 
presented the x-kernel [2] twenty years ago, from which time onward the idea of flexible protocol 
stacks [3] has been revisited by ComScript [4], the Click router [5], as well as active networking. 
Ongoing research into autonomic and future networks, such as ANA [6] and 4WARD [7], also 
commonly includes composition functionality as a vital part of its architecture architectures. Most 
approaches concentrate on re-arranging the protocol interaction. However, protocol re-
configuration has also been looked into, for example, the Recursive Network Architecture [8] 
proposed for this purpose by Touch et al., which applies the same tunable meta-protocol on all 
stack layers. 
 
The presumed benefit of online stack composition therefore seems to be widely accepted. The 
logic that guides the composition process, however, is not yet well researched. Ramoz-Munoz et 
al. presented an online experimentation environment for network protocols [9], which 
continuously executes and evaluates the performance of several network protocols, and then 
selects the best performer. Their approach works well for selecting the best protocol for a specific 
task or service. However, it is not easily applicable if the number of possible combinations is too 
large, as is the case for network stacks composed of many, small functional blocks. 
 
The knowledge plane for the Internet [10] that Clark requests, is able to develop models of what 
the network should do, and autonomously adapts the provided services as required to meet the 
demands. In this paper we provide a knowledge plane for stack composition, which adapts the 
network stack such that it fulfils the user’s demands with respect to traffic dynamics. However, 
keeping a complex system in an equilibrium state is far from trivial, especially if the system’s 
components can be exchanged at runtime. Per-protocol dynamics and short-term adaption towards 
an equilibrium (e.g. TCP-friendliness or optimization of web server operation [11]) have been 
intensively studied. Dobson et al. recommend autonomic control loops for regulating network 
operations and maintaining a steady state [12, 13, 14], whereas Sifalakis et al. propose rule-based 
functional stack composition heuristics [15]. 
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Biological approaches to self-adaptation appear promising because they are shown to be flexible 
and reliable enough for the development of highly evolved organisms without possessing any 
inherent understanding of the environment or even knowledge of what constitutes a more 
advantageous state. Taylor et al. model robots as chemically interacting cells and apply Genetic 
Regulatory Networks for control tasks [16, 17]. Inspired by this research, we devised the 
following stack composition framework, which combines biological self-adaptation methods with 
online experimentation. 
 
1.1.2. Control-theory and flow-model based approaches for networking algorithm design  
 
Traditionally, the design of traffic-shaping algorithms has based either on empirical knowledge, 
e.g. [18], as well as on theoretical foundations, e.g. [19]. The theoretical approach usually makes 
use of fluid-approximations, e.g. [19, 20, 21]. In such an approach, a major concern is the 
discreteness of packets and network events, and often finding a correct flow model, which is able 
to capture the macroscopic dynamics of the analysed system, reveals to be art rather than science. 
“Chemistry-inspired” algorithms may represent a novel class of algorithms for networking which 
holds intrinsically these aspects altogether: Chemical algorithms can be designed intuitively by 
composition or direct use of basic patterns inspired to simple rules and concepts of the 
surrounding nature. At the same time with chemical algorithms, we maintain a formal theoretic 
methodology to justify design choices and be able to easily extract guidelines to successfully 
deploy and calibrate the algorithms. 
With the aim to make packet flow “fluid”, several queueing disciplines have been proposed in the 
literature. Generally, fluidity is obtained by introducing a small delay to packet streams (e.g., 
Delayed Frame Queueing – DFQ –  [22] for ATM networks, or Constant Delay Queueing – CDQ 
– policy [23] for jitter-sensitive multi-media streams) or by means of guard time intervals (e.g., 
MAC protocol for 802.11 wireless networks). However, to our knowledge, the corresponding 
non-work-conserving scheduling disciplines are rarely discussed in details in the literature. 
The chemical paradigm bridges the gap between micro level, where the discreteness of packets 
(=molecules) and the management of packet delays are captured in details, and macro level, 
where the emergent system trajectory is observed. This result rests on the import of concepts from 
chemistry, among them the non-work-conserving mass-action scheduling regime (explained in 
the next sections). 
By using the chemical paradigm, we align with the historical proposals by Keshav [24] that 
proposed the design of a flow control mechanism based on a control-theoretic methodology, or to 
the more recent work by Huibing et al. [25] that attempted to formalize the analysis of TCP-like 
flow control schemes, and furthermore, to works such as [26, 27, 28, 29] that have shown the 
benefit of using control theory to design Active Queue Management (AQM) controllers. However 
with the chemical paradigm, we do not merely refer to a mathematical description about the 
system and we do not have to try to extract a flow-model that approximates sufficiently well the 
proposed algorithm’s dynamics. By contrast, a fundamental contribution of our approach is that 
no such derivation task is required! Instead, the execution model (state machine, automaton) is the 
state-space expression of the flow-model. 
 
