
International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

DOI : 10.5121/ijcnc.2013.5201 1

System Architecture of HatterHealthConnect: An
Integration of Body Sensor Networks and Social

Networks to Improve Health Awareness
Hala ElAarag, David Bauschlicher and Steven Bauschlicher

Department of Mathematics and Computer Science
Stetson University

421 N. Woodland Blvd.
DeLand, FL 32723

{helaarag, dbausch, sbausch} @stetson.edu

ABSTRACT:

Over the last decade, the demand for efficient healthcare monitoring has increased and forced the health
and wellness industry to embrace modern technological advances. Body Sensor Networks, or BSNs, can
remotely collect users data and upload vital statistics to servers over the Internet. Advances in wireless
technologies such as cellular devices and Bluetooth increase the mobility users experience while wearing a
body sensor network. When connected by the proper framework, BSNs can efficiently monitor and record
data while minimizing the energy expenditure of nodes in the BSN. Social networking sites play a large role
in the aggregation and sharing of data between many users. Connecting a BSN to a social network creates
the unique ability to share health related data with other users through social interaction. In this research,
we present an integration of BSNs and social networks to establish a community promoting well being and
great social awareness. We present the system architecture; both hardware and software, of a prototype
implementation using Zephyr HxM heart monitor, Intel-Shimmer EMG senor and a Samsung Captivate
smart phone. We provide implementation details for the design on the base station, the database server and
the Facebook application. We illustrate how the Android application was designed with both functionality
and user perspective in mind that resulted in an easy to use system. This prototype can be used in multiple
health related applications based on the type of sensors used.

KEYWORDS:

Network Architecture and Design, Wireless communication, Life and Medical Sciences, Health
Applications, Android, BSN, social network, EMG, heart monitor

1.INTRODUCTION

The health care industry has been rapidly expanding over the past few years. A particular area of
research experiencing rapid discovery is the use of body sensor networks, or BSNs, to monitor
patients. A BSN consists of sensors recording biological data which is then sent to the
corresponding data coordinator. From there the data can be interpreted in various ways. At first,
hospitals used BSNs to monitor patients on site, but soon technological advances allowed the
patients to move into more native environments, such as their own homes, to be monitored. A
wired connection between the sensors and data coordinator was originally used to facilitate BSN
communication. With the advent of wireless protocols however, technologies such as Bluetooth

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

2

and ZigBee (802.15.4) have eliminated the wires from the network and increased the mobility of
the patient. Users can now wear body sensors and perform everyday tasks including exercising
without the need to adjust their body sensors.

Mobile devices such as mobile phones and PDAs have seen significant development in the recent
years as well. Modern day smart phones run complex operating systems such as Android and are
more comparable to laptops than previous cell phones. Because of their inherit portability, these
smart phones make an excellent candidate for the data controller portion of a BSN. These phones
also come equipped with multiple sensors such as GPS, accelerometer, and light sensors, which
further promote data aggregation and can reduce the need to buy additional sensors. Google’s
Android operating system is an excellent candidate for a BSN controller. The open source
Android OS runs Java source code, and because of its portability and Bluetooth API, a single
native controller can be made for the OS which could then be propagated to other devices in the
future.

The final processing layer of BSN data can be seen as the most crucial part of the entire process.
The raw data by itself is worthless unless it can be used to solve a problem or enhance the well
being of the patient. The data can be used to track health patterns in patients, display vital health
statistics, or even create recommendations for exercise.

This paper presents a system that submits sensor data into the realm of social networking. Social
networking web sites such as Twitter and Facebook have gained massive popularity among users
worldwide. User’s send updates about their events, location, status, etc, only to share it with other
users around the globe. If applied to the health industry, information such as health condition,
weight, exercise levels, and heart rate, could be shared between users to create a positive and
educational environment about wellness. The framework of this research has appeared in [3]. The
rest of the paper is organized as follows: section 2 provides background information about body
sensor networks, while section 3 presents related work in the literature. Section 4 gives a quick
overview of the HatterHealthConnect system. Section 5 and 6 describe the hardware and software
architecture of HHC, respectively, and section 7 discusses the actual implementation of the
system. Finally, section 8 provides a conclusion of the paper while section 9 suggests some future
work.

2. BACKGROUND

A body sensor network, or BSN, can almost be seen as a subset or derivative of a Wireless Sensor
Network (WSN). Many of the same components and issues of WSNs are present in BSNs, and
the similar techniques can be used to solve the problems. However, there are some distinctions
between the two. BSNs’ nodes consist of sensors able to read biological data, and these results
often are forwarded to a lab or hospital to perform some medical evaluation. Sensor nodes can
also consist of implantable devices. These implanted devices require a slightly different
configuration because they only have one battery charge. Fixing them while implanted is
currently not an option [1]. BSNs are often involved in critical systems as well; a patient’s life or
death may rely on the speed of the message delivery. Therefore, message delivery rate and
congestion are important issues a BSN must focus on [2].

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

3

Most modern BSNs contain a variety of medical sensors along with a controller or base station.
Many medical sensors such as a pulsioximeter, ECG, and heart rate monitor can be used to report
data to the controller [7]. In order to work with an array of devices and reduce energy costs, most
communicate through common protocols such as Bluetooth or ZigBee. The controller node must
support the protocol as well, and often acts as an internet gateway too. Modern day cell phones
are a natural fit for the controller node because they meet the protocol requirements and are
portable [7]. Cell phones have additional connectivity tools such as SMS and 3G to increase
network resources. Some BSNs rely solely on these technologies to communicate, and have even
developed entire protocols around them [21]. The patient also has prior experience with his/her
mobile device, so it is often an easy transition. Previous experiments have used similar
technologies such as PDAs for the controller node [8].

Body sensor networks can greatly vary in size and purpose. A small BSN monitoring an athlete’s
vitals while exercising may only require a single patient. On the other hand, a large healthcare
facility may have hundreds of patients, each with his/her sensors reporting to a large central
database or program [10]. Depending on the case, a different network structure may be needed to
maximize the efficiency of the BSN. However, the same basic BSN issues need to be addressed
regardless of purpose or size. Energy efficiency is crucial for BSNs taking advantage of wireless
sensors and devices, and can be improved by enhancing the network layers. The second issue
BSNs face is security. Health data is extremely personal, and it is important for patients to know
their data is secure and only accessible to the appropriate parties.

