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ABSTRACT 

The adoption of market-based principles in resource management systems for computational 

infrastructures such as grids and clusters allows for matching demand and supply for resources in a 

utility maximizing manner. As such, they offer a promise of producing more efficient resource allocations, 

compared to traditional system-centric approaches that do not allow consumers and providers to express 

their valuations for computational resources. In this paper, we investigate the pricing of resources in 

grids through the use of a computational commodity market of CPU resources, where resource prices are 

determined through the computation of a supply-and-demand equilibrium. In particular, we introduce 

several categories of CPUs characterized by their execution speed. These differ in cost and performance 

but may be used interchangeably in executing jobs and thus represent so-called substitutable resources. 

We investigate the performance of the algorithms for computing the supply-and-demand equilibrium in 

this multi-commodity setting under dynamically varying consumer and provider populations. 
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1. INTRODUCTION 

The key function of a resource management system (RMS) is to efficiently allocate tasks to 

available resources. An efficiently functioning RMS is particularly important in the case of 

large-scale heterogeneous infrastructures that span many administrative domains such as grids 

or public resource computing networks. In many systems that are in use today, resource control 

and scheduling are often driven by system-centric objectives such as optimizing system 

throughput. However, the large user base of such infrastructures includes strongly varying 

requirements and preferences with respect to resource allocations. It is therefore important that 

there be a shift towards a user-centric approach that allows the individual expressions of the 

values of tasks and resources by consumers and providers, and has the resource management 

system take those valuations into account in allocation and scheduling decisions [1]. 

 The introduction of market-based principles into resource management addresses that issue. It 

involves the definition of a computational market in which grid users and providers interact. 

Prices are used to signal supply and demand of resources. They reflect the users’ valuations of 

the resource usage at particular points in time and signal the abundance or scarcity of various 

types of resources. Providers sell access to computational resources to consumers in a market 

that can be organized in different ways, e.g. posted-price markets, different types of auctions or 

commodity markets [2].  
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In this contribution, we consider the commodity market model with centralized equilibrium 

pricing [3]. It corresponds to a vision of the grid where applications can treat computational 

resources as interchangeable and not as specific machines and systems. Market participants 

express their valuation for resources as a function of their price. That means that for each price 

level the consumers, i.e. users wanting to obtain resources to have their jobs executed, indicate 

how many resources they will acquire. Similarly, for each price level the providers, 

organizations or individuals bringing their resources into the grid, indicate how many of their 

resources they will make available. The market sets the actual price by computing the price at 

which supply equals demand.  

The pricing scheme based on supply and demand equilibrium in a computational commodity 

market has been investigated by [4]. It has been found to function well for static grids, i.e. grids 

with a static population of consumers and providers. Under these circumstances, the 

determination of the equilibrium price under variations of e.g. job load or disposable budget is 

fast and stable. This observation has been extended by [5] to dynamic infrastructures and by [6, 

7] to large scale systems. 

In this contribution, we extend this work to several substitutable resources. We introduce 

several categories of CPUs characterized by execution speed. These differ in cost and 

performance but may be used interchangeably in executing jobs and thus represent so-called 

substitutable resources. We investigate, using the Grid Economics Simulator [8], whether the 

algorithms for computing the supply-and-demand equilibrium, function in this context. 

This paper is organized as follows. Section 2 discusses the commodity market model which 

includes the consumer, provider and pricing models used in the market. Section 3 provides a 

brief description of the Grid Economics Simulator (GES) that we have used in this study for 

obtaining empirical results. Section 4 describes the results obtained under different simulation 

scenarios, after which we formulate our conclusions. 

2. COMMODITY MARKET MODEL 

Modeling a resource market involves modeling the resources that are traded, the operation of 

the market (in particular the pricing mechanism), and the behavior of the market participants, 

i.e. the providers and consumers. With the exception of the resource model, which we extend in 

this work to include several substitutable categories to model a range of CPU performances, all 

these models have been explained in detail in [4, 6, 7]. We limit ourselves to a brief description 

for those models here. 

