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ABSTRACT 
This paper investigates the issue of connectivity of a wireless adhoc network in the presence of channel 

impairments. We derive analytical expressions for the node isolation probability in an adhoc network in the 

presence of Nakagami-m fading with superimposed lognormal shadowing. The node isolation probability is 

the probability that a randomly chosen node is not able to communicate with none of the other nodes in the 

network. An extensive investigation into the impact of path loss exponent, lognormal shadowing, Nakagami 

fading severity index, node density, and diversity order on the node isolation probability is conducted. The 

presented results are beneficial for the practical design of ad hoc networks. 

. 
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1. INTRODUCTION 

In self-organizing wireless multihop ad-hoc networks such as sensor networks [1], the mobile 

devices communicate with each other in a peer-to-peer fashion without the need for base stations. 

For such networks, the level of connectivity among the mobile nodes depends on their spatial 

density, transmission and reception capabilities, and characteristics of the wireless channel. To 

achieve a fully connected adhoc network, there must be a path from any node to any other node. 

This paper analyze the connectivity of multihop radio networks in the presence of Nakagami fading 
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with superimposed lognormal shadowing by computing a metric called node isolation probability. 

The node isolation probability is the probability that a randomly chosen node is not able to 

communicate with none of the other nodes in the network. The network becomes fully connected if 

there are no isolated nodes [8].  

One of the first papers to address the connectivity issues in multihop networks was [2] in which 

authors investigated how far a node’s broadcast message percolates, if the nodes are randomly 

distributed according to a homogeneous Poisson point process on an infinitely large area. The 

connectivity issues for nodes that are randomly distributed according to a uniform probability 

distribution on a one-dimensional line segment were addressed in [3]. Gupta and Kumar [4] 

performed a fundamental study on the connectivity of uniformly distributed nodes on a circular 

area. Penrose [5] also proved similar results independently. Santi and Blough [6, 7] conducted 

analytical investigations of the connectivity in bounded areas. The critical transmitting range for 

connectivity in an adhoc network in the presence of node mobility was first addressed in [7]. 

Bettsetter and Hartmann [8] addressed the impact of lognormal shadowing on the connectivity of 

adhoc networks. Work in [9] also addressed the same issue independently. Orriss and Barton [10, 

11] obtained the connectivity results for the case of superposition of shadowing and fading 

phenomena. Haenggi [12] studied the impact of Rayleigh fading on network connectivity. The 

impact of interference on connectivity was analyzed in [13]. Miorandi et al. [14] presented 

analytical solution for network connectivity in the presence of channel randomness. Authors of [15] 

addressed the problem of finding the critical density of sensors required to achieve complete 

coverage of a desired region. Xiaole Bai et. al. [21] addressed the problem of determining an 

optimal deployment pattern that achieves both coverage and k-connectivity in a wireless sensor 

network. In [22], authors investigate the connectivity problem when directional antennas are 

used. While authors of [23] consider how physical layer cooperation can be used to  improve the 

connectivity in wireless ad hoc networks. 

In this paper, we derive analytical expression for node isolation probability in the presence of 

Nakagami fading and lognormal shadowing. We also analyze the impact of diversity combining 

schemes as well. Both maximal ratio combining (MRC) and selection combining (SC) schemes are 

considered for the analysis. The remainder of the paper is organized as follows. In Section 2, the 

preliminary assumptions and model are provided. Analytical evaluation of node isolation 

probability is presented in Section 3. Section 4 describes the numerical and simulation results. The 

paper is concluded in Section 5.   
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2.  SYSTEM MODEL 

We assume that the nodes in the network are randomly distributed according to a homogeneous 

Poisson point process and let λ  be the expected number of nodes per unit square ( 0 λ< < ∞ ). Let  

Ν  be two-dimensional stationary Poisson point process over 2ℜ . The points of the process 

represent the location of the nodes. Given a finite subset 2Α∈ℜ  of size ( )υ Α , the number of nodes 

in Α  denoted by ( )Ν Α  is a Poisson random variable with intensity ( )λυ Α . The numbers of nodes 

in disjoint areas are independent random variables. As in [8], we also neglect the impact of 

interference from other nodes. Let IP  be the node isolation probability. The radio link is assumed 