3. RELATED WORK

In this emerging field of research, other similar projects have been created. Harvard's CodeBlue
[16] is a project created to adapt wireless sensor networks for use in emergency medical
situations. In this project, sensor networks are used to send real-time vital signs from a group of
patients to emergency medical technicians. These sensor networks would allow for a rapid
medical response to a mass casualty event and would allow health personal to locate those
patients in most need. CodeBlue makes use of the Berkeley MICA mote which contains a
microcontroller, local storage area, and a low-power radio. These motes run on the TinyOS
operating system and have a battery life of approximately 5-6 days while running. The
communication is handled over the IEEE 802.15.4 standard to also conserve power. A pulse
oximeter that attaches to the mote has been developed to deliver heart rate and blood-oxygen
level, and an ECG was in development during the publishing of the paper. CodeBlue is highly
scalable and works in an ad hoc setting, a critical need for use in emergency situations.

A WSN has been proposed by members of the Computer Science Department at the University of
Virginia [17] to provide support to the increasing elderly population. This WSN combines
wearable sensors along with environmental sensors to provide medical monitoring and memory
enhancement to the patient. The architecture is divided into five main components: a body
network, an emplaced sensor network, a backbone, back-end databases, and human interfaces.
The body network is composed only of unobtrusive wireless sensors, but the environmental
sensors have the option of being completely wireless and requiring batteries for power or of being
plugged into an outlet. Data gathered from the body and emplaced sensor network is sent across
the backbone of the WSN to be stored in the back-end databases or displayed in one of the human

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

4

interfaces. The sensors used in this implementation include a motion sensor, temperature sensor,
breathing rate sensor, pulse-oximeter, and an EKG. These sensors communicate with the
backbone using the Zigbee (802.15.4) wireless protocol. Real-time data can be viewed by a PDA
that can connect to the backbone or by LCDs located on the motes.

Another wireless sensor network, discussed in [18], is designed to safely and continuously send
physiological data from a patient to a local WLAN to be further transmitted. The patient wears an
ECG sensor which wirelessly transmits data to one of the local relay nodes that are strategically
placed throughout the entire building the patient is living in. This overcomes the deadspot
problem that could occur if using a WLAN through walls. In order to avoid excess power
consumption, the ECG sensor periodically takes samples, stores them in a buffer, and then goes
back to sleep. Only once the specified buffer is full does it place the frame around the information
and send it to the local node. The nodes have two different modes, self organizing mode and data
transmission mode. When a node initially starts up, it stays in the self organizing mode until the
surrounding nodes successfully add the node into their routing table and vice versa. Once the
node is added to the system, it waits for data and then acknowledges the received packets and
forwards the data towards the uplink node. An SMS message would be sent in the case of an
emergency found in the ECG data.

DexterNet [4], a heterogeneous body sensor network, is an open-source project that makes use of
the open-source library called Signal Processing In Node Environment (SPINE). DexterNet has a
three layer architecture that includes a body sensor layer (BSL), a personal network layer (PNL),
and global network layer (GNL). The BSL contains two different types of custom sensors. The
first is a motion sensor that contains an accelerometer and a gyroscope. The second type is a
biological sensor that acts as an electrical impedance pneumography (EIP), and ECG, and an
accelerometer. The PNL consists of a Nokia N800 tablet that communicates and collects data
from the different sensors within the BSL. This communication is accomplished over IEEE
802.15.4 and makes use of the SPINE API on the node and base station side. Finally, the Nokia
N800 forms a GNL by sending data across the Internet through a Bluetooth, Wifi, or other
broadband connection. These Internet servers then use the data collected for higher level
applications. Some server-side applications already created provide features such as displaying a
graphical animation of a user’s current position, creating a database of movement information to
improve human movement recognition algorithms, and monitoring pollution on a patient's walk
through the city [4].

Researchers at the University of California, Berkeley have begun working on an API for the
Android OS that provides specific functionality for BSN development. The project, titled WAVE
[5], has several core components including sensor interaction, database interaction, and data
processing functions. The sensor interaction is handled by the SPINE framework, allowing
WAVE to focus less on the low level communication between sensor nodes and the mobile
platform. Because the Android OS has a java based development kit, SPINE should work well
with it as long as the sensors can also make use of it. Also, because the Android OS is becoming
increasingly popular on multiple models of phones, the SPINE framework can be ported over
once and used for multiple applications on multiple devices. After data is collected from the
nodes in WAVE, database interaction is handled using REST architecture so a user can easily

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

5

insert and store information from the mobile platform into a remote database. This REST
architecture basically refers to a stateless, client-server model similar to how the World Wide
Web works. Finally, the data processing functions allow the user to access algorithms that are
frequently used within BSN applications. These functions include action recognition, energy
expenditure calculating, and GPS location tracking.

Using the WAVE API, a few applications have already been created to monitor certain health
aspects. One such application is CalFit [5]. CalFit uses the native sensors on specific Android
phone models to calculate energy expenditures based on the SPINE Kcal algorithm. It then logs
the user’s data into a database where all the users of this application can compare their caloric
expenditures. The database also ranks users and allows for the creation of teams to sponsor
encouragement and competition.

Work has also been done to use artificial neural networks, Bayesian networks, and Hidden
Markov Models to develop context aware sensing in BSNs. People are very sensitive to external
context changes such as a change in the person's activity or temperature of the environment and
these situations need to be analyzed appropriately to draw the correct conclusions about a person's
health status. Difficulties in accomplishing this include noise introduced by the sensors, the need
for context sensing to detect transitions in context as opposed to a single snapshot in time, and the
problem that as the number of inputs (sensors) increases, the learning rate slows down. Advanced
computing techniques such as neural networks and Bayesian networks would be advantageous
because each of the individual sensors could learn without supervision and do not require prior
knowledge of the context [19].