2.1. Resource Model  

A single type of resources, namely CPUs has been used in our investigations to date. In order to 

represent the diversification in CPU performance, we introduce a number of CPU categories, 

indexed by 𝑖, which we refer to as 𝐶𝑃𝑈𝑖 . Their performance is expressed normalized with 

respect to that of 𝐶𝑃𝑈1 that acts as a reference. In the present paper we have, somewhat 

arbitrarily, chosen performance ratios 𝑟𝑖  to be linear: CPUs from category 𝐶𝑃𝑈2 execute a task 

twice as fast as those from category 𝐶𝑃𝑈1, CPUs from category 𝐶𝑃𝑈3 three times as fast and so 

on. In a real-world deployment, the determination of these ratios can be adapted to the variance 

one observes in the actual CPUs that are integrated in the grid infrastructure, through clustering 

methods. These categories constitute substitutable commodities, i.e. jobs can execute on both, 

but consumers will value them differently. 

2.2. Job Model 

As a consequence of limiting our resource model to CPUs, we also model a job as a CPU-bound 

computational task. Every job is characterized by a normalized running time. This time 
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corresponds to the time it takes for the job to run on a CPU with a performance ratio of 1. 

However, in our algorithms we do not assume that the consumer has knowledge of this running 

time. 

Jobs are taken to be atomic in the sense that they are always allocated to a single CPU and are 

non-preemptable. The dispatch of a job to a CPU is affected immediately after the necessary 

resource has been acquired. Initially, every consumer’s queue has a number of jobs in it; with a 

certain probability jobs are added to the queue at every simulated time step or at periodic 

intervals. The former type of job injection models a continuous background load, the latter the 

occurrence of peak loads. 

2.3. Consumer Model 

The consumers in the computational commodity market are modelled as agents that act on 

behalf of grid users. Each consumer has a queue of computational jobs that need to be executed 

and for which resources must be acquired from providers through participation in the market. 

The price a consumer is willing to pay depends on the valuation for its jobs. More specifically, a 

consumer is characterized by a vector 𝑣 of valuation factors. The 𝑖𝑡ℎ  component of this vector 

(𝑣i) is used in conjunction with the performance ratio 𝑟𝑖 , to normalize the price level for CPU 

category 𝑖(denoted by 𝑝𝑖) that is observed in the market. This allows the consumer to compare 

price levels of the different CPU categories based on its individual preferences, and make 

decisions on formulation of demand for the different categories accordingly. The normalized 

price for CPU category 𝑖, is then given by equation 1. 

 𝑝𝑖
𝑛𝑜𝑟𝑚 =

𝑝𝑖

𝑟𝑖 ∗ 𝑣𝑖
 (1) 

 

The r.h.s reflects the price normalized to unit performance and factors in the consumer’s 

valuation for the category. The use of the 𝑣i term provides a simple abstraction for the complex 

logic a consumer might follow to prefer one CPU category over another. An example of such a 

logic whereby a consumer is willing to pay more than double the price for a CPU of category 2, 

which is only twice as fast as one of category 1, is the following. Suppose the consumer has a 

job graph that includes a critical path and that a scheduling strategy is used to optimize for total 

turnaround time. Such a consumer would be willing to pay more than the nominal worth of a 

CPU of category 2 for allocating jobs on the critical path, as they have a potentially large effect 

on turnaround time.  

Each consumer is provided with an initial budget and an additional periodically replenished 

allowance. In every simulation step, consumers are charged with the usage rate prices for all 

grid resources that are currently allocated to their jobs. In the market, contracts are established 

between providers and consumers for the full duration of a job. That is, 𝑝𝑖  denotes the price that 

will be charged to the consumer for the entire duration of the job, if it is run on a resource from 

category 𝑖.  

Consumers do not attempt to save up credits, but try to use their entire budget. However, 

expenditures are spread out evenly across the allowance period. This is done because we assume 

that consumers do not have reliable estimates of the running time of their jobs. Therefore, we 

need to prevent consumers from agreeing to a cost level that would not be sustainable for them 

over the entire allowance period. Under these modeling decisions, consumers then formulate 

demand in the category with the lowest value for 𝑝𝑖
𝑛𝑜𝑟𝑚 . The volume of this demand is bounded 

by the consumer’s budgetary constraint. 