Boolean: i.e., two nodes are either perfectly connected, or out of range. A switched link model is 

based on the assumption that the transmission between two nodes l  and 'l  succeeds if and only if 

the signal to noise ratio (SNR) γ at the receiver is greater than the threshold value ψ . For a 

received average SNR y , let ( )SP y  be the probability that the received instantaneous SNR γ  is 

greater than the threshold ψ . If good long codes are used, the function ( )SP y  approaches a step 

function [16]. Further let R be the communication range of a node. In the presence of lognormal 

shadowing and small scale fading, R is a random variable with cumulative distribution function 

(CDF) ( )RF ρ  and second moment 2[ ]E R . Since R is non-negative, 2

0

[ ] 2 ( )c
RE R d Fρ ρ ρ

∞

= �  

where ( )c
RF ρ  is the complimentary CDF. The node isolation probability is then given by [8, 14] 

2[ ]E R
IP e λπ−=                       (1)

          

2.1.   Combined Path-loss and Lognormal Shadowing  

Assume that all the nodes transmit at a fixed power level txP  and letW  be the total white noise 

power present at the receiver. When lognormal shadowing is present, the mean of path loss is 

described by αρ −K  where ρ is the transmitter-receiver separation; α -path loss exponent; and K  is 

a constant. The received SNR for this channel model is given by ( )( ) txP l
W

ργ ρ � �= � �
� �

 where )(ρl  
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is the path-loss. The communication range R  is the distance at which the SNR falls below the 

threshold ψ .  Now ( )RF ρ  and 2[ ]E R  are computed as [14] 

])([])([)(
tx

R P
W

lPPF
ψρψργρ ≤=≤= daaf

txP
W

rl )/(1 / ρ
ψ
�
∞

−=                (2) 

2
/

0

[ ] 2 ( / )

tx

l r
W

P

E R d f a da
ψ

ρ ρ ρ
∞ ∞

= � �                    (3) 

where / ( / )l rf a ρ  represents the probability density function (PDF) of path loss under lognormal 

shadowing (with standard deviation σ ) and is given by: 
2

1 ln ln( )
2

/

1
( / )

2

a K

l rf a e
a

αρ
σρ

πσ

−� �−− � �� �
� �=                    (4) 

2.2.   Small Scale Fading and Lognormal Shadowing 

 Considering the effect of small scale fading alone, let γ  be the received instantaneous SNR and 

[ ]y E γ=  be the average SNR. For received average SNR �
�

�
�
�

�=
−

W
KPy tx

αρ , let ( )SP y  be the 

probability that the received instantaneous SNR γ  with PDF )/( yxfγ  is greater than ψ . Now 

( )SP y  and 2[ ]E R  are computed as  

�
∞

=
ψ

γ dxyxfyPS )/()(                      (5) 

2

0

[ ] 2 tx
S

KP
E R d P

W

αρρ ρ
∞ −� �

= � �
� �

�                    (6) 

For small scale fading with lognormal shadowing, ( )RF ρ  and 2[ ]E R  are evaluated as 

daafyPF rlSR )/()(1)(
0

/ ρρ �
∞

−=                    (7) 

2
/

0 0

[ ] 2 ( / )tx
S l r

aP
E R da d P f a

W
ρ ρ ρ

∞ ∞
� �= � �
� �

� �                   (8) 
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3.  NODE ISOLATION PROBABILITY ANALYSIS  

In this section, analytical expressions are derived for node isolation probability of a wireless adhoc 

network in the presence of Nakagami fading with lognormal shadowing. 

3.1. Nakagami Fading Channel 

The PDF of the received signal envelope Z under Nakagami-m fading is [17] 

( )
2

2 12
; 0.5; 0

( )

mzm m
y

Z m

m z
f z e m z

m y

− −
= ≥ ≥

Γ
                  (9) 

where y  is the average received power and (.)Γ  is the Gamma function [18]. The PDF of received 

instantaneous SNR γ  is [17] 

( )
1

/ ; 0.5; 0
( )

mxm m
y

m

m x
f x y e m x

y mγ

− −
= ≥ ≥

Γ
                (10) 

For Nakagami fading, the success probability ( )SP y  is computed as 

( )
1 ( , / )