4. SYSTEM OVERVIEW

To further the functionality and diversity of body sensor networks, we propose
HatterHealthConnect (HHC). HatterHealthConnect is a health monitoring system that gathers
physiological information to be integrated with social networks to promote healthy living and
further peer connectivity. Live data such as heart rate, muscle activity, and workout duration are
all calculated and sharable through these networking portals. HatterHealthConnect is designed to
be easy to use, highly portable, and unobtrusive. Figure 1 depicts the overall design of
HatterHealthConnect.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

6

Figure 1: HatterHealthConnect Design
Figure 2: The Zephyr HxM Monitor (left), Intel Shimmer

(right), and Samsung Captivate (bottom)

The monitoring and gathering of physiological data is handled by a wireless body sensor network
comprised of multiple nodes. As shown in Figure 2, the sensor nodes include an Intel Shimmer
Wireless Sensor Unit and attached EMG sensor and a HxM Bluetooth Heart Monitor. The
coordinating or central node is a Samsung Captivate mobile device.

The BSN uses Bluetooth as its form of intra-node communication so the user can wear or carry
the appropriate nodes wherever he/she goes. Once the user starts the application, the Samsung
Captivate periodically collects data from the sensor nodes and store that information locally. Data
collected on the phone is analyzed and processed further if necessary and the results can then be
uploaded to the social networking sites Facebook and Twitter over Wifi or 3G.

This social interaction aims at promoting a healthier lifestyle by using encouragement and
competition. Users are able to reach a much larger resource of advice and support as they share
their own data and also comment on others' data. Also, by frequently uploading data, users are
able to track their progress compared to their peers' and are positively pressured into continuing
their own exercise activities or improving on them. Similarly, users are able to share their results
via Twitter, so those following someone using HatterHealthConnect may be inspired to live a
healthier lifestyle.

5. HARDWARE ARCHITECTURE

5.1 SHIMMER

Shimmer is a sensor platform designed for wireless applications that require the acquisition of
data in real time. The Shimmer is designed to be low power and light weight in order to make
wireless sensing efficient and unobtrusive in an everyday environment. The microprocessor and
hardware components are designed to minimize power consumption for a long battery life and the

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

7

total size of the Shimmer baseboard is only 53mm x 32mm x 15mm. The total weight of the unit
is also only 22 grams, making the unit very versatile. Several key principles of the Shimmer
wearable sensor are listed on their website and they are:

• Flexible: Each application can be customized to meet exact data capture and transfer
requirements

• Configurable: Many different expansion modules/sensors are compatible with the
Shimmer baseboard, including third party sensors. Shimmer can communicate over
Bluetooth or 802.15.4 radio with any device that uses a similar radio.

• Open Source: The code is maintained and freely available at Sourceforge and
GoogleCode

• Raw Data: Developers have full control over how the sensed data is handled and
interpreted

• No Proprietary Software: Applications can be developed without having to match specific
project output or interface requirements

The specific hardware components within the Shimmer were chosen and designed to meet the
overall goal of making a low power and unobtrusive sensor. The MSP430 microprocessor was
developed specifically to run on embedded, battery devices. The Shimmer makes use of almost
every feature on the CPU, which controls all of the different peripherals attached. An integrated
analog-to-digital converter captures sensor data, such as the attached EMG sensor. The Shimmer
has the ability to store data internally via MicroSD flash storage, which allows data to be stored
before sending or saved in case a network connection is dropped while the sensor is still gathering
data [25].

Shimmer is an unobtrusive sensor platform because it communicates wirelessly. The Shimmer
module contains two different radios: an 802.15.4 and a Bluetooth radio. IEEE 802.15.4 was
developed specifically for low power personal area networks and is optimized to work within a
short range. There are 27 total channels available with three different data rates available under
this specification: 16 channels that have a data rate of 250 kb/s, 10 channels at 40 kb/s and 1
channel at 20 kb/s. 802.15.4 was specifically designed to be energy efficient at the physical and
MAC layers, allowing it to have a very low power consumption level. The Shimmer contains a
SR7 Radio module that communicates over 802.15.4 and has an indoor range of 5-10 meters.

Bluetooth is similar to 802.15.4 in that it is a short range, low power form of wireless
communication. Bluetooth equipped devices can communicate at rates up to 3 Mbps. Bluetooth
has 79 channels available that each have a data rate of 1 MHz. Unlike a network using the
802.15.4 protocol, which could contain up to 216 compatible devices, a Bluetooth network can
only contain up to 8 devices. These individual groups of 8 devices can connect to form a larger
group though, called a scatternet. The Shimmer device contains a Class 2 Bluetooth module that
communicates through a 2.4 GHz antenna. This device has a range over 10 meters and can make
use of all 79 channels. The overall goal of both protocols is to provide a short range, low power
form of wireless communication. 802.15.4 has a slower data transfer rate, but it also provides
more customization options and uses less power than Bluetooth. Bluetooth, on the other hand, is
an older protocol and much more prevalent in mass market devices. Although 802.15.4 may

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

8

better suit an application dealing specifically with body sensor networks, we have chosen
Bluetooth due to its compatibility with Android devices [25].

5.2 EMG

Electromyography (EMG) measures the electrical impulses of the muscles within the body. It
provides a quantifiable way to view the activity of a muscle while at rest and throughout the
entire range of motion of a movement. The two different EMG techniques are intramuscular and
surface EMG. Intramuscular EMG involves an electrode needle being inserted into the muscle
tissue to target specific motor units. The muscle should behave in a certain manner in reaction to
the needle, and results are compared to that. On the other hand, surface EMG (SEMG) is a
noninvasive technique that allows EMG data to be measured without penetrating the skin and
provides for a much broader evaluation of a muscle. SEMG picks up the electrical signals that are
fired from a population of motor units within a muscle. These electrical signals travel through
tissue until they eventually reach the surface of the skin, where electrodes then sense the energy.
SEMG is a much more appropriate technique for sampling users in a workout environment and
the data gathered will be more appropriate because it relates to a wider range of muscle use.