1.1. Paper structure 
 
In the remainder of this paper, we first explain independently the basics of our Stack Composition 
System (SCS) framework in Section 2 (the system-oriented top-down approach), and those of the 
artificial chemistry for networking in Section 3 (the bottom-up approach), also introducing the 
Chemical Rate Controller (CRC). We then explain how to integrate the two approaches and 
produce an adapting system that enables us to obtain definable global dynamics, Section 4. We 
report in Section 5 on the results obtained in simulations and in experiments over the real Internet. 
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We conclude this paper with a discussion of the insights developed through this work in Section 
6, and our future orientation in Section 7. 
 

2. STACK COMPOSITION SYSTEM (SCS) 
 
Whereas most research into future networking architectures [6, 7] includes the possibility of re-
composing the network stack according to the current requirements, the logic for how and when 
to re-compose or re-configure the stack is still sparsely researched. We intend to develop a 
system, which is not only able to recompose the stack according to some prefabricated plan, but 
which can also autonomously experiment with various stack compositions, evaluate their 
performance and derive new, better compositions from this experience. For this purpose we 
developed the SCS network stack composition system [30], which employs machine learning 
methods to autonomously compose and configure the network stack at run-time, measure its 
performance through exposure the real network environment and traffic, and over time 
continuously improve this composition until a near optimal state is reached. 
The structure of our framework is shown in Figure 1, highlighting the components that take care 
of either the stack mechanics or the evolution machinery. (In this section, we assume the reader 
has a basic knowledge on genetic algorithms and artificial intelligence context.)  
The network stack is composed of service module instances and a persistent storage space for 
keeping module state data across stack changes. The stack steering system manages and operates 
the stack, and gathers performance measurements, both locally and from remote sensors. The 
stack composer constructs the stack itself, according to a blueprint derived by the evolution 
engine. This stack blueprint defines the connections between module instances and thus their 
interaction, as well as the configuration of these instances and therefore its operation 
characteristics. 
The evolution engine decides how to compose the stack out of the available modules, i.e. it 
constructs a stack blueprint by applying the associated evolutionary algorithm. By means of the 
blueprint this algorithm decides and defines how many instances of the available modules are 
provided, how they are configured,  and  how  they are connected to each other.  For this task, it 
has access to state data including the previous generation(s) of blueprints within the current 
population and their associated fitness value. This fitness value is calculated by the fitness 
function,  which  derives  it  from  the  measurements obtained by the stack steering system. The  
 

 

 

 

 

 

 

 
Figure 1: The components of the SCS. 

Stack operations encompass the stack steering system, composer, persistent storage space, and the sensors. 
The evolution machinery consists of the situational classifier, the evolution engine, fitness function, and 

multiple populations of stack blueprints. 
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classifier in turn groups stack blueprints into populations, depending on the output of its 
associated classification or clustering algorithm when applied to situational measurement data 
obtained by the stack steering system, pertaining to the network and traffic characteristics. 
 
Our network stack is built out of modules which separate the protocol functionality into small and 
potentially re-usable blocks. The Chemical Rate Controller (CRC), described in Section III, 
constitutes one such module, as do for example TCP, UDP, or IPv4. Modules expose control 
parameters that influence operational characteristics of their service, and specify the value range 
these parameters can take. The exact values for each module instance are determined by the 
corresponding blueprint developed by the evolution engine. Additionally, modules provide sensor 
data to other modules. Sensors allow read access to internal state or measurement data, e.g. the 
current network load or communication error rate. Sensor data is utilized by other modules, and 
also by the stack steering system to calculate the overall stack performance. For this paper, we 
used the output rate measured at the physical layer to evaluate the systems performance, e.g. the 
proximity of the measured value to a target send rate (detailed in Section 5). Modules keep state 
data that can be either unique to a module instance, shared among instances of the same module, 
or among instances proving the same functional interface. These data are persistent with respect 
to changes in the stack composition. This enables, for example, transport protocol 
implementations to be exchanged at run-time without losing connection information, or the 
chemical rate limiter to be removed from the stack and re-inserted later, as the corresponding 
information can be kept within the persistent storage space. 
 