2.4. Provider Model 

Every provider hosts a number of CPUs in each category that can be supplied to the market. 

Once a resource is allocated to a job, it remains allocated until the job completes. Also, the 
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market price at the time the resource is sold will be charged as a fixed rate to the consumer for 

the duration of the job. This approach is consistent with the fact that we do not assume a prior 

knowledge of a job’s running time.  

For a given price vector 𝑝 that has a price component for each CPU category in the market (𝑝𝑖), 

providers have to determine how many CPUs they are willing to sell for each CPU category. To 

do so, a quantity 𝑀𝑃𝑅𝑖  is calculated. This denotes the ”mean provider revenue per time step and 

per resource” for category 𝑖. The 𝑀𝑃𝑅𝑖  reflects the price the provider was able to obtain, on 

average, in the past for that category. 

Given the price 𝑝𝑖  for resources of category 𝑖 and a number of available resources 𝑃𝐶𝑖  in that 

category, the provider indicates a willingness to supply a number of resources in category 𝑖, as 

given by equation 2. 

 
𝑆𝑢𝑝𝑝𝑙𝑦𝑖 = 𝑃𝐶𝑖 ∗ min 1.0,

𝑝𝑖

𝑀𝑃𝑅𝑖
  (2) 

 

That is, at a price that exceeds average past revenue, all resources are made available; at a price 

below that level, a share proportional to the ratio is made available. Providers thus limit their 

supply to the market in order to keep prices high, thereby trying to maximize revenue.  

However, the fewer resources are sold, the lower the 𝑀𝑃𝑅𝑖  becomes, and this will in turn 

increase the number of resources offered at price level 𝑃𝑖 . The duration of the history period 

used to determine the 𝑀𝑃𝑅𝑖  has a significant impact on the speed with which the provider reacts 

to market circumstances. At one extreme, when the window reduces to the current time step, 

𝑀𝑃𝑅𝑖  → 𝑝𝑖  and providers make all resources available. At the other extreme, when the window 

includes all previous time steps, the 𝑀𝑃𝑅𝑖  becomes rigid and short term evolution has little 

impact. The length of the window can be used to encode the provider’s reluctance to react to 

short term change in price levels. 

2.5. Resource Pricing 

The market mechanism that we adopt is a spot market, with a dynamic price for resources, 

adjusted to bring about market equilibrium in order to match supply and demand. In this setting, 

prices play the role of a communicator of complex provider and consumer valuations of the 

resources [9]. The market brings together all parties to quote their supply or demand for a range 

of prices for each CPU category. This information is used (after pre-processing and smoothing 

related to the fact that we are dealing with discrete resource units), to define an excess demand 

surface i.e. the difference between current demand and supply as a function of the price vector. 

Figure 1 represents such a surface for a commodity market with two CPU categories. The 

excess demand function is denoted by ξ. Thus, 𝜉𝑖 𝑝  is the excess demand for the ith good at 

price vector 𝑝. We use the familiar Euclidian vector norm as a correctness measure for a given 

price vector 𝑝 (cfr. equation 3). 

 

 𝜉 𝑝  =   𝜉(𝑝𝑖)
2

𝑛

𝑖=0

 (3) 

 

A norm greater than zero points to an inefficiency in the sense that the suggested market price p, 

does not lead to a market equilibrium. In such a case, resources are not necessarily allocated to 

consumers that value them the most or might remain unallocated. 

The market equilibrium point is the zero of the excess demand surface and fixes the price at 

which the market will trade at that point in time. The algorithm that we use for computing this 
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equilibrium is based on Smale’s method [10], with modifications and extensions [4]. At its core, 

this algorithm follows a Newton-like approach, using information from the partial derivatives 

on the excess demand function ξ, to iteratively adjust the price levels. We refer to this algorithm 

as ESGN (Extended Smale Global Newton). The ESGN algorithm is further combined with an 

augmented Lagrangian pattern search [11]. This algorithm is tailored towards optimization 

problems with nonlinear objective functions or constraints. It does not rely on accurate 

derivative information and is therefore more robust with respect to discontinuities in the excess 

demand function. We have used the implementation of this algorithm that is delivered by the 

Matlab Genetic Algorithm and Direct Search Toolbox. 