Figure 3: Raw EMG data (top) and its Root Mean Square (bottom) [37]

Once data is gathered from the electrodes, it must be processed before it becomes easily
understandable. The initial type of processing is filtering, or removing the unnecessary data from
the sample. This attempts to remove the electrical noise that is caused by anything other than the
electrical impulses in the muscle. Once the data is properly filtered, the data can either be
analyzed in its raw form or it can be further processed. Displaying the raw EMG data in a graph
creates an oscillating line, which contains both positive and negative values as shown in Figure 3.
From this graph, a user can see when the muscles are activated by looking at the thickness and
height of the line. Although this may allow users to get a quick look at their muscle's energy
expenditure, it may be harder to draw conclusions from the data without further processing it. To
make the data easier to view, all processing techniques first rectify and smooth the data.
Rectifying converts the negative electrical potential and adds it to the positive potential, making
all values positive. Smoothing the data is done by integral averaging, which involves averaging a
set of points and plotting that average for each point instead of plotting each individual point.
This reduces variability in the data because now outlying values are averaged with their
surrounding values to form a smoother graph [26].

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

9

Aside from processing raw EMG data for display, several processing techniques are also used to
quantify the data, yielding numbers that can more easily describe muscle energy expenditure.
Peak-to-peak measuring calculates the difference between the top and bottom of each trace and
averages this value over a period of time. Integral averaging, the same method used for smoothing
EMG graphs, can be calculated and represents .637 of one half of the peak-to-peak value. Root
Mean Square (RMS) is a method that squares the data, calculates the average, and then calculates
the square-root of this value. RMS is more commonly used than integral averaging because it
provides less distortion [26]. This processed EMG data can now be used to evaluate criteria such
as:

• The activation timing of a muscle: when energy expenditure of a muscle begins and ends
and how frequently that occurs within a set period of time.

• The symmetrical expenditure of muscles: whether symmetrical muscles, such as the left
and right bicep, display the same muscle activity levels for an exercise.

• A fatigue analysis on the muscle: how quickly or slowly the muscle decreases in energy
expenditure [27]

The Shimmer EMG sensor is an attachment to the main Shimmer board and maintains the
lightweight and small form factor of the unit. The EMG attachment is a surface EMG that
connects to the skin via disposable electrodes and captures the activity of the entire muscle. The
data gathered is filtered and the integral average is calculated before storing the data [28].

5.3 ZEPHYR HXM

The HxM connects with a mobile device over a Bluetooth link. It supports only one connection at
a time and sends messages at a rate of one per second while connected as seen in Figure 4.

Figure 4: HxM Bluetooth Link

The HxM operates in simplex mode: it only sends data packets and does not process received
packets. The discoverable name of the device is HXMxxxxxx where xxxxxx is the serial number
of the sensor and its passkey is 1234. The HxM uses the Bluetooth SPP (Serial Port Profile) to
connect to another device and uses the following structure:

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

10

• 115,200 baud
• 8 data bits
• 1 stop bit
• No parity [28]

The body sensors connecting over Bluetooth to HHC must rely on their own batteries for data
transmission. Both the Zephyr HxM and Shimmer sensors are equipped with rechargeable
batteries which can be recharged by connecting to their corresponding charging stations included
with the products. The HxM has a standard battery life of 26 hours when activated due to its
constant streaming of sensor information. The Shimmer sensor’s battery life varies greatly
depending on the frequency the data is being sent. Because this value can be adjusted, battery life
is not constant after every use. It is recommended to recharge the sensors after every use to keep
the devices prepared for next use.

5.4 BASE STATION

The hardware architecture for the base station, which is running the Android platform, is
relatively up to the discretion of the manufacturers. Any new additional hardware added to the
platform requires software support from the manufacturer as well. However, there are common
pieces of hardware usually supported by the platform. These features include telephony (EDGE,
3G, Voice), local data connections (WiFi, Bluetooth), Camera, GPS, compass, and accelerometer.
The Linux kernel is responsible for the driver connection to the hardware, and once implemented,
developers can access the hardware through high-level application framework calls. While most
phones that run the Android platform will work for HatterHealthConnect, this project specifically
uses the Samsung Captivate.
The Samsung Captivate, or Captivate, is an AT&T variant of the Samsung Galaxy S and is a
high-end Android smartphone with many of the latest hardware features [29]. Those features
include:

• WGVA 4’ Touch Screen
• Bluetooth Capability
• GPS
• Wi-Fi
• 5 MP Camera

Although most phones currently support Bluetooth, it is an important feature to include when
discussing hardware architecture. Most low power consuming sensors use a wireless protocol for
connection, and because the Captivate accepts only Bluetooth, it is important to find sensors
which connect over Bluetooth.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

11

6. SOFTWARE ARCHITECTURE

6.1 TINYOS

TinyOS, initially a project at UC Berkeley, is an open source operating system specifically
designed for wireless sensor networks. This embedded operating system is completely non-
blocking, so the majority of input and output functions are asynchronous and require a callback.
TinyOS and applications that run on it are written in nesC [30]. The nesC (network embedded
system C) language is a programming language similar to C, and designed to follow the execution
model of TinyOS. NesC is made up of components, which encapsulate state and functionality
similarly to objects in an object-oriented language. However, each of these components can only
reference its local namespace. In order for one component to call a function from another
component it must explicitly declare that function as well. In this way, function pointers are not
needed and all connections are made during compile-time. This is possible because mainly
because the embedded systems TinyOS and nesC are running on generally have specific tasks that
do not require dynamic program loading due to user input. The behavior of each component is
represented by a set of interfaces. Each interface either contains some functionality that is
accessible to the user or represents some functionality the component needs to complete a task.
Interfaces provide a way for all the individual components to be linked together to form a
program. Overall, nesC was designed to provide a statically-linked environment that allows for
greater runtime efficiency in the embedded system environment [31].