The evolution engine is the “brain” of the composition framework. It contains the functionality 
for inventing and selecting between the stack compositions, by providing blueprints which define 
the module configurations and the interactions between them. The evolution engine generates the 
blueprints for the next generation of stack blueprints based on previous performance 
measurements, using e.g. a machine learning or planning algorithm.  
 
For the experiments described in this paper, we employed a Genetic Algorithm, which operates 
by exposing a population of individual stack blueprints the real network traffic. Each blueprint is 
tested in the real network environment, and a measure of its performance (called fitness) is 
calculated by means of a user-defined function, encoding the optimization criterion. Once all 
stack  blueprints that  are part of the population have been evaluated,  a new generation of  blue- 
 

 

 
 
 
 
 
 
 
 

 
Figure 2: Within the genome, chromosomes encode module instances. 

Chromosomes can be imagined as arrays of integer ranges, each of which represents either a control 
(represented by a partially filled black box in the figure) or a connector (coloured boxes) that is bound to a 

matching service (coloured rhombus) provided by either another chromosome. 
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prints is generated and replaces the current population as follows: The elite, i.e. those blueprints 
in the preceding generation that showed the best performance, are kept alive in the new 
generation. The remainder of the new population is generated by a process that resembles sexual 
reproduction in biology: Two parent blueprints from the preceding generation are randomly 
selected with probability proportional to their fitness. Within the algorithm these blueprints are 
treated as a genome as shown in Figure 2, in which chromosomes resemble the settings of 
instances of stack modules (e.g. UDP) and their connections to other modules. From these two 
genomes a new genome (i.e. stack blueprint) is created through recombination, crossover and 
mutation. The blueprints represented in the new generation are again used to construct new stack 
instances, which are tested through online experimentation by exposing them to the actual live 
communication traffic that is destined to or originating from the node running the composition 
system. 
 

3. CHEMICAL RATE CONTROLLER (CRC) 
 
In this section we explain how chemical reactions can be used to model information processing of 
packet streams. Leaving aside a complete exploration of the metaphor introduced in [31], we 
concentrate on the aspects that enable us to describe through this model the operation of a 
Chemically driven Rate Controller (CRC). 
Traditionally, the protocol execution is handled by a state machine that, upon reception of a 
packet, synchronously changes its internal state. In chemical protocols instead, dynamics are 
driven by the dynamics of an underneath reaction model that, upon reception of a packet, changes 
its state, i.e. molecular concentrations. Molecules (=packets) react with other molecules and one 
(or more) of these reactions constitute either internal or external events (e.g. packet transmission). 
Molecular species embody networking queues which can either contain packets with payload or 
mere conditional tokens (like in traditional token-bucket schemes). 
Figure 3 shows a simple chemical driven algorithm for data-traffic shaping: the queue service 
policy is non-work-conserving (the queue is not served as fast as possible with a rate vtx that 
matches the generation rate vsrc). Instead, a chemical reaction network (=queueing network) 
regulates the departing process of data-packets, i.e. vtx = vout, and guarantees the respect of a 
prefixed, adjustable threshold of the service rate. 
Specifically, molecular species S can be viewed as a buffer that temporarily stores data-packets 
until they are being consumed by the egress reaction r1 :  S+E (k1)→ ES. Species E embodies the 
queue containing the conditional tokens that authorize the consumption of S-molecules (=data-
packet transmission). Always in terms of networking, the aforementioned reaction defines the 
server. This server (i) follows a non-work-conserving scheme according to which the service rate 
is k1-proportional to the amount of available tokens and queued packets and    (ii) is special in that 
it extracts a packet from two queues at the same time (this requires the definition of a packet 
merge operation [31]). 