( ) ( )

mxm m
y

S m

m x m m y
P y e dx

y m mψ

ψ∞ − − Γ= =
Γ Γ�                 (11) 

where 1

/

( , / ) m t

m y

m m y t e dt
ψ

ψ
∞

− −Γ = �  is the incomplete gamma function. Assuming m to take 

positive integer values, the success probability ( )SP y  becomes 

1
/

0

1
( )

!

lm
m y

S
l

m
P y e

l y
ψ ψ−

−

=

� �
= � �

� �
�                   (12) 

In the absence of lognormal shadowing, 2[ ]E R  is computed by substituting (12) in (6) and is given 

by: 

1
2

00 0

1
1

0 0

( )
[ ] 2 2

! ( )

( )
2

!

tx

tx

m W l lm
KPtx

S l
l tx

l m Wlm
KPl

l tx

KP m W
E R d P d e

W l KP

m W
e d

l KP

α

α

ψ ρα α

ψ ρ
α

ρ ρ ψρ ρ ρ ρ

ψ ρ ρ

∞ ∞− −−

=

∞− −
+

=

� �
= =� �

� �

� �
= � �

� �

�� �

� �

             (13) 

Now (13) is simplified by using the following result (14) from [18] and the simplified expression is 

given in (15). 
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/
1

0

p
p

xx e dx
p p

υ
υ µ µ υ∞ −

− − � �
= Γ � �

� �
�                   (14) 

2 /
1

2

0

2 1 2
[ ]

!

m

ltx

m W
E R l

KP l

α
ψ

α α

− −

=

� � � �= Γ +� � � �
� �� �

�                 (15) 

The node isolation probability is then determined by combining (1) and (15) and is given by 

	


	
�
�

	


	
�
�

�
�

�
�
�

� +Γ��
�

�
��
�

�
−= �

−

=

− 1

0

/2
2

!
12

exp
m

ltx
I l

lKP
Wm

P
α

ψ
α

λπ
α

                    (16) 

 

3.2 Nakagami Fading with Superimposed Lognormal Shadowing 

Next we consider the impact of Nakagami fading with lognormal shadowing. Given that y  is the 

received average SNR, 2[ ]E R  is computed by substituting (4) and (12) in (8). 

2

2
/

0 0

1 ln ln ( )1
2

00 0

[ ] 2 ( / )

( ) 1
2

! 2
tx

tx
S l r

l a Km W lm
aP

l tx

aP
E R da d P y f a

W

m W
da d e e

l aP a

αρψ
σ

ρ ρ ρ

ψρ ρ
πσ

−

∞ ∞

� �−∞ ∞ − − � �− � �
� �

=

� �= =� �
� �

� �
= � �

� �

� �

�� �

             (17) 

Let )/(ln
1

Kax αρ
σ

= , then the above integral is simplified as 

2
1

2 2

00

1
[ ] 2

!2

x

tx

lm Wex l xm
KP

l tx

m We
E R dx e d e

l KP

σ αψ ρ α σρ ψρ ρ
π

−
∞ ∞− −−−

=−∞

� �
= � �

� �
�� �              (18) 

Now (18) is simplified using (14) and is given by 

2

2

2

2/
1

2 2

0

2 / 2 1

0

1 2 1 2
. .; [ ]

!2

2 1 2
!

x x m

ltx

m

ltx

m We
i e E R dx e l

KP l

m W
e l

KP l

ασ

α σ
α

ψ
α απ

ψ
α α

−∞ − −−

=−∞

− −

=

� � � �= Γ +� � � �
� �� �

� � � �= Γ +� � � �
� �� �

��

�

                (19) 

The node isolation probability is obtained by combining (1) and (19):   

 
	


	
�
�

	


	
�
�

�
�

�
�
�

� +Γ��
�

�
��
�

�
−= �

−

=

−
1

0

2/2
2

!
12

exp 2

2
m

ltx
I l

l
e

KP
Wm

P
α

ψ
α

λπ α
σα

                          (20) 
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3.3. MRC with Independent Nakagami Fading 

In MRC, the M received signals are combined such that the output SNR is maximized. We assume 

equal m for all the diversity branches and identical average SNR on each branch equal to y . The 

instantaneous SNR at the output of MRC is 
1

M

k
k

γ γ
=

=�  where kγ  is the SNR in branch k . With 

statistically independent Nakagami faded branches, the PDF of γ  is given by [19] 