6.2 BIOMOBIUS

The EMG application run in TinyOS on the Shimmer node is a part of the BioMOBIUS research
platform. This research platform was developed by TRIL Centre to allow the rapid creation of
applications involving biomedical monitoring devices and sensors. BioMOBIUS is aimed at those
who need to monitor the activity and physiological information of their users or research subjects.
This platform supports many third party sensors and devices, including the Intel Shimmer. One of
the main goals of the BioMOBIUS platform is to allow individual components to be encapsulated
into individual “blocks.” Once a single component is created, other users do not have to replicate
it, they can simply reuse that component. The code behind the BioMOBIUS platform is also open
and shared so that developers can make alterations to the source code to fit their specific needs
[33].

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

12

6.3 COMMUNICATION PROTOCOLS

6.3.1 SHIMMER PROTOCOL

Figure 5: Shimmer Packet Format

The format of the data is identical in all instances except when the Shimmer has received a low
battery indication from the TinyOS operating system. This low battery indication stops the
streaming of data once the battery voltage drops below a regulator value of 3V. By default, the
EMG sensor samples data at 500hz and each packet of data sent by the Intel Shimmer to the
Android base station exactly contains fourteen bytes of data as shown in Figure 5. The MSP430
CPU is byte addressed and little endian, so slots of data that take more than one byte to hold the
data, such as the time stamp, are sent with the highest addressed bytes followed by the lowest
addressed bytes. In each packet, the first and last bytes are simply indicators of the beginning and
end of each packet. The Sensor ID byte contains a unique identifier for each sensor, which is
followed by a static byte used to describe the type of data being sent. This Data Type byte allows
the base station to distinguish the difference between similar Shimmer packets that contain a
different type of data, such as ECG data. An incrementing sequence number and timestamp are
used to record when the data was taken and to make sure the packets come in order. The actual
EMG data and its length are stored in bytes seven through nine. The tenth and eleventh bytes are
used to display the battery voltage remaining if the low battery indication has gone off on the
Shimmer, otherwise these bytes are empty. Finally CRC is calculated and stored so the data can
be validated on the base station.

6.3.2 HXM PROTOCOL

The HxM follows a very simple structure when transmitting messages. As mentioned in the
hardware architecture section, the HxM only sends data and does not process any received data.
The basic message format consists of a few bytes for handling message processing along with the
actual payload [29].

As shown in Figure 6, the message includes the following:

• STX - The start of text ASCII control character which signals the start of the message.
• Msg ID – uniquely identifies the HxM message and is in binary format. The standard

data packet ID for the HxM is 0x26.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

13

• DLC – Data Length Code specifies how many bytes of information are located within the
payload between zero and 128 (inclusive).

• Data Payload – The actual data recorded by the HxM and can contain anywhere between
zero and 128 bytes of data.

• CRC – An 8-bit CRC
• ETX – The end of text ASCII control character which signals the end of the message.

Figure 6: HxM Packet Format

The Data Payload contains the standard data message from the HxM. The message contains the
sensor data such as heart rate, speed, and distance. The past 14 heart rate measurements
timestamps are sent as well so packet loss can be determined. This is useful when calculating the
average values from the biological data. The standard data message can be seen in Figure 7.

Figure 7: HxM Standard Data Message

The payload of the data message contains more information about the sensor itself such as
Firmware ID, Hardware ID, and Battery Charge Indicator, along with the actual sensed data. The
remaining data is structured as follows [29].

• Heart Rate – an unsigned byte with a valid range between 30 and 240 bpm. If no heart
rate is detected, 0 is reported.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

14

• Heart Beat Number – unsigned byte that is incremented each time a heart rate is detected.
Rolls over at 255.

• Heart Beat Timestamps (1-15) – 16 bit unsigned integer representing the heart beat
timestamp between 0 and 65535 milliseconds. Rolls over at 65535.

• Distance – 16 bit unsigned integer representing the total distance travelled in 16ths of a
meter. Rolls over ever 256 meters.

• Instantaneous Speed – 16 bit unsigned integer representing the instantaneous speed of the
device in steps of 1/256m/s. The valid range is between 0 and 15.996 m/s.

• Strides – unsigned byte representing the number of strides the wearer has taken between 0
and 255. Rolls over at 255.

6.4 ANDROID OPERATING SYSTEM

The Android is a mobile platform based on a software stack rich with features. It includes an
operating system, middleware, and key applications which can each be adjusted individually to
maximized platform performance. Some of the key software features Android includes are the
Dalvik virtual machine, integrated browser, optimized graphics, SQLite, and media support [34].
The Android architecture is essentially divided into four layers as can be seen in Figure 8. The
layers are built on top of each other, the lower layers vital for upper layer development. While the
majority of development of HHC was focused on the Application layers, this section briefly
discusses the function of the individual layers.

Figure 8: Android Operating System

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

15

Linux Kernel

The current Android Linux kernel is based on Linux 2.6 for its core services. It handles low level
system services such as security, memory management, process management, network stack, and
drivers. With the drivers, it is responsible for acting as an abstraction between the hardware and
other layers in the stack [34]. As seen in the hardware section, customization to the kernel can
support different hardware technologies included by manufacturers.

Android Runtime

As applications for Android are primarily written in Java, it includes a set of core libraries to
provide function for the Java programming language. Each application runs on an instance of the
Dalvik virtual machine, which has been optimized for mobile development. It has a minimal
memory footprint and relies on the Linux kernel for low level functionality such as memory
management, threading and networking [34]. In Android version Froyo (2.2) and beyond, the
Dalvik virtual machine includes a JIT (Just in time) compiler to greater improve the speed of
running code. Code is actively analyzed while running and translated into a faster form all while
using little memory. The JIT is just one of the enhancements made to the Android runtime to
make it highly efficient on mobile devices [35].

Library

In addition to the Java libraries included in the runtime, Android also includes a set of C/C++
libraries which can be accessed through the Application framework. The libraries handle lower
operations such as media, 2D graphics, 3D graphics, SQLite, and bitmap and vector font
rendering [34]. The Native Development Kit (NDK) provides direct access to several of these
libraries and can be used to create classes that may have a slight improvement over their Java
counterpart [36].