Figure 1. Sample excess demand surface for a commodity market with two CPU categories, the 

Z-axis denotes  𝜉 𝑝   

The resulting optimization process first invokes the ESGN algorithm. When ESGN does not 

arrive at an equilibrium price, and the associated value of  𝜉 𝑝   exceeds a preconfigured 

threshold, the pattern search algorithm is invoked to further improve  𝜉 𝑝  . We allow this 

optimization process to iterate and compute a new price vector 𝑝′ , as long as constraints are 

fulfilled with respect to: 

 The current value of  𝜉 𝑝   
 The number of times the optimization process has already iterated 

 The size of the improvement made by invoking the pattern search algorithm 

The threshold values for these constraints can be configured on a case by case basis. In the 

remainder of this paper we will use the following values: 

   𝜉 𝑝  < 80 

  Number of iterations < 10 

   𝜉 𝑝  −  𝜉 𝑝′   > 1 

2.6. Grid Membership Dynamics of Consumers and Providers 

We use the term ”grid” in a broad sense as a large network of independent provider and 

consumer nodes cooperating to achieve the completion of computational tasks. We interpret this 

as an inherently dynamic setup, with nodes leaving and joining or rejoining the grid, for 

whatever reason.  
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We use a simple, straightforward model for the dynamics of peer participation or churn in the 

network. There is a pool of potential providers and a pool of active providers. A given rate 

governs the departure of providers from the former to join the latter. Similarly active providers 

depart at a given rate. In that event, we let the provider’s CPUs finish processing the jobs 

currently executing on it. Only then does the provider enter the pool of potential providers. This 

state is referred to as the de-activated state for the provider. The size of the pools and the 

balance of the departure rates determine the evolution in time of the number of active providers. 

An analogous mechanism is in place for consumers. Active consumers have jobs and participate 

in the market. There is a pool of potential consumers that can enter the market. State changes 

are determined by comparing randomly drawn numbers against pre-set thresholds. If a 

consumer is deactivated, it will arrive in the pool of potential consumers after its currently 

running jobs have finished. Upon deactivation, a consumer retains the jobs in its queue. 

3. THE GES SIMULATOR 

Our study uses the Grid Economics Simulator (GES) [8] to evaluate the performance and 

behavior of the proposed commodity market model. GES is a Java-based simulator that supports 

both discrete-time and discrete-event simulation, that is aimed at the study of various economic 

resource management approaches for large-scale distributed infrastructures. It focuses on 

analyzing the resource management system’s ability to efficiently organize a resource market. 

GES also supports non-economic approaches in which case aspects such as billing and pricing 

are excluded from the simulation process. 

Figure 2 gives a general overview of the GES architecture in terms of layers and components. 

Inside the Core layer, the domain layer contains base classes for domain entities such as 

Consumer, Provider, GridResource, and GridEnvironment. Support for traditional forms of 

resource management is provided through the Non-Economic layer and for market-based 

resource management in the Economic layer. On top of each of those one finds specific 

resource management systems. Outside the Core one finds layers dealing with configuration of 

simulations and with distributed processing of simulations based on technologies such as Jini, 

Sun Grid engine (SGE) or directly through system-to-system secure shell connections (SSH). 

This can of course be extended to other distribution platforms. A more detailed technical 

overview, and a comparison with similar simulators can be found in [8]. 

In this contribution, we have used the discrete-time capabilities of the simulator. In the discrete-

time model, time advances in simulation steps. During each step a number of actions are taken. 

Each simulation step in the commodity market consists of the following actions: 

1. Determination of the set of active consumers and providers for this step of the 

simulation. 

2. The job queues of the active consumer’s are updated. 

3. If there are non-occupied resources in the market, equilibrium price levels are 

established for these resources. 