 
 
 
 
 
 
 
 
 

Figure 3: Chemical Rate Controller (CRC). 
A packet flow is buffered in a classical FIFO queue. The reaction model regulates the queue service 

guaranteeing the respect of a prefixed, adjustable threshold of the service rate. 
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Formally, the reaction network is constituted by (i) a multiset of finite sets of molecular species S 
= {s1, … , s|S|} (e.g. in Figure 3, {S, E, ES}), (ii) a set of reaction rules R = {r1 , … , r|R|} 
expresses which molecules react and which molecules are generated during this process, and (iii) 
an algorithm A which defines how these reactions are processed. Reactions can be represented in 
terms of reaction equations, i.e. 
 
 
         

The reaction coefficient kr defines the reaction speed; the non-negative integers χsr and ξsr are the 
stoichiometric reactant and product coefficients that denote the number of s-species molecules 
consumed and produced by reaction r. For instance, the reaction model in Figure 3 is constituted 
by reaction r1 :  S + E (k1)→ ES, which consumes molecules S and E and produces molecules ES 
at a speed controllable through k1, and reaction r2 :  ES (k2)→ E + P, which consumes molecules 
E to produce molecules P and E at a speed controllable through k2. Note that species E and ES 
constitute a closed loop. Namely, the total amount (concentration c) of molecules of these species 
remains constant over time: cE + cES =const. =e0. 
 
As we hinted informally at the beginning, on macroscopic level, chemical reactions follow the 
Law of Mass Action (LoMA), which states that the reaction rate is proportional to the 
concentration (quantity) c of all reactant molecules [32, 33] (e.g. in Figure 3, the rate of reaction 
r1 is k1cScE). Since in chemical driven algorithms, packets’ quantities relate to molecular 
concentrations and the execution of network events is triggered by chemical reactions, the flow 
model of packet dynamics can be automatically derived as a set of ODEs: 
 

                         ċ(t) = Ψ · v( c(t) )                                                      (1) 
 

where Ψ = [ψ]sr is the stoichiometric matrix that defines the reaction network topology (ψsr = ξsr 
− χsr), and where the vector v =[v1, … , v|R|]

T combines all reaction rates. For example in 
Figure 3, data-packet are created at rate vsrc and their transmission is associated to the rate of 
reaction r2 (vtx = vout). Practically, as soon as a P-molecule is produced a data-packet is dequeued 
and sent. The rate control algorithm is describable through the ODEs       
 
                   (2) 
 
 
where k2 cES = vout  (= vtx).  
 
By studying the CRC depicted in Figure 3 at steady states (i.e., by solving (2) with respect to 
species concentrations when the left-hand side is set to 0), it is easy to show that the steady-state 
transmission rate vtx matches the offered vsrc in case vsrc < e0 k2 [34]. On the contrary, as a 
consequence of the mass-conservation principle characterizing the closed loop E-ES, when the 
load is too high with respect to the pre-definable limit e0 k2 the expected CRC’s dynamics is 
described by the well-known bio-chemical Michaelis-Menten law: 
 

 

 
This law announces that, even for the limit case cs → ∞ (i.e. very high quantity of queued 
packets), the rate of r2-reaction assumes the finite value v2 = e0 k2 (i.e. the queue service rate is 
bounded to the pre-definable value e0 k2). (Please note that our enzymatic motif is similar to a 
token bucket algorithm, but slightly differs in the fact that the tokens are re-used and rotate in the 
loop. Such a token loop is only feasible thanks to the LoMA scheduling algorithm we use to drive 
the queues. A work-conserving discipline would cause the tokens to loop infinitely fast, and the 
reaction network would not limit the traffic.) 
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Additionally, the transient behaviour of the CRC can be fully described in the frequency domain 
by the related transfer function. Its response to arbitrary perturbation of inputs (i.e. rate at which 
packet are enqueued) and of parameters (e.g., reaction coefficients and initial molecular 
concentrations) can be exactly predicted (for further details please refer to the sensitivity analysis 
introduced in [35] and specifically applied to the CRC in [34]). As a result, we have exact 
guidelines to calibrate the CRC in order to satisfy certain performance requirements. 
 