Application Framework

Android allows developers to deeply integrate their applications with the operating system
because of its open platform. Applications have access to the same framework APIs all the core
programs have and can take advantage of any currently designed components. The framework
does have security constraints, but if permissions are granted by the user, applications can publish
their capabilities to any other applications. Below all applications is the core of the framework
which includes Views, Content Providers, a Resource Manager, a Notification Manager, and an
Activity Manager [34].

Application

The application layer on the Android platform is mostly left to third party developers. Developers
can use the other layers, specifically the application framework, to develop applications in Java.
Most stock versions of Android come with default applications such as Phone, Browser, and
Contacts and developers can use them as examples for other applications. With the Software

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

16

Development Kit (SDK) for Android developers can create deeply integrated and graphically
pleasing applications for users.

6.5 SERVER SOFTWARE

The server-side of HatterHealthConnect is written in PHP. The first objective of this server is
collecting, storing, and summarizing the data uploaded from individual Android base stations.
MySQL is the chosen relational database management system for the server side of HHC. All
necessary information for HHC is stored within this database, including biophysical, user, and
team data. This database is built to support the individual Android phones and also the Facebook
and Twitter applications.

The second part of HatterHealthConnect's back-end server is to provide an interface where users
can view data and interact with other users. This is accomplished using social networking sites.
These social networking sites often provide developer-friendly APIs for accessing and updating
user data. Facebook and Twitter support APIs for a variety of platforms and languages. These
APIs often include multiple ways of accessing the site data and have security measures in place to
restrict whose data is visible. Additionally, many open-source projects have been initiated to wrap
these APIs and increase the ease of site interaction. Facebook development is more complex than
Twitter because of all the different functionality Facebook provides. User’s status updates are
only a small portion of the site. These applications can access third party information and can use
pre-made tools by Facebook for enhancement.

Facebook applications are web applications that are built in a common web programming
language, such as PHP, and then loaded into the context of Facebook. Essentially, a web
application is designed separately from Facebook on a server and then is linked from within
Facebook when the app is run. The benefit of using Facebook comes from all the information that
Facebook provides the application about the user. Once a user agrees to share their Facebook
information with the application, the application is able to make Facebook API calls to access his
or her user id and then link the id to the proper data in the database. The web application for
HatterHealthConnect is written in PHP and located on the same server as Android-facing scripts.

7. IMPLEMENTATION DETAILS

7.1 BASE STATION IMPLEMENTATION

The Android portion of HHC is designed similarly to the majority of Android applications. The
following sections describe the class structure of HHC along with the design implementation

7.1.1 BASE STATION CLASS DESIGN

The source code for HHC is structured such that Java class files are separated from the XML
files. The XML defines layout, styles, and global strings which can then be referenced from the
Java code.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

17

Figure 9: HatterHealthConnect program structure

Figure 10: HHC Package Structure

As illustrated in Figure 9, the lower levels of HHC interact directly with the Android framework
to share data with other devices. Bluetooth calls are made to body sensors through the Bluetooth
service to handle remote data collection. The data is then processed and passed either directly to
Facebook through the Facebook Link classes, or uploaded to the backend database over HTTP.
User interaction is handled through the GUI. The user is able to choose how his/her data is
uploaded and at what frequency. The program can also be navigated through the menu to change
sensors and handle reconnections.

Java development allows class files to be separated into packages to increase encapsulation
during development. The package structure of HHC can be seen in Figure 10. Each piece of the
application is separated out into one of the following packages or classes:

• com.stetson.hhc.facebook – Handles Facebook authentication along with any buttons or
views needed to connect. When authenticating to Facebook, it checks to see if an instance
of the Facebook application is currently installed on the device. If so, it authenticates
through the application, otherwise opens up a web view to authenticate.

• com.stetson.hhc.network – Handles HTTP and remote database connections over the
Internet. Includes an abstract web database connection class for extensions to other
databases.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

18

• com.stetson.hhc.sensor – Contains the majority of the code handling sensor connections
along with class creating the GUI.

• AbstractSensorView – Abstract class serving as the base view for any GUI needing to
connect to a sensor. Contains methods for connecting and handling sensor information.

• EMGSensorView and ZephyrSensorView – AbstractSensorViews each dedicated to a
specific HHC sensor.

• com.stetson.hhc.sensor.bluetooth – Handles Bluetooth sensors such as the HxM and
Shimmer EMG. Base packages com.stetson.sensor.bluetooth.HXM and
com.stetson.sensor.bluetooth.Shimmer extend AbstractBluetoothService and
ConnectedThread to create a fully functional sensor connection.

• AbstractBluetoothSensorService – Establishs an initial connection to a sensor and
manages the connection by sending messages to the extending class.

• ConnectThread and ConnectedThread – Used by a sensor service to connect to a
sensor and handle any information sent to the device from the sensor.

7.1.2 BASE STATION DESIGN

The HHC Android application was designed with both functionality and user perspective in mind.
The application needed to contain the necessary pieces to perform a variety of useful functions,
while at the same time feeling very intuitive. The resulting application ended up with a very
simple design, with much of the connection work being done in the background, and the user
having the options to handle where the data is uploaded.

Figure 11: Screenshot of HHC heart
monitor view

Figure 12: Screenshot of HHC EMG
monitor view

In order for the user to start recording data, they simply select which attachment he or she is using
and then begin the connection. The application then connects to the sensor and data is passed
back to the phone. Within each of the individual views a user can also log into Facebook, or
directly post current information onto his or her Facebook wall. Figures 11 and 12 show
snapshots of the Android Application for heart monitor and EMG monitor respectively

Security is an important part of an application when dealing with personal information such as
health data. HHC maintains security by only submitting/posting data the user has willfully
decided to submit. The user has full control over what data is uploaded to the backend or social

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

19

networking sites. The base station does not transmit any data without first being prompted by the
user.