( )
1

/ ; 0.5; 0
( )

mM mxmM
ym x

f x y e m x
y mMγ

− −� �
= ≥ ≥� � Γ� �

               (21) 

Combining (5) and (21) and assuming m to take positive integer values, ( )SP y  is obtained as 

( ) ( , / )
( )S

mM m y
P y

mM
ψΓ=

Γ

lmM

l

ym

y
m

l
e ��

�

�
��
�

�
= �

−

=

− ψψ
1

0

/

!
1

                    (22) 

Now 2[ ]E R  is obtained by substituting (22) in (8). Following the procedure adopted for the 

derivation of (19) and (20), 2[ ]E R  and IP   are obtained as 

�
�

�
�
�

� +Γ��
�

�
��
�

�
��
�

�
��
�

�
= �

−

=

−

l
lKP

Wm
RE

mM

ltx αα
σψ

α

α
2

!
12

exp
2

][
1

0
2

2/2

2                (23) 
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� +Γ��
�

�
��
�

�
−= �

−

=

−
1

0

2/2
2

!
12

exp 2

2
mM

ltx
I l

l
e

KP
Wm

P
α

ψ
α

λπ α
σα

               (24) 

3.4. SC with Independent Nakagami Fading 

In SC, the combiner chooses and processes only the branch with the highest SNR. The combined 

branches are assumed to be independent of each other and have the same average SNR. Given 

that kγ  is the SNR in branch k , the instantaneous SNR at the output of SC is given by 

( )1 2max , ,...,sc Mγ γ γ γ= . The CDF of scγ is [20] 
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1

0

1

0 0

1
( / ) 1 exp

!

1
( 1) exp

!n

Mkm

k

nkM m
n

C
n k

mx mx
F x y

y y k

nmx mx
M

y y k

γ

−

=

−

= =

� �� � � �−
� �= − � � � �
� �� � � �� �

� �� � � �−
� �= − � � � �
� �� � � �� �

�

� �

   

   =
( )1

0 0

( 1) exp
n

kn mM
n

kn
n k

nmx mx
M

y y
β

−

= =

� � � �−− � � � �
� � � �

� �£              (25)                                        

The final expression in (25) is obtained after expanding the first expression in (25) binomially and 

then using multinomial theorem. Here knβ  is determined as 

( )

( )

[ ] ( )

1
[0,( 1)( 1)] 00 0 1

1

,

1
( ); 1,

! !

1,
0,

k
i n

kn n m n k
i k m

a b

I n
k i k

a n b
I n

otherwise

β
β β β β−

− −
= − +

= = = =
−

≤ ≤�= �



�
              (26) 

The success probability, which is the probability that SNR in at least one path is greater than ψ , is 

the complement of the probability of all paths presenting an SNR lower thanψ  and is given by 

( )1

1 0

( ) ( 1) exp
n

kn mM
n

S kn
n k

nm m
P y M

y y
ψ ψβ

−

= =

� � � �−= − − � � � �
� � � �

� �£                                                                (27) 

Expression for 2[ ]E R  is obtained by substituting (4) and (27) in (8). Final expressions for 2E R� �� � 

and IP  are as follows: 

( )
( )2

2

2
22 1

2

1 0

2 2
1

h

h mM lh
lh

h ltx

m W
E R e M h l

KP

σα
ααψ β

α α

−
� �� �− − +� �� �
� �� �

= =

� �
� � � �	 	� �� �= − − Γ +� �� � � �� �� � � �� �� �	 	


 


� �£                            (28) 

( )
( )2

2

2
22 1

1 0

2 2
exp 1

h

h mM lh
I lh

h ltx

m W
P e M h l

KP

σα
ααψλπ β

α α

−
� �� �− − +� �� �
� �� �

= =

� �
� � � �	 	� �= − Γ +� �� � � �� �

� �� �� �	 	

 


� �£                           (29) 

4.  NUMERICAL AND SIMULATION RESULTS  

In this section we present the numerical and simulation results. The numerical results are obtained 

from the analytical model using MATLAB. The system parameters are selected as follows: 

K=10dB, txP =1mWatt, W=0.01mWatt, ψ =10dB. The parameters such as m, λ , α , and σ  are 
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selected suitably. Simulation is also performed using MATLAB for the same system parameters. 