The CRC turns out to behave as a low pass filter with definable cut-off frequency. That is, the 
output rate from the CRC is free from bursts and spikes, and the filtering level is adjustable 
through the reaction coefficients. 
 
In order to decouple the filtering from the limiting mechanism, we can add an additional output 
species F that behaves as an independent Low-Pass (LP) filter [34]. In this case we can keep 
constant k1 and k2 (e.g. set to 1), modify e0 in order to calibrate the CRC to have a certain 
predefined dequeue rate, and use kF in order to fine-tune the cut-off frequency of the LP. Namely, 
by increasing kF we let the overall system adapt more promptly to changes of the offered load and 
we reduce the time the packet experiences to go through the queue. On the contrary, in the case 
we would like to stabilize the access rate to a media, we should reduce the value of kF. This would 
have the cost of high delays. 
 

4. THE HYBRID SYSTEM 
 
In this section we explain how we integrated the top-down approach explained in Section 2 and 
the bottom-up approach explained in Section 3, and thus we provide a self-optimizing run-time 
environment that is able (i) to limit the access rate to the physical layer (i.e. Ethernet) to a 
predefined value in Byte/s, (ii) to decouple patterns in the rate at which data-packets are sent over 
the Internet from those in the offered load (rate at which applications generate packets), and (iii) 
to optimize at run-time the protocol stack composition and its configurations, including the ones 
of the CRC, and thus improve the overall stack performance. 
 
We claim that one of the major benefits of chemical algorithms is their predictability. 
Specifically, in the previous section we have reported on the exact characterization of both steady 
and transient state of the CRC. However, a communication system fully composed of only 
chemically driven modules cannot be deployed and used over the current Internet. For this reason, 
according to the application and the communication infrastructure, the network stack has to 
include a number of blocks (e.g., TCP, IP) that affect the dynamics of the overall protocol stack. 
The CRC can be located at any point of the stack. The lower it is placed, the better the dynamics 
characterizing the overall communication can be predicted. At the same time, we must however 
ensure the presence and order of certain protocols (e.g. IPv4, MAC) to make communication over 
Internet feasible. 
 
As the SCS has to meet the user-defined goals at run-time and adapt the stack’s blueprint to 
reflect the current environmental characteristics, the composition and configuration of the best 
possible stack cannot be known a priori. Also the CRC, except for a pre-defined reaction network, 
needs to be configured at run-time such as to operate optimally independently from its position in 
the stack, the overhead induced by underlying protocols, and the dynamics induced by other 
protocols. 
 
The benefit of the chemical framework, a part from the intrinsic stability, still remains the 
predictability of the emerging dynamics: According to the analysis reported in Section 3, we can 
narrow both the number of parameters that the SCS has to calibrate as well as the range of their 



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013 

9 
 

possible values. Further, from steady-state analysis, we can directly engineer the fitness function 
that the SCS has to use to obtain specific user requirements about asymptotic features of the 
communication, e.g. load level limit. From transient and sensitivity analysis, we understand the 
effect that parameter variations (e.g. variations on concentrations and coefficients) have on the 
response of the CRC. Again, we can thus extrapolate how the fitness function should weight the 
different parameter to have predefined transient features of the communication (e.g., level of 
burstiness affecting the network load or data-transmission delay). 
 
Note that, from the user’s point of view, higher predictability means better performances in terms 
of time, stability, and reliability of the overall system: (i) The lower is the number of parameters 
to calibrate, the faster is the SCS to find the right combination to obtain optimal system 
performances (evaluated in terms of proximity of measurements and user requirements). (ii) By 
knowing exactly the effect of parameters, we reduce the probability that side effects (e.g. 
undampened oscillations) emerge when changing parameters (unwanted phenomena can still arise 
due to the interaction of chemical modules with other non-chemical blocks composing the 
protocol stack). 
 

5. EXPERIMENTATION AND RESULTS 
 
To validate our design and explore the performance of the hybrid system, we performed 
experiments both in a simulated network environment within ns-3 [36] and over the real Internet. 
Our aim was to show that the collaboration between the Stack Composition System (SCS) and the 
Chemical Rate Controller (CRC) enables our hybrid system to quickly attain and maintain traffic 
dynamics as defined by the following set of requirements: 
 
R1: Maximize the throughput while respecting a configured rate limit on the physical layer. 
R2: Maximize the probability of successful transmissions. 
R3: Minimize the communication overhead. 
 