7.2 SERVER IMPLEMENTATION

7.2.1 USER DATABASE

The BSN-facing side of the server is a collection of PHP scripts that wait for data to be sent via
POST to the server's main receiving script. These PHP scripts evaluate the type of data being sent
and store it appropriately into HatterHealthConnect's database. As shown in Figure 13, this
database is made up of several tables that can easily be queried for future data retrieval. The table
“Users” has been created to store data that allows HHC to link users to their appropriate Facebook
and Twitter accounts. A “Teams” table contains the data pertaining to the many different groups
created through the Facebook application, including their unique name. Individual users can be a
part of several teams and each team can have many users so a “UsersToTeams” table is defined to
map those relationships. Finally, the “Workouts” table contains all the necessary information
about every individual workout the user performs. Information such as the day, time, and duration
are included. The data passed from the health sensors is stored in separate tables specific to the
sensor gathering the data and then linked to a workout. This way, more sensors could easily be
added by creating more sensor-specific tables and linking them to a specific workout. The social
networking applications can now pull data about the frequency, length, and health data of
workouts by querying this database.

Figure 13: Database Design
Figure 14: Facebook Application Design

7.2.2 SERVER APPLICATION DESIGN

A user has several ways of sharing or storing the physiological and other workout data once he or
she has finished a workout. HatterHealthConnect includes a Facebook application as the primary
method of exposing content to users. Figure 14 shows Facebook application for EMG monitor.
The Facebook application pulls data from a database that contains uploaded data from the users
and displays it to them. Users are able to see their progress as well as others connected with them.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

20

By being able to view their own workout history, users are able to see if they have improved or
view the results of different training patterns. Within the application users can create or join
groups so that data from other members that belong to the same group can be accessed and
compared against a user's own health data. There are also several other features that make use of
Facebook that do not require a user to access the web application. For instance, Facebook has
released an open source API for Android, allowing a user to interact directly with his/her
Facebook account. The Android application, if prompted, can then update a user’s status based on
the information received from the healthcare monitoring portion. Interacting directly through the
Facebook Android API for status updates should increase awareness, because it will require little
work to update one’s status and many users should use it. It will be much easier for users to
activate the updates on their phones than to go through the Facebook web application and update
it there.

Figure 15: Methods of Social Interaction

Twitter integration is similar to the status update portion of the Facebook integration. Twitter is a
micro blogging site that lets users “tweet” updates about themselves, and remotely interacting
with the site is fairly simple. A HatterHealthConnect user has the option to tweet about his/her
progress or current status, very similar to how one would update his/her Facebook status. Along
with Facebook, Twitter should provide another channel for promoting health and fitness by
creating exercise awareness for peers. Figure 15 shows the methods of different social interaction.

8. CONCLUSION

Body sensor networks continue to play an important role in the development of healthcare
applications as the need for lightweight and remote monitoring continues to grow. In this paper
we have presented HatterHealthConnect, a network that combines the mobility and monitoring of
a BSN with the interaction capabilities of social networks. With the advent of social networking
and the increased ability to share data, people are able to communicate like never before. We
believe that creating a tool to connect health/sensor data to a social media channel will help
promote physical wellness by creating peer groups that can help motivate and encourage each

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

21

other. HatterHealthConnect includes a reliable BSN that is easy to operate, as it can run on any
mobile phone the uses Android OS 2.1 or greater and is completely wireless. Promoting physical
wellness is an important goal to focus on and self motivation is not always enough to encourage
it. HatterHealthConnect is designed to meet that goal effectively by easily connecting users to a
global network of those who want to pursue a healthier lifestyle. Nowadays more and more
people are comfortable using social networks and will not have any difficulty to access and
interact with data on these sites. Users can choose to share information with a group of friends or
only with their doctors. They can also choose not to share any data, but use the system as a
method to keep track of their exercise routine and monitor their own progress. Our preliminary
evaluation of the survey completed by twenty three users with different demographic data such as
age, social network usage, and workout rate show that it is reasonable to assume users who
already workout will be quicker to adopt HHC and without too much concern. However, older
users who do not use social networking sites may be slower to adopt the application. We think
that this application can be more popular among youth. We hope that it could act as a tool to
promote health awareness that could yield in solving child obesity problems.

REFERENCES

[1] Otal, B., L. Alonso, Ch. Verikoukis, "Towards Energy Saving Wireless Body Sensor Networks in Health
Care Systems," Communications Workshops (ICC), 2008 IEEE International Conference on, Proc. of
Communications Workshops, 2008, ICC Workshops '08. IEEE International Conference, Capetown, pp.1-
5, 2010.

[2] Misra, S., Tiwari, V., Obaidat, M., “LACAS: learning automata-based congestion avoidance scheme for
healthcare wireless sensor networks,” IEEE J. Sel. Areas Commun., 27(4): 466-479, 2009.

[3] David Bauschlicher, Steven Bauschlicher and Hala ElAarag, "Framework for the Integration of Body
Sensor Networks and Social Networks to Improve Healthcare", Communication and Networking
Symposium, International Society of Modeling and Simulation 2011 Spring Simulation Multiconference,
Boston, MA, April 3-6, 2011, pp.19-26

[4] Kuryloski, P., Giani, A., Giannantonio, R., Gilani, K., Gravina, R., Seppa, V., Seto, E., Shia, V., Wang, C.,
Yan, P., Yang, A.Y., Hyttinen, J., Sastry, S., Wicker, S., and Bajcsy, R. 2009. DexterNet: An Open
Platform for Heterogeneous Body Sensor Networks and its Applications. Body Sensor Networks 2009
(BSN 2009 Berkeley, CA June 3-5, 2009)

[5] Seto, E., Martin, E., Yang, A., Yan, P., Gravina, R., Lin, I., Wang, C., Roy, M., Shia, V., and Bajcsy, R.
2010. Opportunistic strategies for lightweight signal processing for body sensor networks. In Proceedings
of the 3rd international Conference on Pervasive Technologies Related To Assistive Environments (Samos,
Greece, June 23 - 25, 2010). F. Makedon, I. Maglogiannis, and S. Kapidakis, Eds. PETRA '10. ACM, New
York, NY, 1-6.