4. Resource trading occurs at these price levels. 

5. The available budget of all active consumers is updated. Payments for running jobs are 

made to the provider accounts. 

6. The remaining runtime of all active jobs is updated and all jobs that have finished their 

execution are removed from the system. 

7. The availability state of the provider’s resources is updated. 
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GES has a user interface that consists of a set of utilities and controls to easily configure market 

scenarios and efficiently analyze and monitor the system’s behavior. It also allows a very 

flexible composition of views on the various simulation data and results.  

 

Figure 2. Overview of the architecture of GES 

4. RESULTS 

Using the GES simulator we verify that the commodity market operates correctly, i.e. that 

correct equilibrium prices can be determined at each simulated time step, while increasing the 

number resource categories in the system in successive simulation scenarios. Categories were 

configured with linearly increasing speed factor, i.e. the fourth category has a performance ratio 

𝑟𝑖 of 4. For the purpose of analysis and comparison we report here on the results of a scenario 

with three and a scenario with six CPU categories. We have also explored similar scenarios with 

one, two, four and five categories. The results in those cases are similar to those reported in this 

paper and support its findings. 

4.1. Simulation Scenarios 

The key GES parameters that apply in the simulated scenarios are listed in Table 1. When a 

range is indicated, the parameter is determined by a uniform distribution in that range. 

The number of consumers and providers in the simulation and the departure rates for pool 

transferrals are listed in Table 1. The departure rates are identical for both active and potential 

pools leading to a regime without long term shifts in the number of consumers and providers. 

All consumers and providers start out in the active pool. And as such, a higher load will be 

placed on the system in the beginning of the simulation. A small background load is generated 

at each time step by having each consumer, with a probability of 15%; add a new job to its 

queue. A periodic load is generated by injecting a large number (in the range {1, 2, ···, 150}) of 

jobs in the consumer’s queue at every 50 time steps. The latter is done in order to probe the 

stability of price levels and gauge the market’s response to the load spike. Jobs take {2, ···, 10} 

timesteps to process on the reference CPU with a performance ratio of 1. Budgets are 
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replenished, also at every 50 time steps, with an amount equal to the initial budget. Consumers 

have uniformly distributed valuation factors for the different CPU categories that vary between 

1.0 and 1.5. 

Table 1. Simulation parameters. 

Common parameters for all scenarios Value 

Initial size, active consumer pool 
Departure rate, active consumer pool 
Initial size, potential consumer pool 
Departure rate, potential consumer pool 
Initial size, active provider pool 
Departure rate, active provider pool 
Initial size, potential provider pool 
Departure rate, potential provider pool 
Job length in time steps 
Job injection period in time steps 
Number of jobs per injected 
Probability of new jobs per time step 
Initial budget B 
Budget replenishment period 
Budget amount replenished 
Valuation factor vi for each category 

2000 
0.1 
2000 
0.1 
1000 
0.1 
1000 
0.1 
{2, 3, ··· , 10} 
50 
{1, 2, ··· , 150} 

15% 
[50.000,125.000] 
50 
B 

[1.0, 1.5] 

Scenario with three categories  

Number of CPUs per provider in CPU3 

Number of CPUs per provider in CPU2 

Number of CPUs per provider in CPU1 

{1, ··· , 10} 
{1, ··· , 15} 
{1, ··· , 30} 

Scenario with six categories  

Number of CPUs per provider in CPU6 

Number of CPUs per provider in CPU5 

Number of CPUs per provider in CPU4 

Number of CPUs per provider in CPU3 

Number of CPUs per provider in CPU2 

Number of CPUs per provider in CPU1 

{1, ··· , 3} 
{1, ··· , 3} 
{1, ··· , 4} 
{1, ··· , 5} 
{1, ··· , 7} 
{1, ··· , 12} 

 

As indicated above, we intend to compare scenarios with different numbers of CPU categories. 

However, in order to make these scenarios comparable, we need to take care and ensure that the 

total processing capacity per time step that is potentially available in the market remains the 

same across the different scenarios. This total processing capacity is given by multiplying the 

average number of CPUs hosted per category with the performance ratio for that category and 

summing over the categories. 