Specifically, the target of our experiments was to prove that (i) SCS was capable of evolving the 
ideal stack configuration for the problem expressed by R1-R3, (ii) CRC effectively shaped the 
traffic according to the requested dynamics, (iii) CRC was essential for achieving R1-R3,      (iv) 
SCS automatically calibrated CRC according to the guidelines derived from the analytical 
treatment in Section 3, and finally, (v) the collaboration of both methods did not introduce any 
unexpected dynamics or oscillations in the traffic flow, especially in the experiments over the real 
Internet. 
 
Both the simulations and the experiments performed over the Internet utilized two nodes, one 
acting as source of bursty traffic, the other as a sink that only acknowledges data reception: In the 
Internet case, the application traffic was generated by letting a command-line HTTP client 
connect to a web server. As web server we used nginx, which ran on the first node, and put 
cURL as a client on the second node. This web server was configured to send at a randomly 
varying rate, the average of which depended on the performed experiment. Specifically, we 
created a stand-alone user-space implementation of the SCS and set up two router-class network 
nodes (Soekris NET6501), one located at the Basel University campus, the other connected to the 
Internet via a private VDSL connection located 15 hops and 75km away. Both nodes acted as 
tunnel endpoints for two laptops, one hosting the web server, the other repeatedly downloading a 
400kB-file from the aforementioned server. We further modelled similar network conditions 
within the simulator. 
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The SCS was set to use a Genetic Algorithm with population size of 3 (i.e. number of stacks 
tested per generation) and elite size 1 (i.e., the best configuration stack kept over from the last 
generation), which means that per each generation two children (i.e. stack blueprints) were 
created. The crossover probability was set to 0.1 (i.e. probability of switching between the two 
parents in the middle of copying a chromosome – a chromosome encodes the settings pertaining 
to a specific module instance, e.g. the kF and e0 values in case of the CRC). The mutation 
probability (i.e. likelihood of randomly changing a setting within a chromosome) was set to 0.9, 
and implemented such that the probability distribution of a mutated control value  with domain 
 follows the normal distribution with μ set to the previous value of , and σ := ||/2 . 
 
In the first series of experiments, the target rate t at the physical Ethernet device was set lower 
than the average sending rate of the first node. As Figure 4 shows, the SCS could compose a stack 
by choosing a subset of [TCP, UDP, IPv4 and CRC], and interconnect them with each other and 
with the fixed top- (pubsub) and bottom- layer (Ethernet) protocols. Furthermore, the SCS 
configured the settings exposed by our TCP protocol implementation and the CRC. For TCP, it 
could select the type of acknowledgments, the recovery and retransmission algorithms, and 
whether to use timestamps. For CRC we initially fixed kF to a known “good” value, and let the 
system freely select the value of e0, i.e. the bandwidth limit. 
 
We tried first with only one data transfer being performed at once. In this case, the obtained 
(optimal) stack developed by our system consisted only of CRC being placed on top of IPv4 
(except for the fixed required modules, i.e. PubSub and Ethernet). This configuration was optimal 
because of the following reason: Without IPv4, no communication over the (IP-based) Internet 
would have been possible.  Thus,  the  SCS included IPv4 into  the stack to  satisfy  R2.  
 
The CRC was chosen in order to respect R1 while satisfying R3. Neither TCP nor UDP were 
included because they were not required (no traffic control was needed as already the CRC was 
limiting the rate below the available bandwidth and thus no losses verified), and as they would 
have added unnecessary overhead. We then tried with two data transfers at the same time and we 
obtained UDP over CRC over IPv4 as the optimal stack. UDP was chosen for its multiplexing 
capabilities in this second experimentation, since otherwise incoming data could not have been 
attributed to the correct one of the two concurrent data streams. Again TCP would have added 
overhead and influenced the dynamics of the data transfer while providing no benefits to the 
systems performance, and therefore was not included in the optimal stack (in accordance with 
R3). The SCS also configured the CRC module appropriately, and set e0 to a value which 
enforced a bandwidth limit according to the requirements for R1. 
 