The network size for simulation is fixed to be100 100m m× . We choose a random number of nodes 

according to Poisson process and the nodes are placed over the simulation area according to a 

random uniform distribution. Various links are then established according to the given channel 

model. The nodes operate in a Nakagami fading environment with super imposed lognormal 

shadowing. In this topology, we check for an isolated node and the experiment is repeated for many 

random topologies. The node isolation probability is computed as an average of 1000 simulation 

runs.  

The simulated network topologies are shown in Figures 1(a) – 1(d) for various channel conditions. 

Figures 2 and 3 show the node isolation probability IP  versus node density λ . In Figure 2, σ  is 

chosen as the variable while Figure 3 is drawn for different values of  m. Figure 4 shows the relation 

between λ  and σ  for a fixed IP . Larger values of λ  result in lower IP . Further, for larger values 

of �, a lower λ  is sufficient to make the network connected with the same probability. In other 

words, assuming the path loss exponent α to be fixed, larger values of  σ  always makes the 

network to become connected, without any increase in transmitted power. For  m = 1, the results 

correspond to Rayleigh fading and for higher values of  m, IP  decreases. It may be noted that the 

difference between analysis and simulation results are marginal. Figure 5 shows impact of α  on 

IP , keeping all other parameters to be constant. For a fixed value of lognormal spread σ , higher 

value of path loss exponent α  always results in larger isolation probability.  General multi-path 

fading always correspond to 2α >  ( 2α =  correspond to free-space propagation). Hence we 

conclude that larger values of lognormal spread reduce the node isolation probability. Further, as 

the Nagakami fading factor increases, the node isolation probability gets reduced, improving the 

connectivity of the network. 

Next, the performance evaluation is repeated for receive diversity with MRC and SC schemes. The 

results for independent MRC scheme are shown in Figure 6, while Figure 7 shows the results for 

independent SC scheme. Both MRC and SC schemes improve the network connectivity 

performance. For the MRC scheme, the percentage improvement in IP  increases as M increases, 

while for SC scheme; it is found that there is no proportional improvement in IP  for higher values 

of M. Thus the presented model can be used to find, for a given set of channel model parameters, 

the minimum node density required to achieve a fully connected network covering a certain area.  
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5. SUMMARY 

In this paper, we have investigated connectivity properties of multi-hop wireless networks by 

computing a metric called node isolation probability. Analytical expressions for node isolation 

probability were derived. As opposed to previous research in this field, we took into account 

stochastic lognormal shadowing, and Nakagami fading effects between the nodes. Using a 

combination of analytical and simulation-based methods, we gave insight about the impact of 

various parameters such as node density, path loss exponent, lognormal spread, and Nakagami-m 

factor on the isolation probability.  We have also investigated the effect of diversity-combining 

techniques on the network connectivity performance. The computed values of the node density are 

of practical relevance for the design and simulation of wireless multi-hop networks. For a given 

channel model and parameters, the presented results can be used to determine the minimum node 

density that is needed to achieve a fully connected network covering a certain area. 
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Figure 1(a). Simulated Network (Nakagami fading, σ  = 0) 

 
 

 
Figure 1(b). Simulated Network (Nakagami fading, σ  = 2) 
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Figure 1(c). Simulated Network (Nakagami fading, σ  = 4) 

 
 

 
Figure 1(d). Simulated Network (Nakagami fading with MRC, σ  = 2, M = 2) 
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Figure 2. Node isolation probability IP  vs. node density λ  
(Nakagami fading m=2,α =4 

 

 
 

Figure 3. Node isolation probability IP  vs. node density λ  
(Nakagami fading σ =2,α =4) 
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Figure 4. Node density λ  vs. lognormal spread σ : Nakgami fading (m=4,α =4) 

 
 

 
 

Figure 5. IP  vs. path loss exponent α  : Nakagami fading (m = 4, λ =.00001 2/ m− ) 
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Figure 6. IP vs. lognormal spread (Receive diversity with MRC: m=2, λ =.00001 2/ m− ,α =4) 

 
 
 

 

 
 
 

Figure 7. IP  vs. lognormal spread (Receive diversity with SC: m=2, λ =.00001 2/ m− ,α =4) 

 