Figures 3 and 4 show the results of the three category and six category scenarios respectively. 

The top panels indicate the price evolution for each CPU category, and the bottom panel the 

utilization for each of the CPU categories. The Figures show that in both scenarios, the market 

succeeds in dynamically pricing resources in response to the varying demand and supply levels. 

In each period of 50 simulation steps, prices peak as jobs are injected in the consumers’ queues 

and congestion ensues. As congestion eases of (which can be deduced from the bottom panel in 

each figure), competition in the market for resources is reduced and subsequently, lower price 

levels are registered. Note that we have chosen this scenario because of the large fluctuations in 

demand which requires the market to constantly adjust price levels to the new state of the 

environment. 

As can be seen from the graph which shows the utilization in each CPU category, utilization 

levels for categories with a high performance ratio vary more widely than those for lower 

performance categories. This is partly due to the fact that there are fewer resources available in 

the system for the high performance categories. This is a consequence of our choice to distribute 

the available processing capacity almost evenly over the different CPU categories. As a result, 
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an unmatched resource in a high performance category has a higher impact on the average 

utilization for that category. 

 

Figure 3. Results for the three-CPU-categories scenario. Price evolution (top panel) and 

utilization (bottom panel) for each of the three CPU categories. 

 

 

In both scenarios, the market is able to quickly adapt to a demand shock in the environment, as 

evidenced by a reconfiguration of the price levels at steps 50 and 100. Note that the system’s 

behavior during the initial job peak at simulation step 1 enfolds differently from those in steps 

50 and 100. Prices and utilization levels remain at a high level for a longer period of time 

compared to the other two periods of peak load. This is caused by the fact that we introduce a 

higher load at the onset of the simulation by configuring each consumer to start out in the active 
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consumer pool. As we can see from the figure, this is correctly reflected by the market’s 

outputs. 

 

Figure 4. Results for the six-CPU-categories scenario. Price evolution (top panel) and utilization 

(bottom panel) for each of the six CPU categories. 

 

Figure 5 shows that the consumer population as a whole spends a similar amount of money 

during the different steps in the simulation, irrespective of the number of CPU categories that 

are defined in the market. This supports the fact that on average, revenues for providers are not 

affected by introducing more CPU categories in the given simulation setup. 
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Figure 5. The total amount of budget spent on resources during the simulation for scenarios with 

differing numbers of CPU commodities. 

 

Table 2. Breakdown of the results in the six category scenario. 

Categories CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 

Mean price 14.65 39.30 59.68 78.84 99.09 119.51 

Avg. utilization (%) 63.35 60.48 57.91 56.38 55.08 52.86 

Avg. value of 𝝃𝒊 -11.36 -16.18 -23.07 -23.22 -27.08 -36.68 

 

Table 2 lists average price, utilization and excess demand levels for each of the CPU categories 

in the scenario with six CPU commodities. We note that prices are set by the market in line with 

the performance of the different categories and the valuations for these categories among the 

market participants. Utilization levels are lower for more performant categories. This is due to 

the larger effect an unmatched resource has on this metric in a high performance category, as 

mentioned previously. The table also shows the average value of the excess demand function 

over the entire simulation, for each category. This data shows, that on average, resources are 

slightly overpriced leading to negative excess demand (i.e. excess supply). The oversupply is 

larger for high-performance CPU categories. Note that this number of unmatched resources is 

relatively low compared to the trade volume in each simulation step. During congested periods, 

more than a thousand resources are traded in each CPU category every simulated time step. This 

number gradually diminishes in line with the utilization levels shown in Figure 4. Nevertheless, 

it is interesting to note that pricing errors result in excess supply on average. One can argue that, 

in the context of resource allocation in computational infrastructures, excess demand is to be 

preferred over excess supply (which results in underutilization of the infrastructure, whereas 

excess demand results in an inefficient allocation of resources from the viewpoint of value 

maximization). Further research is required to analyse this bias and to possibly adjust the price 

optimization algorithm to prefer prices that lead to overdemand instead of oversupply in case an 

equilibrium price vector cannot be found. 
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Table 3. The average runtime of the price determination process in each simulation step, number 

of excess demand queries and runtime per simulation steps. 