 

 

 

 

 

 
 
 

Figure 4: Stack composition possibilities. 
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Figure 5.(a) reports the resulting system performance (i.e. the fitness) obtained through both the 
simulations and the experiments performed on the Internet. Each experiment lasted for 25 
generations; during each generation, three stack configurations were tried and evaluated. 
 
The curve denoted by A in the same figure shows the performance of the overall best stack over 
all runs, which coincidentally reached optimality right away. The optimal stack configuration 
found here coincides with the one described above. The curve B represents the average fitness 
value obtained over 50 simulation runs. The averaged fitness approaches the optimum 
logarithmically, reaching 75% of the optimum after 5 generations, and 95% after 25 generations. 
Results of the real-world experiment are shown as a scatter plot (C). The fitness achieved by each 
of the tree stacks trialled per generation accounts for one dot in Figure 5. (Dots overlap when the 
fitness values are similar or identical). As we can see, the system managed to learn a close-to-
optimal configuration within 5 generations and maintain the requested send rate. 
 
 

 

 

 

 

 

 

 
 

 
 
 

 
 
 
 
 
 
 

Figure 5: Experimental result obtained when SCS calibrated e0-coefficient of CRC. 
(a) Achieved performance in both simulations and real Internet: Curve A is the best achieved fitness 

in simulation; Curve B is the average fitness over 50 simulation runs; Scatter plot C shows the 
fitness function measured during data transfer over the Internet.  (b) Rates observed at the 

application layer and at the physical layer, during a simulation run.  (c) Rates measured at the 
application layer and at the physical layer, during a data transfer over the Internet characterized by 
a poor fitness value.  (d) Rates measured at the application layer and at the physical layer, during a 

data transfer over the Internet characterized by a good fitness value. 
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Figure 5.(b) shows the actual rate observed in simulations at the physical layer when the system 
was operating at close to optimal performance, i.e. when the measured fitness was close to 1. 
Here the transmission of application traffic was effectively limited to the target output rate by the 
CRC. 
 
Figure 5.(d) reports the rate measured when an almost optimal stack was selected and configured. 
Figure 5.(c) shows the send rate for one of the trialled configurations which performed sub-
optimally. 
 
One interesting point to mention is the fluctuation of the performance of the best stack 
configuration denoted by the top-most row of dots: Due to the elite size of 1, the best stack 
configuration was kept around without being modified, yet the measured performance oscillates 
between 1 and 0.95. This effect is due to the influence of other traffic that shares the same 
network link. 
 
In the final experiment, performed again over the Internet, we let our system modify the control 
coefficient kF of the CRC module, and required the system to maintain a send rate as constant as 
possible while minimizing the transmission delay: The lower the coefficient kF was, the stronger 
the filtering performed by the module got. At the same time, however, the average transmission 
delay increased. The optimal value of kF thus depended on how these factors were weighted in the 
fitness function. Figure 6 shows the effect of changing kF. Specifically, Fig. 6(a) reports the 
fluctuating send rate of the application and the output rate measured at the physical layer for kF = 
0.05. The filtering-effect of the CRC was less appreciable for kF = 5, as shown in Figure 6(b). The 
impact of smoothing the bursts in the rate was a slower adaptation time of the CRC and thus the 
overall system. Our experiments revealed that the rate on the physical-layer took around 30s 
longer to stabilize when kF was set to 0.05 than for kF =5, as it can be seen in Figure 6(a) and 
Figure 6(b). 
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Figure 6: Results obtained over the Internet when SCS calibrated kF-coefficient of the CRC. 

(a) kF = 0.05/s: The offered load is smoothed thanks to a lower kF , at the cost of a slower adaptation. 
(b) kF  =5/s: The rate measured at the physical layer follows in trend the patterns of the offered load 

thanks to a higher kF.. 
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6. DISCUSSION 
 