[7.] M. J. Moron, J. R. Luque, A. A. Botella, E. J. Cuberos, E. Casilari and A. Diaz-Estrella, "A smart phone-
based personal area network for remote monitoring of biosignals," International Federation for Medical
and Biological Engineering Proceedings, 2007.

[8.] B. Lo, S. Thiemjarus, R. King, and G.Z. Yang. Body sensor network - a wireless sensor platform for
pervasive healthcare monitoring. In Adjunct Proceedings of the 3rd International Conference on Pervasive
Computing, May 2005.

[10] C. Otto, A. Milenkovic, C. Sanders, and E. Jovanov, “System architecture of a wireless body area sensor
network for ubiquitous health monitoring,” Journal of Mobile Multimedia, vol. 1, no. 4, pp. 307–326, 2006.

[11] Munishwar, Vikram P., Samer S. Tilak, and Nael B. Abu-Ghazaleh, Congestion and Flow Control in
Wireless Sensor Networks. Guide to Wireless Sensor Networks, Dordrecht: Springer, 2009.

[12] C. Tan, H. Wang, S. Zhong, and Q. Li, “Body sensor network security: an identity-based cryptography
approach,” Proc. 1st ACM conference on Wireless Network Security, pp. 148–153, 2008.

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.2, March 2013

22

[13] K. K. Venkatasubramanian, A. Banerjee, and S. K. S. Gupta, “EKG-based key agreement in Body Sensor
Networks,” IEEE Conference on Computer Communications Workshops (INFOCOM), pp. 1-6, 2008.

[14] K. K. Venkatasubramanian and S. K. S. Gupta, “Security for pervasive health monitoring sensor
applications,” Proceedings of the 4th International Conference on Intelligent Sensing and Information
Processing (ICISIP '06 Bangalore, India), pp. 197 – 202, December 18, 2006.

[15] W. Leister, T. Fretland and I. Balasingham, “Use of MPEG-21 for Security and Authentication in
Biomedical Sensor Networks,” 3rd International Conference on Systems and Networks Communications
(ICSNC), Sliema, Malta, pp. 151 – 156, October 26, 2008.

[16] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton, “CodeBlue: An ad hoc sensor network
infrastructure for emergency medical care,” Proceedings

of the International Workshop on Wearable and Implantable Body Sensor Networks, pp. 12-14, June 6, 2004.
[17] G. Virone, A. Wood, L. Selavo, Q. Cao, L. Fang, T. Doan, Z. He, and J. Stankovic, “An advanced wireless

sensor network for health monitoring,” Transdisciplinary Conference on Distributed Diagnosis and Home
Healthcare (D2H2), Apr. 2006.

[18] Chien-Chih Lai, Ren-Guey Lee, Chun-Chieh Hsiao , Hsin-Sheng Liu , Chun-Chang Chen, “A H-QoS-
demand personalized home physiological monitoring system over a wireless multi-hop relay network for
mobile home healthcare applications,” Journal of Network and Computer Applications, v.32 n.6, p.1229-
1241, November, 2009.

[19] B. Korel, S. Koo, “A Survery on Context-Aware Sensing for Body Sensor Networks, Wireless Sensor
Network,” Volume 2, p. 571-583, 2010.

[20] P. R. Pereira, A. Grilo, F. Rocha, M. S. Nunes, A. Casaca, C. Chaudet, P. Almstrom and M. Johansson,
“End-to-end reliability in Wireless Sensor Networks: survey and research challenges,” EuroFGI Workshop
on IP QoS and Traffic Control, Lisbon, December, 2007.

[21] Al-Ali, A.R., Al-Rousan, M., Ozkul, T., “Implementation of experimental communication protocol for
health monitoring of patients,” Computer Standards & Interfaces, Vol. 28, Issue 5, pp. 523-530, June 2006.

[22] Fang, W., Chen, J., Shu, L., Chu, T., Qian, D., “Congestion avoidance, detection and alleviation in wireless
sensor networks,” J. Zhejiang Univ. 2010.

[23] Varshney, U., “Pervasive healthcare and wireless health monitoring,” Mobile Network Applications, 12(2-
3), pp. 113-127, 2007.

[24] B. Otal, L. Alonso, and C. Verikoukis, “Highly reliable energy saving mac for wireless body sensor
networks in healthcare systems,” IEEE Journal on Selected Areas in Communications, vol. 27, no. 4, pp.
553–565, 2009.

[25] Shimmer booklet
[26] Jeffrey R. Cram and Eleanor Criswell, Introduction to Surface Electromyography, Jones & Bartlett

Learning, 2011
[27] Carlo J. De Luca, “Surface Electromyography: Detection and Recording,” DelSys Incorporated, 2002.
[28] Wireless EMG Sensor – Shimmer, http://www.shimmer-research.com/p/products/sensor-units-and-

modules/wireless-emg-sensor
[29] Zephyr Hxm Manual
[30] Features and Specifications – Samsung Captivate, http://www.samsung.com/us/mobile/cell-phones/SGH-

I897ZKAATT-features
[31] Phillip Levis, “TinyOS Programming,”October 27, 2006.
[32] David Gay, Philip Levis, David Culler, and Eric Brewer, “nesC 1.1 Language Reference Manual,” May

2003.
[33] BioMOBIUS - Overview, http://biomobius.org/
[34] What is Android? | Android Developers, http://developer.android.com/guide/basics/what-is-android.html
[35] Android Developers Blog: Dalvik JIT, http://android-developers.blogspot.com/2010/05/dalvik-jit.html
[36] What is the NDK? | Android Developers, http://developer.android.com/sdk/ndk/overview.html
[37] JSM, http://www.jssm.org/vol9/n4/12/F1.htm

http://www.shimmer-research.com/p/products/sensor-units-and-
http://www.samsung.com/us/mobile/cell-phones/SGH-
http://biomobius.org/
http://developer.android.com/guide/basics/what-is-android.html
http://android-developers.blogspot.com/2010/05/dalvik-jit.html
http://developer.android.com/sdk/ndk/overview.html
http://www.jssm.org/vol9/n4/12/F1.htm