# CPUs Runtime (sec) # Queries 95% CI of |𝝃(𝒑)| Avg. |𝝃(𝒑)| Max |𝝃(𝒑)| 

1 0.51 46 [1.65,8.65] 5.15 194.36 

2 5.95 683 [18.6,28.92] 23.76 187.33 

3 13.83 1467 [31.67,46.85] 39.26 363.71 

4 24.91 2010 [23.46,137.30] 80.47 4316.86 

5 39.06 2759 [42.59,238.75] 140.67 5844.37 

6 71.64 4271 [79.2,116.64] 97.92 666.11 

 
 
 
 
 

 
 

Figure 6. Average runtime of the equilibrium price search in each simulation step for different 

number of CPU commodities. 
 

4.2. Computational Requirements 

   The introduction of more CPU categories in the market has the advantage of enabling market 

participants to more accurately formulate their requirements to the system and therefore express 

their valuations more accurately. As a consequence, more efficient resource allocations, from 

the viewpoint of value maximization, can be attained. However, introducing more categories 

also comes at the cost of increasing the complexity of the price determination process. The 

multi-dimensionality of the optimization problem of finding the equilibrium price significantly 

increases the runtime of this process. It also increases the value of the excess demand norm that 

is observed throughout the simulation, which leads to less accurate prices being set in the 

market. This is illustrated in Table 3. The diminishing price accuracy under a larger number of 

commodities is clearly reflected in the average, maximum and 95% confidence interval for the 

norm. We hereby note that the scenarios with 4 and 5 CPU commodities included a limited 

number of outliers that influence the results for both scenarios. If these are excluded from the 

data, the average norm and maximum norm for the scenario with four CPU categories become 

51.5 and 599.6 respectively. The average norm and maximum norm for the five CPU category 

scenario then change to 70.75 and 546.5 respectively. 

We observe a non-linear growth in both the runtime of the price optimization process and the 

number of excess demand queries that the optimizer needs during this process. Figure 6 
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illustrates this non-linear growth. All results were obtained on a single core of a Intel Quad Core 

processor with the cores running at 2.83 GHz. Although these runtimes do not preclude the use 

of a large number of CPU categories, care must be taken that the excess demand queries do not 

require (too much) network message roundtrips, which would lead to a too large overhead 

during the pricing process. This can be achieved by transmitting the consumer’s bidding agent 

to the execution environment in which the price optimizer resides. In a Java-based setting this 

can easily be implemented through dynamic classloading. In the event that such a centralization 

would cause a bottleneck in terms of runtime performance, or memory use, one can opt to host 

the bidding agents on a number of nodes in a compute cluster.   

5. FUTURE WORK  

In future work, we plan to extend the consumer models to include time-varying valuations for 

jobs, dependent on their completion time. This also opens up the possibility to introduce more 

intelligent bidding behavior in the consumer that strategically times the acquisition of resources 

in the market, based on price levels and price level evolution, combined with the time-varying 

valuations for jobs. We are also interested in the use of trace data to simulate real-world 

platforms and workloads. Unfortunately, current workload archives do not include sufficient 

information in order to configure the budgetary capabilities of users, and their spending 

behavior. Finally, we will investigate the use of distributed and multi-core infrastructures to host 

the population of consumer and provider bidding agents and parallelize the calculation of total 

demand and supply in the system.  

6. CONCLUSION  

This paper investigates the functioning of a computational multi-commodity market that 

includes a number of substitutable resources representing CPUs with varying performance 

ratios. The results, obtained for different simulations, show that the core algorithm of the model, 

i.e. equilibrium price determination, is robust against the disruptive effects of the dynamic grid 

fabric even with several substitutable resources. Although the computational and 

communicative requirements of the price determination process do allow for the use of a 

significant amount of commodities in the market, they do increase non-linearly in this regard. 
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