We have shown experimentally that the combination of top-down approach (SCS) and bottom-up 
approach (CRC) enables a network node to maintain a stable output bandwidth, traffic dynamics, 
and additional requirements, which all can be defined at run-time and without knowledge of the 
intrinsic mechanics of and interference between stack components: (i) The CRC on its own can be 
configured to maintain a bandwidth limit that is defined at the same position in the stack the CRC 
module is located.    (ii) Through the use of the SCS, we were able to place the CRC at an 
arbitrary position in the stack, and still maintain a limit on the Ethernet layer, without needing to 
calculate the influence of intermediate layers (e.g., the overhead introduced by IPv4) and adapting 
the limit accordingly. Instead the system learns the right values needed to achieve the goal. 
Namely, an user can leverage this capability for example to enforce a cap on the bandwidth usage 
measured at the physical layer, without having to possess any knowledge about the position of the 
CRC within the stack: The SCS will take care of this problem and will further find the best 
position for the module as well. This make us believe that our approach is well suited for those 
application areas where administration effort should be minimized, e.g. due to the inherent cost. 
Indeed, the SCS operates by means of trial-and-error experimentation, and by design, does not 
possess any intrinsic knowledge of the problem space. 
 
We must observe that, as the SCS operates by means of trial-and-error experimentation, and since 
the algorithm design does not include intrinsic knowledge of the problem space, the adaptation 
process is not instantaneous. The time to reach the optimum is mainly defined from the size of the 
problem space the SCS has to cover, i.e. how many protocol stacks as well as how many possible 
configurations per stack the SCS may try. 
 
However, the analysability of the CRC enables the derivation of a simple fitness function that 
directly depends on a few parameters only, and thus it reduces the time the SCS need to 
approximately locate the optimal working region: Two reaction coefficients separately and 
linearly regulate CRC’s response in accordance with the two distinct user requirements about 
delay/filtering and rate limitation. Through the use of a Gaussian fitness function we direct the 
SCS towards the optimal operating point, and thus convey intrinsic knowledge about the problem 
space. Thus the system can quickly find the approximate region were the optimum is located, and 
later fine-tune these settings towards the optimum. The approximate speed of the approximation 
can be controlled through adjustments of the mutation and crossover probabilities. 
 
Additionally, we observe that due to the capability for randomization that is present in the Genetic 
Algorithm (i.e. mutation and crossover), the adaptation process will not get stuck in local minima. 
In fact, the influence of the CRC’s configuration on its own on the measured fitness constitutes a 
simple convex surface. Through the combination with other parameters, e.g. the position of the 
module in the stack and the other modules’ configuration, the surface of the entire fitness 
landscape becomes more complicated, and thus warrants the use of a Genetic Algorithm instead 
of, for example, a simple hill-climbing search. 
 
Finally, our experiments over the real Internet further show that the fitness measurement and thus 
the speed and accuracy of the stack composition process largely depends on the accuracy of the 
sensor measurements: As shown in Figure 5(a), the fitness value measured for the same stack 
blueprint fluctuates depending on the current network and traffic conditions, and thus presents a 
lower limit for the granularity of adaptation, as the system can only discern performance 
differences that are larger than the measurement noise. Possible countermeasures include a longer 
measurement period, running the same trial multiple times, and the introduction of more robust 
fitness criteria. 
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Still commenting on the run-time-estimate of stack performances, we should note that 
measurements of stack blocks’ output have to last a time sufficient to make observations valid. 
For the hybrid system, the minimum required time depends mainly on CRC’s dynamics. This 
time matches exactly the time required by the CRC to reach steady states, which we know from 
Section 3, can be easily predicted on a base of k-values. 
 

7. CONCLUSIONS 
 
In this paper we have introduced both a bottom-up theory-based approach that eases designing 
intrinsically-stable and easy-to-analyse traffic shaping algorithms and a top-down system-oriented 
approach that can reshape and reconfigure the communication protocol stack such that it reflects 
requirements specified by the user at runtime. We have proven the feasibility and shown the 
synergical effects offered by the combination of the two complementary approaches by means of 
experimental analysis: In this system, the Chemical Rate Controller (CRC) shapes the network 
traffic. At the same time, the Stack Composition System (SCS) enables the use of the CRC in a 
dynamic real-world scenario by finding the best position for it in the stack and its optimal 
configuration, according to run-time user requirements and current communication scenarios. 
In the future, we plan to enrich the population of possible chemistry-inspired algorithms with the 
aim to reduce side effects emerging when the full protocol stack is composed. We further plan to 
extend the here-proposed hybrid system to enable its usage in distributed scenarios (e.g. for cloud 
services).  
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